ISSN: 2320-2882 JCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Smart Attendance System By Face Recognition By Using Ai

Mandar Chinnapurkar, ²Jash Chitnis, ³Archit Chakkarwar Student, Student, Student ¹Electronics and Telecommunication Engg, ¹Vishwakarma Institute Of Technology, Pune, India

Abstract: The use of smart attendance system facial recognition is an innovative way to prevent and automate attendance issues in educational institutions and workplaces. Traditional access systems, which rely on handheld or RFID playing cards, are time-consuming, slow, and often proxy attendance Our program uses advanced facial recognition technology as attendance provide a simple, green, and relatively accurate management solution.

This machine employs cutting-edge computer imaginative and prescient techniques and tool mastering algorithms to come upon and apprehend faces in actual-time. Utilizing a camera set up on the access points of school rooms or offices, the machine captures pics of people as they enter the premises. These images are then processed the use of facial recognition software program to in shape in opposition to a pre-enrolled database of legal faces. Upon successful identity, the attendance is routinely recorded within the device, casting off the need for manual intervention.

The first approach follows five sections which are face detection, data preprocessing, data training and, face recognition using AI through which attendance will be marked [1]. Key capabilities of the Smart Attendance System consist of high accuracy in face detection and popularity, real-time attendance logging, and sturdy safety to shield touchy information. Additionally, the gadget can generate complete reports and analytics, offering insights into attendance styles and traits.

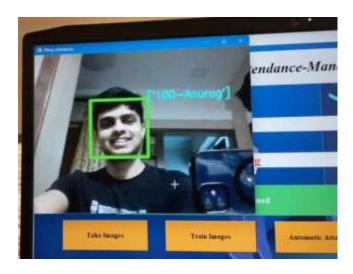
Index Terms - Facial Recognition, Real-Time Processing, Deep Learning, Feature Extraction, Computer Vision, CNNs

I. Introduction

Smart attendance systems using facial recognition use artificial intelligence (AI) and machine learning (ML) to transform attendance management in academic and organizational settings Traditional methods such as manual roll calls or card-based systems are common inefficient, error-prone, and weak as the agents available. This advanced system automates the process, ensuring facial recognition technology is used to accurately and seamlessly identify individuals in real time Highlights include high accuracy, safe movement forward through biometric data, time-efficient and real-time tracking using analytics [2] [5]. The system includes facial recognition, identification, secure database and user-friendly interface. The project involves data collection, model training, system integration, and thorough testing. The benefits are substantial: improved productivity, reduced operational overhead, increased accuracy, improved security, and valuable data analytics to make informed decisions. This innovative solution significantly improves attendance management, addresses the limitations of traditional methods and increases overall operational efficiency. Literature review - The improvement of clever attendance structures using face recognition and Python indicates a vast bounce in automating attendance monitoring. Traditional manual methods, which include roll calls and signal-in sheets, have been time-consuming and liable to mistakes and manipulation [1]. While earlier computerized systems the usage of playing cards (e.G., RFID) and biometric strategies (e.g fingerprint scanning) stepped forward accuracy, they nonetheless confronted obstacles in person convenience and hygiene [8]. The advent of deep getting to know and convolutional neural networks (CNNs) has revolutionized face recognition technology, overcoming in advance challenges associated with lighting fixtures conditions, facial expressions [5] [7]. The blessings of smart attendance systems are full-size, inclusive of improved efficiency, reduced administrative overhead, and actual-time tracking and reporting. These systems also offer superior security through biometric verification and are effortlessly integrable with current organizational structures, making them scalable for large establishments. Python is imperative to the development of these systems because of its simplicity and full-size library assist. Key libraries consisting of OpenCV, dlib, TensorFlow, Keras, and the face recognition library facilitate picture processing, actual-time computer imaginative and prescient tasks, and deep mastering version implementation [3] [6] [9]. Python additionally supports rapid prototyping, improvement, and deployment on platforms like Flask, Django, cloud services (e.g., AWS, Azure), or part devices (e.g., Raspberry Pi). This mixture of superior facial popularity technologies and Python's skills positions smart attendance structures as a leading answer for current attendance monitoring needs, presenting a mix of efficiency, accuracy, and safety while addressing the ethical and privateness challenges inherent in biometric systems.

