

UV and FTIR Studies of Pure PMMA and V₂O₅ Doped Films

¹Preeti Tiwari, ²Kallol Das, ³Ravi Katare

¹Research Scholar, ²Professor, ³Professor

¹Government Science College,

¹Rani-Durgavati Vishwavidyalaya, Jabalpur, India

Abstract: In this work, poly (methyl methacrylate) (PMMA) thin films with doped V₂O₅ have been synthesized using solvent-casting method with various concentrations of dopant (V₂O₅; 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05 and 0.1 wt%). The structure of the obtained films were characterized using Fourier transform infra-red spectroscopy (FTIR) and UV-Vis (ultra violet- visible spectroscopy). In FTIR studies, after doping, one extra peak at 1036 cm⁻¹ shows terminal oxygen bonds (V=O) are vibrating in stretching manner. the direct band gap energy of the composites decreases in small amount at concentration (0.001 wt%) of V₂O₅ increases.

Keywords - V₂O₅ doped PMMA ;FTIR; UV-Vis; Band Gap.

I. INTRODUCTION

In the recent years, the use of polymer has received great attention due to variety of new technology applications like molecular electronics[1], optics, sensors[2] ,electromagnetic shields[3], microwave absorbing materials[4-6], supercapacitors[7,8] and batteries[9]. Polymethylmethacrylate (PMMA) has unique chemical and mechanical properties[10], optical, amorphous nature, transparency, low cost[11] due to which PMMA has wide range of applications. Polymethylmethacrylate(PMMA) is also well tested group of lightweight insulating organic material.

The most common metal which has several valances is vanadium , its oxidation states form (2+ to 5+) different number of compounds such as vanadium monoxide(VO), vanadium dioxide (VO₂), vanadium trioxide (V₂O₃), vanadium pentoxide(V₂O₅). Among this, V₂O₅ is most stable form with high energy, density, good reversibility and ability to exist in different oxidation states , due to which , widely used as catalysts, switching devices, gas sensors etc[12-15].

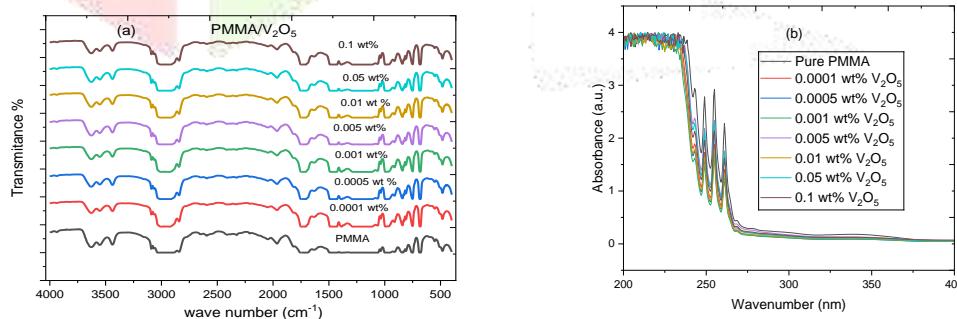
Here, an attempt has been made to investigate the doping effect of polymer undergoing a significant improvement especially Polymethylmethacrylate(PMMA) because of its excellent optical, electrical, and structural properties[16]. The undoped PMMA thin films usually are not stable , insufficient UV - light filters and possess a thermal sensitivity[17]. To overcome this problem, doping strategy were used which is an effectively tune the surface state and improve the properties. The characteristics of Polymethylmethacrylate(PMMA) has been significant interest after modification ,producing conducting PMMA , reduce thermal sensitivity and ion- induced disorder, increase crystallinity[18,19].

On the other hand, Redha A. Alkhadry et. al.[18] have reported that ,the presence of V₂O₅ nanoparticles significantly enhanced the photocatalytic efficiency of PMMA for organic pollutant MB (methylene blue) degradation, beneficial applications in the field of water treatment, addressing the critical issue of pollutant degradation, G A Niklasson et al.[20] proves the potential applications in energy efficient window technology of vanadium dioxide. The aim of most of these researches modified the structural , optical and electrical properties because after doping , complex is formed due to the dopant molecules.

