www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

RESEARCH THOUGHTS (1JCRT)

é?\ip INTERNATIONAL JOURNAL OF CREATIVE

An International Open Access, Peer-reviewed, Refereed Journal

Android Pattern Bypassing Using
A Microcontroller

DABBETA RAKESH

(PG Diploma in Cybersecurity and Digital Forensics)

Abstract: The rapid expansion of Android devices
in the consumer and business markets highlights
how important it is to have strong security
standards in place to guard against changing online
threats. Inherent weaknesses still exist despite
improvements in security protocols, providing
opportunities for malevolent actors to take
advantage of. The strategic integration of an
AT Tiny85 microcontroller via the USB interface to
take advantage of potential weaknesses is the main
emphasis of this project, which explores the
complex world of Android device security.
Additionally, by highlighting potential flaws and
associated exploitation methods, this initiative
adds to the continuing discussion about Android
device security. It seeks to clarify the complexities
of contemporary security threats and promote a
proactive strategy for protecting Android devices
against malevolent intrusions through empirical
research and testing.

Keywords:

Project Scope and Limitations, Technical
Restrictions, Problem with Compatibility, Legal
and Moral Aspects to consider, Risk to Security,
Objective of the Proposed Model, Attity 85 USB,
Injecting Brute Force Code, Plug Android to
Device, Attempt to unlock device, Algorithm
Code, System Requirements, Future scope and
Limitations, Conclusion

Introduction:

Understanding and strengthening Android devices'
security features has become more important as a
result of their broad usage, particularly in
authentication procedures like pattern locks.
However, forgetting device passwords is not
unusual, and it frequently results in important data
being inaccessible. This project uses the ATtiny85
microcontroller, which is well-known for its
adaptability and versatility in a variety of
applications, to suggest-a fresh method of getting
around device passwords.

The AVR family includes the ATtiny85, a small 8-
bit microcontroller that is well-known for its
versatility and efficiency. It can easily interface
with external USB-to-Serial converters, allowing
communication with USB devices, even if it lacks
native USB capabilities. This project takes
advantage of this feature to apply USB-based brute
force attacks, made possible by the rubber duck
technique, against Android devices that have lost
their passwords.

In addition to its success with microcontrollers, the
ATtiny85 is useful in a variety of embedded
systems, from control systems to sensor interfaces.
Because of'its low power consumption, it is perfect
for energy-efficient and battery-powered devices,
such as wearable technology and remote sensors.
Additionally, its use in IoT devices makes it easier
to link sensors and actuators, allowing for remote
control and data gathering features. This project
highlights the adaptability of microcontroller-

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a282

http://www.ijcrt.org/

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

based techniques in cybersecurity scenarios while
providing a workable way to get around forgotten
device passwords by utilising ATtiny85's
capabilities. It clarifies the wviability of using
affordable and easily accessible components to
address security issues in contemporary
computing settings through practical trial and
analysis.

Objective:

The main goal of this project is to look into and
take advantage of any security flaws in Android
devices, with an emphasis on authentication
methods like pattern locks. In order to fully
comprehend the underlying security methods used
by Android devices, our approach entails carrying
out a thorough study and analysis step. After that,
we plan to use the ATtiny85 microcontroller's
capabilities along with USB-to-Serial converters
to create an advanced software program that can
carry out USB-based brute force attacks on
Android smartphones. In an effort to get beyond
device authentication, this software will
methodically repeat through different passcode
combinations, exposing any flaws in the security
architecture.

We will uphold strict adherence to ethical
standards throughout the project lifespan, making
sure that all operations are carried out in
compliance with legal and ethical requirements
and steadfastly protecting user privacy and data
integrity. Furthermore, in order to enable thorough
distribution of our findings to relevant
stakeholders, painstaking documentation will be
done to precisely capture the development process,
experimental approaches, and ensuing insights.
Additionally, we will try to find potential
directions for further research and development
activities, such as investigating cutting-edge
methods like machine learning algorithms to
maximise attack effectiveness or creating
preventative measures to lessen the risks
connected with brute force attacks.