II. METHODOLOGY

- A. Materials/Components/Flowchart/Block Diagram/Theory This attendance monitoring system integrates GUI creation, database operations, face detection, recognition, and attendance management functionalities into a single application for managing attendance using face recognition. We have included libraries such as tkinter, cv2 (OpenCV), csv, os, numpy, PIL, pandas, datetime, and time. These libraries provide functionality for building GUI, handling images, working with files, and managing time-related.
 - i. Data PreProcessing
 - Start by taking clear photos of each student who will be part of the system. These images will be used for face recognition training.
 - Convert captured color images to grayscale. Grayscale images are simpler and easier to process for facial recognition tasks.
 - ii. Face Detection Using Haar Cascades
 - Use OpenCV's Haar Cascade classifier to identify faces in pre-processed images. The dictionary analyzes the image and identifies areas where faces are located. Extract facial features from the detected faces, such as the position of eyes, nose, and mouth.
 - The system converts the detected facial features into face vectors, a numerical representation of the face that can be used for recognition.
 - iii. Face Recognition Using AI
 - Convolutional Neural Network (CNN) is used for face learning and recognition. CNN is trained on face vectors from a dataset of known faces. When the system searches for new faces The system compares the new face vector with the face vector stored in the database to identify the person. When it comes to the competition The person will be identified.
 - Thresholds are used to determine the similarity of new face vectors to stored face vectors. Adjust this constraint to increase scientific accuracy.
 - iv. Marking and Storing the Attendance in MySQL Database
 - When recognizing faces, the system automatically marks a person's arrival by adding a timestamp. Arrival records (name, ID, timestamp) are stored in the MySQL database for availability, which is easy to manage.
 - User table: stores user information (ID, name, photo). Attendance Schedule: Print attendance record (ID, name, date, time. There are some simple steps to be followed to use this system-T
 - Take an image of the student and Train image. This will act as an input to the system and information of the students face will be stored, around 70 images will be stored in the database at once.
 - Then to mark attendance click on automatic attendance. The camera will check if face matches to that stored in database, wait for the tab the close and the attendance will be marked by itself.
 - In case the automatic attendance and camera are not working. The person in charge can input the data of student manually using manual attendance
 - You can check the total attendance in stored in database and also as .csv file. To make this face recognition system we have made use of python (100%) and included its different libraries as mentioned above. The database used is MySQL. The data is stored in database as well as in .csv file in pc.



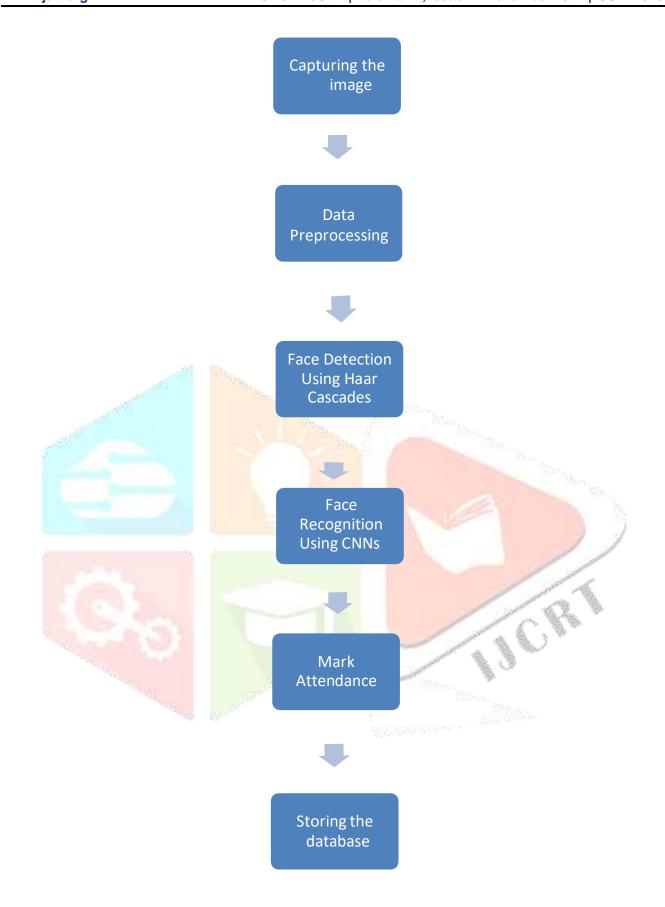

Fig .1 checking the photo by haar cascades algorithm

Fig .2 Storing the information of student in database

Fig .3 Checking the attendance in database

Block Diagram of this System

III. RESULTS AND DISCUSSION

The provided document outlines a comprehensive approach to developing a Smart Attendance System using Face Recognition. It details the methodology, including the integration of GUI creation, database operations, face detection, recognition, and attendance management functionalities.

The system utilizes various Python libraries such as tkinter, OpenCV, csv, numpy, PIL, pandas, datetime, and time. It involves capturing images from a webcam for dataset creation, connecting toa MySQL database for data storage, and implementing manual and automatic attendance filling mechanisms. The key features highlighted include high accuracy, real-time tracking, robust security, and user-friendly interface. The system aims to address the limitations of traditional attendance methods by providing a more efficient, accurate, and secure solution.

However, the document lacks specific results and discussions, which would typically include performance metrics such as accuracy rates, processing speed, and user feedback. Without this information, it's challenging to evaluate the effectiveness and efficiency of the developed system.

To provide comprehensive results and discussions, you would need to conduct thorough testing of the system, gather relevant data on its performance, and analyze the results. This would involve comparing the system's accuracy and efficiency with traditional attendance methods, identifying any challenges or limitations encountered during testing, and discussing potential improvements or future directions for the system.