In this paper, after doping the vanadium pentoxide (V₂O₅) , synthesis and characterization of PMMA and PMMA/ V₂O₅ thin films is studied using FT-IR and UV-Vis with a view to evaluate their possible use such

that it can be used in various application including industrial catalysts , energy storage devices and supercapacitor electrodes in organic solar cell[21-22].

II. Experimental procedure


Pure PMMA and PMMA/ V_2O_5 (PMMA doped V_2O_5) samples with different concentration (V_2O_5 ; 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05 and 0.1 wt%) of thickness 80-100 microns were prepared using solvent casting technique. Pure PMMA and PMMA/ V_2O_5 thin films in this method were prepared by stoichiometric amount of PMMA and V_2O_5 dissolved in benzene using a magnetic stirrer at a temperature slightly below 50°C , mixture was pour on a glass slab and left in dry atmosphere for 24 hour.

The Fourier transform infrared (FTIR) instrument used was a (Bruker Tensor 27) spectrophotometer with a wave number range 250-4000 cm^{-1} . Ultra violet and visible absorption spectra using (Shimadzu UV-3600) Spectrophotometer were measured in the wavelength 200-400 nm.

III. Result and Discussion

3.1 Fourier Transform Infrared analysis

Fig. 2(a) shows FTIR spectra of pure PMMA film and PMMA/ V_2O_5 composite thin films where the interactions between dopant and pure PMMA polymer matrix are clearly seen. The FTIR spectrum of pure PMMA with transmittance bands at 754 cm^{-1} , 977 cm^{-1} , 1728 cm^{-1} , 2954 cm^{-1} and 3441 cm^{-1} are assigned to the characteristic due to CH_2 rocking vibration mode , $C-CH_3$ bending , ester carbonyl group stretching vibration , $C-H$ stretching and $C=O$ stretching vibration. The transmittance peak appeared in doped thin films in this region at 1480 cm^{-1} was related to $C-H$ stretching vibration[18,24]. An obvious absorption band and PMMA/ V_2O_5 composite thin films, existence of peak at 1388 cm^{-1} due to lower intensity for V_2O_5 . After doping results showed that some modifications occurred in the samples chemical structure ,shape and shift in position of the ester carbonyl group($C=O$) stretching vibration assigned to 1728 cm^{-1} . Pronounced variation in the shape of the peak (slight increase in width) in the wavenumber range 1500-1650 cm^{-1} which agree with the amorphous nature of the films after doping[18]. The peak at 1038 cm^{-1} can be attributed to the stretching vibration of $C-O$ (ester bond)[19]. FTIR absorption spectra shows the various interactions within the V_2O_5 , peaks around 842 cm^{-1} , 1038 cm^{-1} is due to the stretching vibration of terminal oxygen bonds, $V=O$ (842 cm^{-1}) and the vibration of doubly coordinated oxygen (bridge oxygen) bonds $V-O-V$ (1038 cm^{-1}) respectively[25]. In the wave number range 600-1020 cm^{-1} exhibits the three vibration modes because of V_2O_5 [26]. In the spectrum the sharp peaks between 3300 cm^{-1} and 3500 cm^{-1} which can be associated with $-NH_2$ vibration. The peaks between 500-1000 cm^{-1} and 3200-3600 cm^{-1} due to the vibration $V-O$ type and spread $O-H$ vibrations respectively[27].

Fig.2 (a) FTIR and (b) UV spectra for pure PMMA and PMMA doped with different wt% of V_2O_5