Project Scope and Limitations:

Utilising an ATTiny85 microcontroller to
implement Android pattern bypass offers both
exciting potential and inherent constraints and
restrictions. Because of the ATTiny85's

capabilities, pattern bypass is possible without the
need for time intervals, enabling the use of
complex algorithms to unlock Android devices
quickly. Furthermore, the microcontroller can be
configured to record information from the
intended device, possibly obtaining private data
like login credentials or keystrokes. This function
offers insights into device usage patterns and
potential vulnerabilities, making it useful for
forensic analysis or security testing. Furthermore,
the ATTiny85's capacity to insert malware or
viruses into the device raises serious security
issues, highlighting the significance of putting
strong security measures in place to thwart
unwanted access and reduce possible hazards.

The development of firmware for the ATTiny85
microcontroller includes coding algorithms for
data extraction, pattern recognition, and perhaps
virus injection. It is necessary to handle the
microcontroller's constraints, such as its limited
memory and computing capability. These
limitations could limit the amount of data that can
be injected or recorded, as well as the complexity
of algorithms. It is essential to make sure that the
ATTiny85 hardware and Android devices are
compatible, taking into account factors like
firmware compatibility, power requirements, and
communication protocols.

Additionally, the ‘project needs to follow the
ethical and legal rules that regulate penetration
testing and security research. Malicious activity or
unauthorised access may result in severe legal
repercussions. As a result, user education and
awareness are crucial project components.
Security concerns can be reduced and overall
device security can be improved by informing
users about the possible dangers of pattern bypass
attacks and encouraging recommended practices,
such as creating strong passwords and turning on
extra security features.

In conclusion, the ATTiny85 microcontroller
presents considerable difficulties and restrictions,
even though it has interesting potential for
developing Android pattern bypass. To guarantee
acceptable and legal use of this technology, careful
evaluation of the project's scope, technical
limitations, and ethical considerations is required.

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a283

http://www.ijcrt.org/

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

Technical Restrictions:

The ATTiny85 microcontroller's limited memory
and processing capacity may limit the intricacy of
algorithms. constraints imposed by hardware on
the volume of data that can be injected or
collected.

Problems with Compatibility:

ensuring that Android devices and the ATiny85
hardware are compatible, including taking care of
power needs and communication standards.
Firmware updates and version mismatches
between the microcontroller and Android devices
present compatibility issues.

Legal and Moral Aspects to Consider:

compliance with legal requirements for
penetration testing and security research in order
to prevent illegal access and any legal
repercussions. Ethical issues pertaining to the
prudent use of technology and its possible effects
on user security and privacy.

Risks to Security:

potential for using the ATTiny85's virus injection
capability to infect Android devices with malware
or security flaws.

Risks associated with unauthorized data capture
and potential misuse of captured information,
highlighting the importance of robust security
measures.

User Awareness and Education:

Spreading best practices for improving device
security and informing users about the dangers of
lock bypass attacks is crucial. To lesson any risks,
users should be encouraged to be vigilant and to
implement security precautions like creating
strong passwords.

Objective of the Proposed Model:

In addition to providing an alternate approach for
accessing Android devices with forgotten pattern
locks, the suggested model seeks to address a
number of crucial aspects in order to improve its
effectiveness and usability. First, the approach
aims to prioritise user privacy and data security by
ensuring that the bypass process does not
jeopardise the device's integrity or reveal

important information to unauthorised parties.
Using a microcontroller-based approach, the
model seeks to accomplish the bypass operation in
a secure and non-invasive manner, reducing the
danger of data loss or security breaches that could
occur with more intrusive approaches like rooting
or software exploits.

Furthermore, the suggested approach seeks to
provide an affordable solution that is available to a
broad spectrum of consumers, irrespective of their
level of technical proficiency or available
resources. The model aims to reduce the obstacles
to entry for users who want to incorporate the
bypass mechanism into their devices by utilising
open-source software libraries and widely
accessible microcontroller hardware. For people
who might not have access to specialised tools or
technological help, this accessibility is especially
crucial. By giving users precise instructions and
documentation on how to utilise the bypass
mechanism in a safe and responsible manner, the
concept also seeks to encourage responsibility and
openness. To help users make wise decisions, this
contains recommendations for best practices in
risk mitigation, data backup, and device security.

