

Engineering Resource Management Using Share Point.

Mr.Vaibhav Dattatray Varpe¹, Prof.Dr.Khatri.A²,Prof.Mrs.Said .S.K³,

Department Of M.E. Artificial Intelligence And Data Science Engineering¹²³⁴
Jaihind College Of Engineering, Kuran
Jaihind College Of Engineering, Kuran Junnar, Pune, Maharashtra, India

Abstract: This study explores the implementation of engineering resource management through Microsoft SharePoint, focusing on improving operational efficiency, resource allocation, and team collaboration within engineering projects. The primary objectives were to streamline resource management processes, minimize errors, and enable real-time monitoring of project tasks and performance metrics. Using a qualitative approach, including interviews and workflow analysis, key challenges in the resource management process were identified, leading to the development of optimized workflows aligned with project requirements and stakeholder expectations. Custom SharePoint applications were deployed to automate resource scheduling, track key performance indicators (KPIs), and provide centralized access to project updates. These applications also enhanced transparency and accountability by allowing managers and team members to monitor progress in real time. Results demonstrated a significant reduction in resource allocation errors, improved task completion rates, and greater standardization in project execution. This research highlights the potential of SharePoint-driven solutions to transform resource management in engineering environments, offering a scalable model for organizations aiming to enhance project efficiency and resource utilization. Future research could extend these findings by examining additional tools and methodologies for resource management in diverse engineering contexts.

KEYWORDS: Engineering Resource Management, Microsoft SharePoint, Workflow automation, Resource allocation, Operational efficiency, Project task monitoring, Real-time collaboration, Key Performance Indicators (KPIs), Task automation, Process optimization, Transparency in project management, Engineering project standardization.

I. INTRODUCTION

In today's rapidly evolving business environment, organizations are increasingly adopting Business Process Re-engineering (BPR) to enhance efficiency, lower costs, and improve service quality to meet competitive demands and customer expectations [1][2]. Originally developed to drive transformative change, BPR focuses on radically redesigning core processes, often with advanced technology, to achieve substantial improvements in productivity and responsiveness [3][4]. Research demonstrates BPR's effectiveness across multiple sectors, including healthcare, where it has improved operational efficiency in central sterilization units through systematic process redesign and automation [1][7], and manufacturing, where it has optimized resource allocation and streamlined workflows [4][6].

The integration of Information Technology (IT) is crucial to successful BPR, as it facilitates workflow automation, real-time data access, and enhanced communication among stakeholders, allowing organizations

to address inefficiencies more effectively [5][8]. Studies show that robust BPR frameworks supported by IT not only improve process mapping and stakeholder engagement but also enable the use of Key Performance Indicators (KPIs) to monitor and refine processes continually [2][9]. Aligning operations with these KPIs has been shown to significantly enhance service delivery, operational transparency, and accountability [9][10].

This study applies BPR within a consulting firm, utilizing Microsoft SharePoint to streamline workflows, standardize processes, and improve cross-departmental collaboration. By examining the existing “as-is” processes and designing optimized “to-be” workflows, this research showcases the practical impact of IT-enabled BPR on operational efficiency and service quality, offering a scalable model for organizations in various sectors aiming to leverage technology for sustainable growth [6][10].

II. MOTIVATION AND BACKGROUND

Effective resource management is essential in engineering, where projects often require complex coordination of resources, time, and personnel to meet tight deadlines and high standards. Traditional methods of resource allocation and management can lead to inefficiencies, increased costs, and delays, hindering an organization’s ability to meet project demands and client expectations. Engineering Resource Management (ERM) seeks to address these issues by optimizing the use of resources and ensuring that teams can collaborate effectively. Recent studies demonstrate that resource management solutions, especially those integrated with automation tools, are valuable for improving efficiency and reducing resource-related errors [1][4][6].

The integration of Information Technology (IT) has transformed ERM by enabling automation, real-time data access, and streamlined workflows. Microsoft SharePoint, a powerful collaboration and document management platform, offers features ideal for ERM, such as centralized document access, automated workflows, and real-time project tracking, which improve operational transparency and collaboration across engineering teams. Leveraging Microsoft SharePoint, this study aims to implement ERM solutions that streamline resource allocation, minimize delays, and improve decision-making accuracy. By converting “as-is” workflows into optimized “to-be” models within SharePoint, this research demonstrates how technology-enabled ERM can enhance engineering project efficiency, meet organizational goals, and drive sustainable growth through effective resource utilization [2][3][8].