3.2 Optical characterization

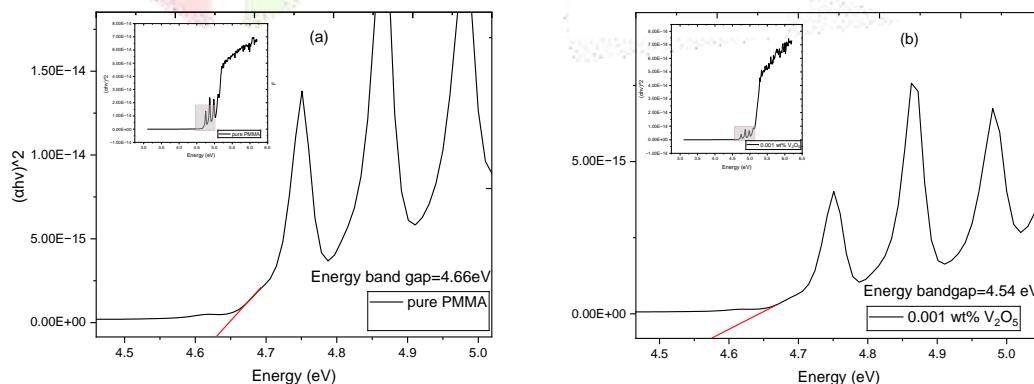
Fig.2(b) presents the absorbance spectra for undoped and doped PMMA polymer thin films with V_2O_5 via Ultraviolet visible (UV-Vis) spectroscopy. At lower wavelengths ($\lambda > 300$ nm) absorption increases with increasing V_2O_5 doping ratios, due to the metal oxide which easily scatter the photons incident on the sample and continuously increase with higher level of doping showing absorption of light from the samples and absorption is nearly constant for higher wavelengths ($250 < \lambda < 800$ nm).The absorption coefficient (α) of the PMMA / V_2O_5 samples with different ratios of V_2O_5 (0.0001 , 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 wt %)were calculated in the following equation[5] :

$$\alpha = 1/d \ln [(1 - R^2)/T] + \sqrt{[R^2 + (1 - R^2)/4T^2]}$$

The band gap was calculated using the Tauc's formula. The frequency dependent absorption coefficient according to Tauc's formula[6] :

$$\alpha h\nu = A(h\nu - E_g)^n$$

Where α is the absorption coefficient , A is constant and n depends on the type of transition having values $1/2$, 2 , $3/2$ and 3 corresponding to the allowed direct ,allowed indirect, forbidden direct and forbidden indirect respectively[19]. Tauc's method which represents the relation between $(\alpha h\nu)^2$ values and $h\nu$ incident photon energy values can be used to find the transitions to determine the band edges, $(\alpha h\nu)^2$ against $h\nu$ to zero absorption value plots of the pure PMMA and V_2O_5 /PMMA films respectively shown in fig.3(a) and (b).


To observe the width of the band tail of the localized states at the optical bandgap , the Urbach energy E_u can be determined by the relationship

$$\alpha(h) = \alpha_0 \exp(h/E_u)$$

As shown fig.4 , the value of Urbach energy may be determined by the variation of $\ln(\alpha)$ with the photon energy ($h\nu$) and the reciprocal slope of the straight line yields E_u .fig.4(a) & (b) shows the Urbach energy of pure PMMA and 0.1 wt% V_2O_5 /PMMA films, the value of Urbach energy increase with increases the doped amount of V_2O_5 .

Calculated energy band gap values of pure PMMA and 0.001 wt% V_2O_5 /PMMA films have been revealed in fig 3. In the table 1 the variation of direct band gap energy and the Urbach energy of pure PMMA and doped amount of V_2O_5 /PMMA for different wt % are represented. The value of bandgap energy of pure PMMA is 4.66 eV, as PMMA doped with V_2O_5 the energy gap changed. As the amount of V_2O_5 in these PMMA films increases, the energy band gap value decreases and Urbach energy increases due to the formation of chemical bonds between PMMA chains (functional groups) and doped V_2O_5 responsible for the creation of localized states (charge transfer complexes) between the HOMO and LUMO energy bands allows for the lower energy transfers which relies on the defects inside the material[24].