The overall goal of the suggested architecture for
utilising a microcontroller to get around Android
pattern locks 1is to. ‘prioritise user privacy,
accessibility, and " transparency in addition to
offering 'a workable way to access protected
devices. By taking these factors into account, the
model seeks to provide a thorough and user-
focused method for resolving pattern lock-related
issues on Android devices. The ATTiny 85
microcontroller is used to implement pattern
cracking for Android Pattern Bypassing.

ATTINY 85 USB:

As the central processing unit in charge of
coordinating the entire procedure, the ATTiny85
microcontroller plays a crucial part in the
workflow for getting around Android pattern
locks. Its duties include a number of vital functions
that are essential to the bypass mechanism's
effective operation. Initially, the ATTiny85
establishes communication through its USB
interface and serves as the receiver of commands

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a284

http://www.ijcrt.org/

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

from the computer system. Usually, these
commands contain directions for adding pattern
combinations to the lock screen interface of an
Android device. In order to interpret the intended
activities to be performed, the microcontroller
parses the data and extracts pertinent information
after receiving the orders.

After processing the commands, the ATTiny85
microcontroller moves on to the execution phase,
where it follows the instructions to implement the
bypass mechanism. In order to mimic user
interactions with the Android device's touchscreen
interface, signals and control sequences must be
generated. The microcontroller uses a brute force
method to get over the security lock by
methodically injecting pattern combinations into
the device's lock screen. The ATTiny85 works
closely with the Android handset through its USB
connection during the bypass procedure. It
transmits the simulated user inputs to the device's
lock screen interface, including touch motions that
match pattern combinations. The microcontroller
keeps an eye on the device's reactions in real time
and modifies its behaviour in response to input.
Until the right unlock pattern is found, this
iterative process keeps going.

Injecting Brute Force Code:

One of the most important steps in the process of
getting around pattern locks on Android devices is
introducing brute force code. This part involves
the methodical execution of specially written code
designed to mimic user input on the touchscreen
interface of the devicee The ATTiny85
microprocessor, which powers the injection
procedure, is at the centre of this activity. Custom
code created especially for the brute force attack is
programmed into the ATTiny85 microcontroller.
The microcontroller is instructed by this code to
simulate user inputs on the Android device's lock
screen, including touch movements and pattern
entries. Sending commands and interacting with
the device 1is made possible by the
microcontroller's access to the touchscreen
interface through a USB interface.

The ATTiny85 microcontroller begins carefully
attempting different pattern combinations one after
the other when it is told to initiate the brute force
attack. The injected code sets the pattern entry

sequence, which can range from simple to
complex combinations, as the microcontroller
cycles through multiple permutations in a brute
force manner. Throughout the injection operation,
the microcontroller closely monitors the device's
response to each pattern entry. It evaluates the
device's feedback, including whether the entered
pattern is accepted or refused, to determine the
next course of action. If the pattern entered is
wrong, the microcontroller adjusts its strategy and
advances to the next combination in the sequence.

Until the right unlock pattern is found or a preset
threshold is achieved, the brute force injection
process keeps going iteratively. In the former case,
access to the Android device is made possible by
the microcontroller successfully getting beyond
the pattern lock. On the other hand, the injection
procedure might be stopped, and other approaches
might need to be taken into consideration if the
threshold is reached unsuccessfully. In general,
introducing brute force code into the Android
smartphone is a methodical and regulated way to
get around pattern locks. This component uses the
ATTiny85 programmable
features to run custom code that simulates user
interactions. It repeatedly tries various pattern
combinations until it gains successful access.

microcontroller's

Plug Android to Devices:

An essential ~component of the bypassing
procedure is the Android device's USB connection,
which allows the ATTiny85 microcontroller and
the target device to communicate seamlessly. The
microcontroller can communicate with the
Android device's lock screen interface thanks to
this physical connection, which acts as a conduit
for data transfer and command execution. A USB
cable, which creates a direct connection between
the ATTiny85 and the Android device, is the
primary component of this connection. Standard
USB connectors are usually found on both ends of
the USB cable, making it compatible with a variety
of devices. The microcontroller can successfully
communicate with the Android device thanks to
the USB cable's ability to supply power and data
communication once it is connected.

