IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Advancements In Automated Skin Cancer Classification: Review Of Automated Skin Cancer Detection

Hande Akshay Balasaheb

Jaihind College Of Engineering Kuran

, Ghogare Vaishnavi Vilas , Jaihind College Of Engineering Kuran , Hadawale Chhaya Ankush ,Jaihind College Of Engineering Kuran

Prof. S.S.Bhosale,

Jaihind College Of Engineering Kuran

Abstract: The project explores the broad topic of deep learning-based automatic skin lesion diagnosis, combining knowledge from an extensive analysis of relevant scientific publications. Presenting a sophisticated grasp of techniques, tools, and developments in skin lesion diagnostics is the main goal. A thorough review of the literature finds important trends, problems, and innovations. Convolutional neural networks (CNNs), generative adversarial networks (GANs), transfer learning, and ensemble methods are only a few of the varied approaches included in the reviewed research publications. Novel approaches to the segmentation, classification, and identification of skin lesions are investigated, tackling issues such unbalanced datasets, inconsistent contrast, and blurred borders.

Index Terms -Lung Cancer Recognition, CNN, Deep Learning, Machine Learning, Medical Imaging.

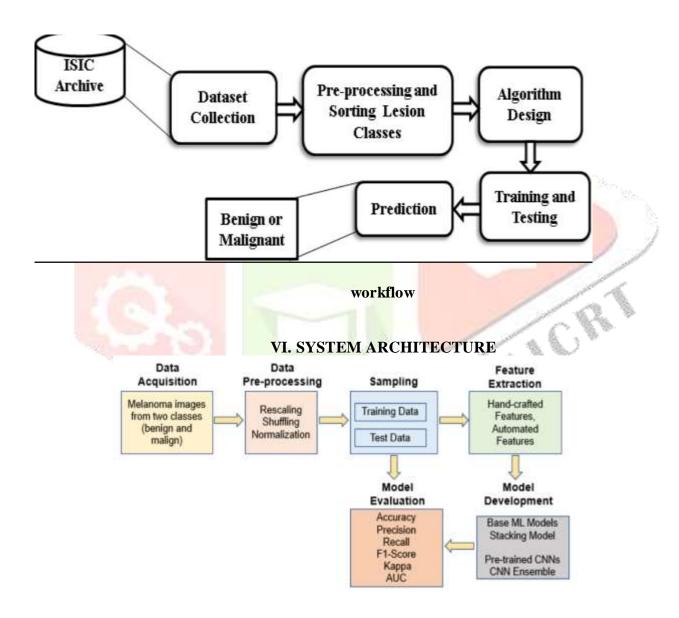
I. INTRODUCTION

The widespread use of multimedia technology has made it possible to investigate a variety of information formats, including text, audio, video, and images. Applications for computational approaches are growing in a variety of fields. With melanoma skin cancer being a serious condition with a high death rate worldwide, automatic disease diagnosis using medical photographs has gained attention in the healthcare industry. For the diagnosis of melanoma, a variety of computer techniques have been developed, primarily concentrating on dermoscopic pictures. However, the capacity to distinguish the lesion site within the pictures is crucial to these approaches' efficacy. For melanoma, a dangerous worldwide cancer, to be successfully treated before metastasizing, skin lesions must be accurately and promptly classified. Given the imbalance and lack of training data, automating this classification process is difficult.

II. PROBLEM STATEMENT

Advancements in AI and deep learning methods such as convolutional neural networks for skin cancer detection.

III. OBJECTIVES


Assess the Role of Datasets in Skin Cancer Classification; Evaluate the State-of-the-Art Methods in Automated Skin Cancer Detection; Examine the Performance and Effectiveness of AI Models in Skin Cancer Diagnosis; Examine the Difficulties in Model Generalization and Diversity; and Examine the Integration of Multi-modal and Multi-source Data.

IV. METHODOLOGY

A methodical and structured strategy to obtaining, evaluating, and summarizing pertinent research and literature on developments in automated skin cancer categorization will be part of the review's methodology. The review will be carried out in multiple stages to guarantee a thorough and impartial evaluation of the state-of-the-art, given the quick growth of machine learning (ML) and deep learning (DL) techniques as well as their growing use in dermatology. The thorough methodology used to carry out this review is provided below:

- 1. Data collection and literature search
- 3. Extraction and Synthesis of Data
- 5. A Critical Assessment of Opportunities and Difficulties
- 2. Selection and Screening of Studies
- 4. Analysis, both qualitative and quantitative
 - 6. Research Gaps and Future Directions

V. Workflow

Users Interface(UI):Clinical or Patient Input: The user (a patient or a dermatologist) enters data into the system. A dermoscopic image, a high-resolution clinical photo, or another pertinent imaging modality may be uploaded by users as a picture of the skin lesion.