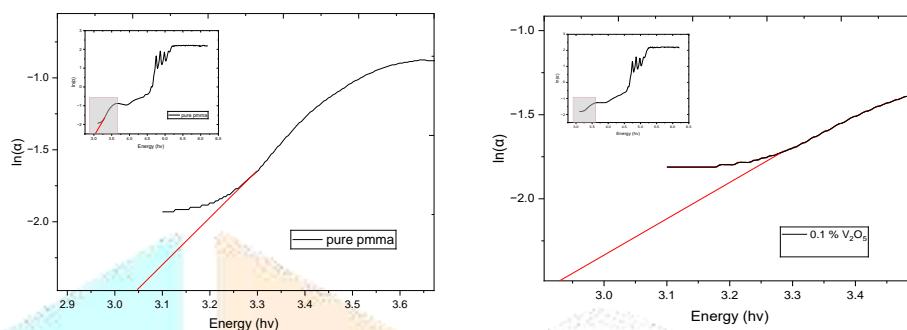

Energy band gap of others samples decreases from 4.66 eV to 4.54 eV for the PMMA doped with V_2O_5 , for the doping level (0.001 wt%) energy band gap is lower ($E_g=4.54\text{eV}$) than the pure PMMA thin films this is due the fact of oxidation of the samples from the V_2O_5 in the PMMA. It means conductivity of samples increases with the amount of V_2O_5 increases to the PMMA films. As the optical conductivity increases[6,7] , the insulating behavior decreases and refractive index of samples increases[28]. The bandgap energies decreases sharply with adding the dopants of V_2O_5 up to 0.001 % V_2O_5 doping , then becomes nearly constant for higher doping levels (higher than 0.001 %) which surely shows a conversion from insulating state of PMMA to metallic state with V_2O_5 doping , where the 0.001 % V_2O_5 doped PMMA sample is the optimum sample.

Fig.3 Energy bandgap of (a) PMMA and (b) 0.001 wt% of V_2O_5 .

Table 1Band gap energy and Urbach energy for pure PMMA and V₂O₅ doped PMMA at different wt%

Doping percentage(wt%)	Band gap energy Eg (eV)	Urbach energy E _u (eV)
Pure PMMA	4.66	0.2906
0.0001	4.59	0.5208
0.0005	4.59	0.4629
0.001	4.54	0.4651
0.005	4.64	0.4926
0.01	4.62	0.5291
0.05	4.64	0.4784
0.1	4.61	0.5988

Fig.4 Determination of Urbach energy plots between $\ln(\alpha)$ against $h\nu$ for (a) pure PMMA and (b) 0.1 wt % doped V₂O₅

IV. CONCLUSION:

This work presents the synthesis of thin films of V₂O₅ doped into a Poly (methyl methacrylate) (PMMA). These films, with an average thickness of 80 microns, were prepared using a solvent casting method. The characterization of these thin films has been observed using UV-Vis absorbance, and FTIR spectroscopy. Five distinctive peaks at 754 cm⁻¹, 977 cm⁻¹, 1728 cm⁻¹, 2954 cm⁻¹ and 3441 cm⁻¹ in the IR spectra of PMMA, significant changes in the shape of the IR spectra can be observed for higher level (0.1 wt%) doping of V₂O₅. Doped thin films were seen at UV-Vis spectra confirmed that the addition of V₂O₅, the band gap energy value decreased from 4.66 eV to 4.54 eV for the sample with doping level (0.001 wt %) of V₂O₅ and the Urbach energy increased from 0.2906 eV to 0.5988 eV for the sample with higher doping level (0.1 wt%).

V. Acknowledgement:

For the synthesis and characterization facility, authors are thankful to the department of physics and central research lab of St. Aloysius' College Jabalpur, Rani Durgavati Vishwavidyalaya (RDVV) university Jabalpur and Govt. Science College Jabalpur (M.P.).

References:

- Y.S. Thakur, A.D. Acharya, S. Sharma and Bhawna, Reinforcement of V₂O₅ nanoparticle in polyaniline to improve the optical and UV-shielding properties, *Results Opt.*, 2023, 11, 100400, doi: 10.1016/j.rio.2023.100400.
- X. Huang, R. Wang, T. Jiao, G. Zou, F. Zhan, J. Yin, L. Zhang, J. Zhou, Q. Peng, *ACS Omega* 4, 1897 (2019).
- Jiawei Li, Yuan He, Yanan Sun, Xiuming Zhang, Wei Shi* and Dongtao Ge*: Synthesis of Polypyrrole/V₂O₅ Composite Film on the Surface of Magnesium Using a Mild Vapor Phase Polymerization(VPP) Method for Corrosion Resistance, 10, 402 (2020) DOI: 103390/coatings10040402.
- S. Bisyoji, A.D. Acharya and S.S. Manhas, et.al., Preparation and Characterization of Vanadium Doped Polyvinylpyrroli-done Nanocomposite, *J. Phys.: Conf. Ser.*, 2022, 2267(1), 012032, DOI:10.1088/1742-6596/2267/1/012032.
- X. Li, Q. Tan and L. Qin, et al, A high-sensitivity MoS₂/graphene oxide nanocomposite humidity sensor based on surface acoustic wave, *Sens. Actuators, A*, 2022, 341, 113573, DOI:10.1016/j.sna.2022.113573.