The microcontroller and the Android device
exchange data in both directions via the USB
connection. This implies that the device can

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a285

http://www.ijcrt.org/

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

receive feedback and replies from the
microcontroller in addition to orders and
instructions. Because it allows the microcontroller
to track the device's responses and modify its
operations accordingly, this bidirectional
connection is crucial for carrying out the bypass
mechanism. The USB connection allows the
Android device to power the microcontroller in
addition to transferring data. This guarantees that
the microcontroller stays switched on and
functional during the bypassing procedure,
enabling the bypass mechanism to be executed
continuously. As a result, the USB connection has
two functions: it supplies power to enable
communication and offers data connectivity.

All things considered, the Android device's USB
port serves as a vital component of the
circumvention process, facilitating smooth data
transfer and communication between the target
device and the ATTiny85 microcontroller. This
connection gives the microcontroller access to the
lock screen interface of the device, enabling the
bypass mechanism to be executed and, eventually,
offering a technique to unlock locked Android
smartphones.

Attempt to Unlock Device:

After the ATTiny85 microcontroller injects brute
force code, the attempt to unlock the Android
smartphone is a crucial step in the bypassing
procedure. The system enters the unlocking phase
after the custom code has been entered into the
lock screen interface of the device.

The ATTiny85 microcontroller acts as the main
executor during this stage, simulating user inputs
by delivering signals to the Android device that
correspond to different pattern combinations. The
microcontroller uses its programmable capabilities
to carefully plan the pattern entry sequence,
cycling through several permutations in a
methodical way. By simulating a user trying to
manually unlock the device, each pattern entry is
sent to the device through the USB connection.
The algorithm keeps a careful eye on how the
device reacts to each pattern entry as it moves
forward with the unlocking attempts. To decide
what to do next, the microcontroller decodes the
device's feedback, which includes whether the
entered pattern was accepted or rejected.

Until the right unlock pattern is found or a preset
threshold is achieved, the unlocking procedure
iteratively continues. In the former case, the
Android device is accessed after the system
successfully gets around the pattern lock. On the
other hand, the system could need to reconsider its
strategy and look into different ways to unlock the
device if the barrier is approached without success.
Overall, when brute force code was injected, the
attempt to unlock the Android device shows a
methodical and controlled method of getting over
pattern locks. The technique provides a workable
way to unlock locked Android smartphones by
iteratively testing various pattern combinations
until successful access is obtained through careful
coordination and monitoring by the ATTiny85
microcontroller.

Algorithm Code:
1. Initialisation (setup):

The ATTiny85 microcontroller and other required
parts are initialised by the setup function. Updating
the Digi Keyboard library, which offers features
for simulating keyboard input, 1s part of this.

2. Main loop:

The ATTiny85 microcontroller coordinates the
brute force attempt to unlock the Android device
in the main loop (loop ()).

3. Counting Attempts:

The microcontroller records how many times the
user tries to open the

gadget that makes use of the 'count' variable. This
enables the system to manage situations in which
the maximum number of attempts is reached and
to restrict the number of attempts.

4. Managing Maximum Attempts:

The microcontroller enters a block of code to deal
with this scenario when the number of attempts
hits 5, signifying that the maximum number of
attempts has been achieved. In order to avoid
detection and keep the device from locking out

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a286

http://www.ijcrt.org/

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

subsequent attempts, it starts a 31-second pause
before trying again.

5.Brute Force Keystrokes:

The ATTiny85 microcontroller uses the Digi
Keyboard library to transmit keystrokes to the
Android device in a methodical way. It tries to
unlock the device's pattern lock by sending
keystrokes that correspond to various digit
combinations.

6. Incrementing Digits:

The microcontroller increases the digits in
accordance with each set of keystrokes. Variables
(a,b,c,d, e, f, g, h) that correspond to each pattern
lock digit govern this operation. A digit is
incremented to the next one and resets to 0 if it
reaches 9.

7. Resetting Digits:

The microcontroller resets the attempt count and
begins anew if the first digit (a) hits 9, signifying
that every possible combination of eight digits has
been tried. This guarantees that, if required, the
system can keep trying to unlock the device.

8. End of Loop:

Until successful access is obtained or the
maximum number of attempts is reached, the main
loop keeps going endlessly, methodically trying
various digit combinations.