III. METHODOLOGY

Methodology for Implementing Engineering Resource Management in SharePoint

1. Requirements Gathering

Stakeholder Analysis: Identify key users like project managers, engineers, and support staff to understand their needs and use cases for resource management.

Define Objectives: Establish the primary goals, such as tracking resource availability, scheduling, workload balancing, and enabling real-time updates.

Requirements Documentation: Collect both functional (e.g., tracking and reporting capabilities) and non-functional requirements (e.g., performance, security needs).

2. System Design

SharePoint Configuration: Configure the SharePoint site with the necessary structure:

Sites and Subsites: Organize sites for different departments or project teams.

Lists and Libraries: Create lists for resource tracking, project schedules, skills inventories, etc.

Custom Columns and Metadata: Define metadata fields to capture resource attributes like availability, role, and skill set.

Database Design: Design a database schema (if needed) to capture complex resource data that may not fit directly into SharePoint lists. Integrate this with SharePoint using PowerApps or Power BI for advanced functionality.

Workflow Automation: Use Power Automate to create automated workflows for:

Resource Assignment: Automatically assign resources to tasks based on availability.

Notifications and Alerts: Set up alerts for upcoming deadlines or resource conflicts.

Approval Processes: Automate approval requests for allocating resources to projects.

3. Implementation

Develop SharePoint Lists and Libraries: Create the lists and libraries as planned and set up custom columns.

Configure User Permissions: Define and assign roles and permissions to ensure data security.

Develop Workflows: Set up the automated workflows as outlined in the design phase using Power Automate.

Integrate with Office 365 Apps: Connect SharePoint to other Microsoft 365 tools like Teams for communication, Planner for task management, and Outlook for scheduling.

4. Testing

User Acceptance Testing (UAT): Test the system with a subset of users to validate functionality and ensure requirements are met.

Load Testing: Assess system performance under various load conditions, ensuring it can handle multiple concurrent users.

Error Handling and Debugging: Identify and fix any bugs or issues encountered during testing.

5. Training and Deployment

User Training: Train users on system usage, covering navigation, data entry, and workflows.

Documentation: Provide user manuals and guidelines on using the system effectively.

Deployment: Roll out the system to the entire organization and provide ongoing support as users begin utilizing the system for day-to-day tasks.

6. Monitoring and Maintenance

Performance Monitoring: Regularly monitor system performance and usage.

Continuous Improvement: Collect user feedback and make iterative updates to improve functionality.

Security Updates: Keep SharePoint and related tools updated to ensure data security and compliance.

Assessment of Literature Quality and Pertinence

1. Relevance to Topic: Studies were chosen for their specific focus on ERM, especially where SharePoint or comparable technologies are applied to optimize resource allocation, streamline operations, and enhance collaboration in engineering projects.

2. Research Methods: The review includes studies with both qualitative and quantitative methodologies. Qualitative research, such as case studies and interviews, is evaluated for insights into effective resource management processes, while quantitative studies are assessed based on data-driven outcomes measuring the effectiveness of technology in ERM.

3. Resource Optimization and Process Efficiency: The review emphasizes studies that discuss the restructuring of resource management workflows to reduce waste, standardize processes, and decrease project lead times. Studies detailing the integration of SharePoint for task automation and improved resource planning are given priority.

4. Recency and Technological Relevance: Given the rapid advancement of digital tools in ERM, the review prioritizes studies from 2020 onward to reflect the latest trends and technological applications in the field.

5. Technological Integration: The review places strong emphasis on the role of technology in ERM, especially SharePoint's capabilities for process automation, data integration, and collaborative project tracking. Studies that highlight the tangible impacts of these features—such as improved resource tracking, real-time project updates, and enhanced cross-team communication—are prioritized.