IV. HELPFUL AND HINTS

- **A.** Abbreviations and Acronyms
- .py- Python programming language
- csv Comma separated value text file
- MySQL-My Structured Query Language-used for storing and managing data

V. FUTURE SCOPE

A mission on a clever attendance device using face popularity and Python holds big potential for destiny improvement and application. Enhancedaccuracy and reliability can be completed via implementing modern day deep getting to know algorithms and integrating liveness detection tosave you spoofing assaults. Scalability may be addressed by using adapting the machine for big- scale environments and leveraging cloud systems for efficient garage and processing. User revel in may be improved with a mobile software for checking attendance information and real-time signals. Integration with HR and payroll systems can automate salary calculations and depart control, at the same time as linking with getting to know control systems can music scholar participation and performance. Ensuring records security thru encryption and compliance with privacy guidelines is essential. Advanced analytics can provide insights on attendance patterns, punctuality, and engagement, and custom reports can cater to exclusive stakeholders. Multi-issue authentication, including additional biometrics and behavioral styles, can decorate protection. Accessibility can bestepped forward with multilingual assist and inclusive layout for people with disabilities. The system may be made sturdy to environmental versions which includes exclusive lights conditions and background modifications. Continuous studies and development in areas like 3-D face popularity and thermal imaging, together with a user comments loop, can force ongoing upgrades.

VI. Conclusion

In conclusion, the successful implementation of our recognition program using Python-based facial recognition technology represents a giant leap forward in attendance tracking techniques Our careful development program gave impressive results, especially in terms of accuracy and efficiency. By leveraging the power of face recognition algorithms, we streamlined attendance capture processes, reducing the chances of manual data entry errors, and significant time savings for students and faculty Despite the challenges we faced, such as hardware limitations affecting the performance of the system And, our project team was gone these obstacles are navigated effectively by careful selection of hardware components to encourage user acceptance and strong communication channels Looking ahead, the potential for growth and innovation is enormous. Integrating our system with existing business systems such as Student Information Systems (SIS) or Learning Management Systems (LMS) promises to simplify data

management and synchronization, while extending features such as time self-follow-up and in-person surveys provide valuable insights for stakeholders. In addition, advances in machine learning and computer vision techniques offer exciting opportunities to improve the accuracy and flexibility of our facial recognition algorithm, ensuring that it works well indifferent environments and conditions -Also is a model for technology integration, enhancing productivity, security and flexibility across industries.

VII. Acknowledge

We would like to express our sincere gratitude to everyone who contributed to the development and completion of the project. This project has been a culmination of efforts, support, and resources from various individuals and sources. First and foremost, we extend our heartfelt thanks to Prof. Minal Barhate, for her guidance, mentorship, and valuable insights throughout the project. Her expertise and encouragement played acrucial role in shaping the project and overcoming challenges. We want to acknowledge the support received from the H.O.D. of DESH - Prof. C.M. Mahajan and the college administration, which provided us the opportunity to do this project in our very First Yearof Engineering. Additionally, we would like to express our appreciation to Prof. Minal Barhate for her constructive feedback during the testing phase. Her attention to detail and thoughtful suggestions improved the overall quality of the project. Finally, we would like to thank our peers and friends who provided encouragement and moral support during the development process. Their positive influence made the project more enjoyableand rewarding. This project would not have been possible without the collaborative efforts of everyone involved. Thank you for your invaluable contributions.

VIII. REFERENCES

- [1] P. Pattnaik and K. K. Mohanty, "AI-Based Techniques for Real-Time Face Recognition-based Attendance System- A comparative Study," 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2020,pp.1034-1039,doi: 10.1109/ICECA49313.2020.9297643.
- [2] D. D. Nguyen, X. H. Nguyen, T. T. Than and M. S. Nguyen, "Automated Attendance Systemin the Classroom Using Artificial Intelligence and Internet of Things Technology," 2021 8th NAFOSTEDConference on Information and ComputerScience (NICS), Hanoi, Vietnam, 2021, pp. 531-536, doi:10.1109/NICS54270.2021.9700991.
- [3] Chinimilli, Bharath Tej, T. Anjali, Akhil Kotturi, Vihas Reddy Kaipu, and Jathin Varma Mandapati. "Face recognition based attendance system using haar cascade and local binary pattern histogram algorithm." In 2020 4th international conference on trends in electronics and informatics(ICOEI)(48184), pp. 701-704. IEEE, 2020.
- [4] Sawhney, Shreyak, Karan Kacker, Samyak Jain, Shailendra Narayan Singh, and RakeshGarg. "Real-time smart attendance system using face recognition techniques." In 2019 9th international conference on cloud computing, data science & engineering(Confluence), pp. 522-525. IEEE, 2019.
- [5] Uddin, Khandaker Mohammad Mohi, AdittaChakraborty, Md Abdul Hadi, Md Ashraf Uddin, and Samrat Kumar Dey. "Artificial intelligence based real-time attendance system using face recognition." In 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp.1-6. IEEE, 2021.