6. A. I. Ali , A.H. Ammar and A. Abdel Moez, Influence of substrate temperature on structural, optical properties and dielectric results of nano-ZnO thin films prepared by Radio Frequency technique, *Superlattices Microstruct.*, 2014, 65, 285-298, DOI: 10.1016/j.spmi.2013.11.007.

7. T. S. Soliman, M.F. Zaki and M. M. Hessien, et al., The structure and optical properties of PVA-BaTiO₃ nanocomposite films, *Opt. Mater.*, 2021, 111, 110648, DOI: 10.1016/j.optmat.2020.110648.

8. A. C. K. C. George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods, *J. Nanopart. Res.*, 2014, 16(3), 2238, DOI: 10.1007/s11051-013-2238-5.

9. M.S. El-Bana and S. S. Fouad, Opto-electrical characterization of As₃₃Se_{67-x}Sn_x thin films, *J. Alloys Compd.*, 2017, 695, 1532-1538, DOI: 10.1016/j.jallcom.2016.10.295.

10. Ajibade, P.A. Mbese, J.Z.: Synthesis and characterization of metal sulfides nanoparticles/poly(methylmethacrylate) nanocomposites. *Int. J. Polym. Sci.* 2014, (2014). <https://doi.org/10.1155/2014/752394>.

11. H. Zhu, K.C. Jha, R.S. Bhatta, M. Tsige, A. Dhinojwala, *Langmuir* 30, 11609 (2014).

12. Enache DI, Bordes-Richard E, Ensuque A, Bozon-V erduraz F. *Appl Catal A Gen* 2004;278:93-102.

13. Shimizu K, Chinzei I, Nishiyama H, Kakimoto S, Sugaya S, Matsutani W, Satsuma A. *Sensor Actuators B: Chem* 2009;141:410-6.

14. Putrolaynen VV, Velichko AA, Pergament AL, Cheremisin AB, Grishin AMJ. *Phys D: Appl Phys* 2007; 40:5283-6.

15. Wang Y, Cao G. *Electrochim Acta* 2006;51:4865-72.

16. R.M. Radwan, A.M. Abdul-Kadar, A. El-Hag Ali, Ion bombardment induced changes in the optical and electrical properties of polycarbonate, *Nucl. Instrum. Methods* 266 (2008) 3588-3594.

17. Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., Manuspriya, H.: Hybrid organic-inorganic of ZnS embedded PVP nanocomposite film for photoluminescent application. *Comptes Rendus Phys.* 13,994-1000 (2012). <https://doi.org/10.1016/j.crhy.2012.09.008>.

18. Radha A. Alkhadry, Ibrahim S. Yahia, Mostafa Zedan, Souad A. Elfeky, M.I. Mohammad, Diaa A. Rayan, Walid Tawfik: Tuning the structural, optical, and photocatalytic properties of V₂O₅/PMMA nanocomposite films for methylene blue photodegradation 12613, 11421(2023).DOI: <https://doi.org/10.21203/rs.3.rs-3591084/v1>.

19. Mabkhoott A. Alsaiari, Mohamed Morsy, Mona Samir, Abdulaziz Al-Qahtani, Ali- Alsaiari, Elbadawy A. Kamoun, Ahmad I. Ali and Galal H. Ramzy: Advantages incorporating V₂O₅ nanoparticles into PMMA composite membranes for the structural, optical, electrical and mechanical properties for conductive polymeric membrane application (2024).DOI: 10.1039/d3ma01108a.