IV. MAIN BODY (LITERATURE REVIEW)

Aghajani, M., Ruge, G., & Jugdev, K. (2023) - This study offers a comprehensive review of project portfolio management with a focus on sustainable resource management. It discusses how tools like SharePoint can support project tracking, helping engineering teams align resources with sustainability goals.[1]

Haenlein, M. & Kaplan, A. (2023) - This paper examines artificial intelligence (AI) within resource management systems, detailing how SharePoint can integrate with AI to optimize resource allocation in engineering projects, enhancing project efficiency through data-driven insights.[2]

Pan, Y., Froese, F., & Liu, N. (2022) - This research reviews the potential of AI in project management. With a focus on engineering, it demonstrates how SharePoint's integration with AI could automate resource allocation, streamline tasks, and ultimately improve productivity.[3]

George, G. & Thomas, M. R. (2022) - Exploring collaborative tools, this paper highlights how SharePoint improves communication among engineering teams, enabling streamlined resource management, clearer task distribution, and better tracking of project progress.[4]

Alsaif, A. & Aksoy, M. S. (2023) - This literature review provides insights into AI applications in engineering resource management. It examines SharePoint's role in facilitating data storage and AI integration for real-time analysis and optimization of resources.[5]

Chen, Z. (2023) - The study focuses on virtual resource management systems, discussing SharePoint's utility in enabling distributed engineering teams to manage resources efficiently in remote work settings, optimizing project timelines and coordination.[6]

Tewari, I. & Pant, M. (2024) - This paper presents methods for improving resource allocation in engineering using SharePoint. It emphasizes optimization strategies and discusses SharePoint's features that support collaborative resource planning and distribution.[7]

Qamar, Y., Agrawal, R. K., & Samad, T. A. (2023) - This review explores digital tools for resource management, noting SharePoint's role in engineering environments. It covers how SharePoint enhances digital workflows, enabling better alignment of project resources and tasks.[8]

Sakka, F., El Maknouzi, M. E. H. (2022) - This paper evaluates SharePoint's impact on engineering project management, discussing how the platform supports resource tracking, progress updates, and document sharing in real-time, enhancing transparency and productivity.[9]

Buzkan, H. (2023) - In this study, SharePoint is shown as an effective tool for tracking resources in engineering projects. It highlights the benefits of SharePoint's resource management capabilities, including real-time tracking, data centralization, and seamless integration with other digital tools.[10]

Development Phase of Engineering Resource Management Using SharePoint

- **Technology Integration:** The selection of appropriate technology is crucial during the development phase of ERM. Platforms like Microsoft SharePoint, SAP, or custom ERP systems are typically used to centralize and automate resource management tasks. SharePoint, for example, can be customized to facilitate document sharing, automate workflows, and enable real-time collaboration, all of which are essential for effective resource management.
- **Workflow Automation:** A core goal in BPR is to automate repetitive, time-intensive tasks. Automation helps reduce the likelihood of errors, shorten lead times, and allow team members to focus on high-value tasks. Increasingly, low-code/no-code platforms and custom scripts are employed to build and implement automated workflows rapidly, supporting efficient resource management across projects.
- **Data Integration and Analytics:** Integrating data during the development phase provides organizations with real-time insights for more informed decision-making. By incorporating advanced analytics tools

like Power BI or Tableau, organizations can monitor KPIs in real time, analyze performance metrics, and quickly identify any process bottlenecks, ensuring that resource allocation aligns with project objectives.

- **Stakeholder Engagement and Training:** Effective resource management requires that all stakeholders understand and support the new processes. During development, consistent feedback from stakeholders helps refine workflows to better meet organizational needs, while training programs build user familiarity with new systems, reducing resistance to change.
- **Change Management and Testing:** Rigorous testing is essential to ensure that newly developed workflows perform as expected and meet reliability standards. Pilot testing, simulations, and phased rollouts allow organizations to address any issues before full implementation. Change management strategies, including regular communication and support resources, help guide employees through the transition.
- **Documentation and Continuous Improvement:** Maintaining detailed documentation of the redesigned processes is crucial for compliance and future reference. This includes documenting new workflows, role changes, and any technology usage instructions. The development phase should incorporate mechanisms for continuous improvement, allowing processes to be adjusted as the organization evolves or as new challenges arise.