Uploading photos for analysis is possible through the system

Image Normalization: To guarantee uniformity throughout the collection, images are scaled and sized to a standard.

Resize and Crop: To highlight the lesion area or other location of interest, the system may crop or resize the image.

Data Augmentation: Data augmentation techniques (such flipping, rotating, or scaling) are used to artificially enlarge the dataset in order to get around the problem of limited data and avoid overfitting.

VII. FEATURE EXTRACTION

Deep Learning Models: Convolutional Neural Networks (CNNs) and other deep learning models are commonly used in this step to extract features. Relevant features, including texture, color, shape, and uneven borders, are automatically learned and extracted from the images by the CNNs.

Segmentation (Optional): To separate the skin lesion from the surrounding area of the image, segmentation is used in certain systems. This makes it easier for the model to concentrate on examining the lesion rather than the full image.

Convolutional Neural Networks (CNNs) are the most often utilized deep learning models for skin cancer detection because of their capacity to process picture data efficiently. According to the model, the lesion is either malignant (cancerous, like melanoma) or benign (non-cancerous).

The model's output includes a confidence score and a prediction (such as benign nevus, basal cell cancer, or melanoma).

Following the process and interpreting the results:

Visualization: To draw attention to the most important parts of the image that affected the model's choice, some systems use visualization techniques like saliency maps or heatmaps. These visual aids can assist physicians in comprehending the reasons behind a model's classification of a picture.

Explanation: Certain models use explainable AI (XAI) techniques to give doctors greater context and confidence scores during the decision-making process (e.g., "This is a 90% confidence that this lesion is malignant").

VIII. FUTURE SCOPE

Enhanced Generalization and Accuracy of AI Models, Access to, annotation of, and augmentation of data, Interpretability and Explainable AI (XAI), Clinical Workflow Integration, Legal, Regulatory and Ethical Aspects.

IX. CONCLUSION

In the end, this review serves as a knowledge base, offering practitioners and researchers insightful information to help them navigate the challenges of diagnosing skin lesions. The combination of several approaches in the reviewed publications leads to a shared understanding that advances the discipline and promotes improvements in skin lesion diagnostics' precision, effectiveness, and accessibility.

REFERENCES

- [1] Ankush, Samridhi Singh, Nagendra Pratap Singh & Priyanka Rathee, "Skin Cancer Detection Using Deep Learning Approach", Smart Trends in Computing and Communications, 2023
- [2] Bin Zhang1,2, Xue Zhou1,2, Yichen Luo1,2, Hao Zhang1,2, Huayong Yang1,2, Jien Ma3 and Liang Ma, "Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning", Chinese Journal of Mechanical Engineering, 2021

- [3] Muhammad Attique Khan, Muhammad Sharif, Tallha Akram, Robertas Damasevicius, and Rytis Maskeliunas, "Skin Lesion Segmentation and Multi-class Classification Using Deep Learning Features and Improved Moth Flame Optimization", MDPI, Diagnostics 2021
- [4] Hassan El-Khatib, Dan Popescu, and Loretta Ichim, "Deep Learning–Based Methods for Automatic Diagnosis of Skin Lesions", MDPI Sensors 2020
- [5] Saleh Naif Almuayqil, Sameh Abd El-Ghany and Mohammed Elmogy, "Computer-Aided Diagnosis for Early Signs of Skin Diseases Using Multi Types Feature Fusion Based on a Hybrid Deep Learning Model", MDPI, Electronics 2022
- [6] HassanAshraf, Asim Waris, Muhammad FazeelGhafoor, Syed OmerGilani & Imran Khan Niaz, "Melanoma segmentation using deep learning with test-time augmentations and conditional random fields", Scientific Reports, 2022
- [7] Yinhao Wu, Bin Chen, An Zeng, Dan Pan, Ruixuan Wang and Shen Zhao, "Skin Cancer Classification With Deep Learning: A Systematic Review", Frontiers In Oncology, 2022
- [8] Hassan El-Khatib, Dan Popescu * and Loretta Ichim," Deep Learning–Based Methods for Automatic Diagnosis of Skin Lesions", MDPI Sensors 2020
- [9] Puneet Thapar, Manik Rakhra, Gerardo Cazzato, "A Novel Hybrid Deep Learning Approach for Skin Lesion Segmentation and Classification", Hindawi Journal of Healthcare Engineering Volume 2022
- [10] Wessam Salma & Ahmed S. Eltrass, "Automated deep learning approach for classification of malignant melanoma and benign skin lesions", Multimedia Tools and Applications, 2022