20. G A Niklasson, S-Y Li and C G Granqvist: Thermochromic vanadium oxide thin films: Electronic and optical properties 559 (2014) 012001. DOI: 10.1088/1742-6596/559/1/012001.

21. Basu R., Dhara S., Current Progress in Vanadium Oxide Nanostructures and its Composites as Supercapacitor Electrodes, 2020; 1(3): 92-103 Vol 1, Issue 3.

22. Kim. A.; Kalita, G.; Kim, J.H.; Patel, R. Recent Development in Vanadium Pentoxide and Carbon Hybrid Active Materials for Energy Storage Devices. *Nanomaterials* 2021.

23. Cecil Cherian Lukose, Ioannis Anestopoulos, Iraklis-Stravros Panagiotidis, Guillaume Zoppi, Anna M. Black, Lynn G. Dover, Leon Bowen, Angel Serrano-Aroca, Terence Xiaoteng Liu, Lorenzo Mendola, Davide Morrone, Mihalis I. Panayiotidis, and Martin Birkett: Biocompatible Ti₃Au-Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionality(2023).DOI: 10.1186/s40824-023-00435-1.

24. Zein K. Heiba, Mohamed Bakr Mohamed, Nasser Y. Mostafa, A.M. El-Naggar: Structural and optical Properties of Cd_{1-x} Mn_xFe₂O₄/PMMA Nanocomposites(2019). DOI: <https://doi.org/10.1007/s10904-019-01320-y>.

25. K.M. Shafeeq, V.P. Athira, C.H. Raj Kishor, P.M. Aneesh: Structural and optical properties of V₂O₅ nanostructures grown by thermal decomposition technique 126:586 (2020). DOI: <https://doi.org/10.1007/s00339-020-03770-5>.

26. A. Venkatesan, N. Krishna Chandar, S. Arjunan, K.N. Marimuthu, R. Mohan Kumar, R. Jayavel: Structural, morphological and optical properties of highly monodispersed PEG capped V₂O₅ nanoparticles synthesized through a non-aqueous route 91 (2013) 228-231.

27. WEN CHEN, LI QIANG MAI, JUN FENG PENG, QING XU, QUAN YAO ZHU: FTIR study of vanadium oxide nanotubes from lamellar structure 39 (2004) 2625-2627.

28. Shafaq Arif, Farhat Saleemi, M. Sahid Rafique, Fabian Naab, Ovidiu Toader, Arshad Mahmood, Uzma: Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate) 387 (2016) 86-95 DOI:<https://dx.doi.org/10.1016/j.njmb.2016.09.024>.

29. A. Tawansi, A. EI-khodary, H.M. Zidan, S.I. Badr: The effect of MnCl₂ filler on the optical window and the physical properties of PMMA films 21 (2002) 381-387

30. Sagar Bisoyi, Aman Deep Acharya, Sandeep S Manhas, Ginni and Sakshi: Preparation and Characterization of vanadium Doped Polyvinylpyrrolidone Nanocomposite 2267 (2022) 012032. DOI: 10.1088/1742-6596/2267/1/012032.

31. JOAO CARLOS MIGUEZ SUAREZ, ELOISA BIASOTTO MANO, ELISABETH ERMEL DA COSTA MONTEIRO, MARIA INES BRUNO TAVARES: Influence of γ -Irradiation on Poly(methyl methacrylate) Vol. 85, 886-895 (2002).

32. K.S. Hemalatha, K. Rukmani, N. Suriyamurthy , B.M. Nagabhushana: Synthesis characterization and optical properties of hybrid PVA-ZnO nanocomposite: A composition dependent study 51 (2014) 438-446. DOI: <http://dx.doi.org/10.1016/j.materresbull.2013.12.055>.

33. Albert Daniel Saragih, Hairus Abdullah and Dong-Hau Kuo: Study On The Doping Effect Of Cu-Doped ZnO Thin Films Deposited By Co-Sputtering Technique 1230 (2019) 012031. DOI: 10.1088/1742-6596/1230/012031.

34. Hisashi Miyata, Kozo Fujii, Takehiko Ono and Yutaka Kubokawa: Fourier-transform Infrared Investigation of Structures of Vanadium Oxide on Various Supports , 1987, 83, 675-685.