V. EXISTING SYSTEM

Several Engineering Resource Management (ERM) systems have been developed to streamline resource allocation, project tracking, and workflow automation, particularly for engineering and consulting firms. These systems employ a variety of approaches and technologies, each offering distinct advantages in enhancing resource efficiency, improving collaboration, and optimizing project outcomes. The following are key approaches and technologies commonly used in existing ERM systems:

1. **Centralized Data Management and Collaboration Tools:** Many ERM systems rely on centralized platforms, such as Microsoft SharePoint and ERP solutions, to manage and share data across departments. These platforms enable teams to access project documents, schedules, and resource allocations in real time, facilitating collaboration and reducing data silos. Systems by companies like IBM and SAP integrate collaborative tools with ERM, allowing for efficient document management, task assignment, and interdepartmental communication. SharePoint, for instance, is widely used to centralize project documentation and enable collaborative features such as task tracking, automated notifications, and shared calendars, which are essential for coordinated resource management [1][2].
2. **Workflow Automation and Process Standardization:** Automation plays a crucial role in existing ERM systems, where repetitive tasks are streamlined to improve efficiency and reduce errors. Workflow automation tools within SharePoint or custom ERP systems automatically manage approvals, track project milestones, and assign tasks based on predefined rules. This approach minimizes manual intervention, allowing engineering teams to focus on complex tasks. Siemens and Oracle have developed systems that offer robust workflow automation, enabling task standardization and reducing lead times across projects. Automation also supports compliance by standardizing procedures, which is especially valuable in highly regulated engineering sectors [3][4].
3. **Real-Time Analytics and Reporting:** Advanced ERM systems incorporate analytics and reporting tools such as Power BI and Tableau to provide real-time insights into project performance and resource utilization. These tools integrate data from various departments, allowing managers to monitor Key Performance Indicators (KPIs) like project timelines, resource utilization, and budget adherence. Systems developed by SAP and Microsoft include real-time dashboards and visualization capabilities, enabling decision-makers to identify bottlenecks and make informed adjustments. The integration of analytics helps ensure that resources are allocated efficiently, maximizing productivity and aligning with project objectives [5][6].
4. **Mobile and Cloud-Based Access:** Modern ERM systems often include mobile and cloud-based access, allowing remote teams to update project statuses, track resources, and collaborate in real time. Cloud-

enabled systems, such as those provided by IBM and Microsoft, ensure that all stakeholders have access to up-to-date project information, regardless of location. Mobile access also allows project managers to monitor resources and make adjustments on-site, providing flexibility and improving response times. This is particularly useful in large-scale engineering projects where teams are often distributed across multiple locations [7][8].

5. Integration of Artificial Intelligence (AI) and Machine Learning (ML): AI and ML are becoming increasingly integrated into ERM systems to optimize resource allocation and predict potential project delays. These technologies analyze historical project data to make data-driven recommendations on resource needs and timelines, helping managers make proactive adjustments. For instance, systems by Oracle and SAP use AI to predict resource bottlenecks and optimize scheduling, improving both project efficiency and resource management. Additionally, ML algorithms are used to refine predictions over time, ensuring that resource allocation becomes more accurate as more data is collected [9][10].

VI. OPEN ISSUES AND CHALLENGES

1. Customization and Complexity:

- SharePoint's out-of-the-box features may not fully meet the specific needs of engineering resource management.
- Customization can be complex and time-consuming, requiring skilled developers for tailored solutions.

2. Integration with Existing Systems:

- Integrating SharePoint with other enterprise tools (e.g., ERP, CRM, project management software) can be challenging.
- Data synchronization across platforms may face compatibility issues.

3. User Adoption and Training:

- Ensuring effective adoption of SharePoint by engineers and stakeholders can be difficult.
- Comprehensive training is necessary to ensure users understand the system's capabilities and features.

4. Data Security and Privacy:

- Storing sensitive engineering data on SharePoint raises concerns over data security.
- Ensuring compliance with industry-specific privacy regulations (e.g., GDPR, HIPAA) can be a challenge.

5. Scalability and Performance:

- As engineering resource management grows, SharePoint's performance may degrade, especially when handling large volumes of data.
- Scalability needs to be addressed to ensure smooth operations as the system expands.

6. Workflow Automation Limitations:

- While SharePoint offers some workflow automation capabilities, more complex automation (e.g., resource allocation, task prioritization) may require custom development or third-party tools.
- Integrating AI or advanced analytics for resource optimization is still underdeveloped in SharePoint.

7. Change Management:

- Implementing SharePoint-based resource management systems involves significant changes in existing workflows, requiring effective change management strategies.
- Resistance to change from employees accustomed to traditional processes can hinder the adoption of SharePoint.

VII. DISCUSSION

Engineering resource management using SharePoint leverages technology to streamline operations, optimize workflows, and enhance collaboration within engineering teams [1]. By centralizing project data, SharePoint allows teams to efficiently manage resources, track progress, and ensure timely project delivery [2]. The integration of workflow automation within SharePoint reduces manual intervention, thereby minimizing errors and improving task efficiency [3]. The system's collaborative features enable real-time communication and data sharing, promoting better decision-making and teamwork across departments [4]. Additionally, SharePoint's customizable features allow organizations to tailor the system to meet specific engineering project requirements, enhancing flexibility [5]. Knowledge management theory also plays a crucial role, as SharePoint facilitates the storage and retrieval of technical documents, ensuring that engineering teams have access to the latest information [6]. The adoption of SharePoint for resource management requires careful change management strategies to ensure user acceptance and smooth integration with existing systems, ultimately improving project efficiency and resource utilization [7].

VIII. CONCLUSION

In conclusion, Engineering Resource Management using SharePoint proves to be an effective solution for enhancing operational efficiency, collaboration, and resource utilization within engineering teams. By centralizing project data, automating workflows, and fostering real-time communication, SharePoint significantly improves the management of engineering resources and project timelines. Its customizable features allow organizations to tailor the system to specific needs, while its knowledge management capabilities ensure that teams have access to up-to-date technical documentation. The successful adoption of SharePoint in resource management, however, requires strategic planning and careful change management to ensure smooth integration and user acceptance. Overall, SharePoint's robust features offer engineering firms the tools necessary to optimize project workflows, reduce errors, and enhance collaboration, thereby driving productivity and ensuring the successful delivery of engineering projects. Future research could explore further integration with other technologies and the impact of these systems in various industries.

REFERENCES

- [1] Aghajani, M., Ruge, G., & Jugdev, K. (2023). An integrative review of project portfolio management literature: Thematic findings on sustainability mindset, assessment, and integration. *Journal of Project Management*, 12(4), 47-60.
- [2] Haenlein, M., & Kaplan, A. (2023). Artificial intelligence applications in resource management systems. *International Journal of Engineering and Technology Management*, 32(2), 201-210.
- [3] Pan, Y., Froese, F., & Liu, N. (2022). AI for resource optimization in engineering projects. *Engineering Management Journal*, 40(1), 33-45.
- [4] George, G., & Thomas, M. R. (2022). Managing engineering resources with SharePoint and collaborative tools. *Journal of Collaborative Engineering*, 19(5), 88-97.
- [5] Alsaif, A., & Aksoy, M. S. (2023). Artificial intelligence in engineering resource management: A review. *Journal of Computing and Communication*, 2(2), 1-7journal of computing and communication
- [6] Chen, Z. (2023). Virtual resource management systems for engineering teams. *Journal of the Knowledge Economy*, 15(1), 50-61.
- [7] Tewari, I., & Pant, M. (2024). Optimizing resource allocation through collaborative platforms like SharePoint. *Global Journal of Engineering Science*, 22(1), 121-134.
- [8] Qamar, Y., Agrawal, R. K., & Samad, T. A. (2023). Digital tools for engineering resource management: The SharePoint approach. *International Journal of Engineering Project Management*, 15(4), 125-137.
- [9] Sakka, F., & El Maknouzi, M. E. H. (2022). Streamlining engineering projects using SharePoint. *Project Management Review*, 14(2), 77-85society of women engineers
- [10] Buzkan, H. (2023). Resource tracking in engineering projects using SharePoint. *Journal of Information Systems in Engineering*, 18(3), 200-211.