System Requirements:
1.Hardware:

The ATtiny85 is a microcontroller from Atmel
(now part of Microchip Technology) of the AVR
family. When you state "Attiny 85 USB," you are
most likely referring to a specific use case in which
the ATtiny85 microcontroller is designed to serve
as a USB device. A TTL (transistor-transistor
logic) converter is a device that converts signals
between TTL voltage levels and other voltage
standards, which are commonly used in digital
electronic circuits. It ensures compatibility across
systems with differing voltage requirements. A
TTL to RS-232 converter, for example, allows
TTL-level microcontrollers to communicate with
devices that use RS-232 voltage levels. These

converters serve an important role in integrating
components that use different voltage standards,
allowing for seamless communication and
interaction within electronic systems.

An Android device is fundamentally a smartphone
that operates on Google’s Android platform.
Android devices are popular due to their operating
system being open source, having a vast number of
available applications, and their ability to be
modified. These devices typically feature touch
screens, support for different systems, and
connectivity options such as Wi-Fi and mobile
networks. Android smartphones are widely used
across the globe, and variety of companies
engineer them with specific features and designs.
Apps, widgets and mobile settings can be changed
by users to personalize their experience with their
Android device.

2.Software:

An Integrated Development Environment (Ide) is
an environment for coding software which is
uploaded to microcontroller, here Arduino
Microcontroller. Creating programs, their
modification, uploading to Arduino boards, in
brief, everything that concerns programming is
available for users in the Arduino Ide. Essential
features are: text pane for code composition,
message pane to display useful feedback and some
buttons for common functions. The programming
language of all IDE variations, however, is C/C++.
Any of the several USB ports available allows the
user to send code to the microcontroller onto
Arduinos readily. The Arduino Ide makes the tasks
of developing projects much easier. The Arduino
Ide is interface-free and shapes a design space
through standardizing the projects’ components, as
well as the way in which they are connected to
each other.

3.Arduino IDE:

The Integrated Development Environment (IDE),
also referred to as the Arduino IDE, is a software
platform that was developed specifically for
interfacing with an Arduino microcontroller. With
the help of this IDE, users are able to utilize a range
oftools intended to improve the ease of coding and
development. The core of the IDE is the integrated

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a287

http://www.ijcrt.org/

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

text editor, which in fact implements a separate
space for writing and modifying the Arduino code.
This editor is accompanied with a message section
which compliments this editor with helpful
comments on what went wrong during the code
compilation and uploading stages. In addition,
there is a toolbar within the IDE which houses
buttons/ icons to easily access commonly used
functions which helps in effective coding. One
notable characteristic of the Arduino IDE is that it
features the Arduino programming language, a
dialect derived from C/C++.

Furthermore, the Arduino IDE streamlines the
integration of third-party libraries, allowing users
to simply expand the capabilities of their projects
with new functionality. This versatility is essential
for accessing the enormous ecosystem of Arduino-
compatible sensors, modules, and shields on the
market, allowing developers to tackle a wide range
of projects with relative simplicity.
Furthermore, the Arduino IDE integrates
seamlessly with Arduino boards, automatically
identifying connected devices and configuring the
necessary settings for easy programming and
debugging. This level of automation lowers the
barrier to entry for newbies while speeding up the
development cycle for experienced users.

4.Digi Spark:

The Digi Spark is a compact and flexible
microcontroller board distinguished by its small
size and USB connectivity. This small board is
especially popular since it is compatible with the
Arduino IDE, allowing users to take advantage of
the ease of Arduino programming for a variety of
projects. The Digi Spark
microcontroller that can be programmed using the
Arduino programming language. This makes it
accessible to users with diverse degrees of
programming experience, which is consistent with
the user-friendly attitude of Arduino development.
One distinctive feature of the Digi Spark is its USB
connectivity, which not only makes programming
easier but also opens up possibilities for USB-
based projects. Users can use the Digi Spark to

contains a

simulate Human Interface Devices (HID) or
construct custom USB functionality, expanding
the range of possible applications.

This step is critical to a seamless programming and
uploading experience. Given its small size and
versatility, the Digi Spark is useful in a variety of
projects, particularly those with limited space or
that require USB connectivity. The active Digi
Spark community helps to the platform's evolution
by sharing projects, tutorials, and support, which
improves the overall development experience for
users exploring the potential of this small yet
powerful microcontroller.

5. programming Language:

In the world of Android pattern bypass using an
Attiny85 microcontroller, the importance of the C
language is demonstrated by its close interface
with hardware and efficiency in managing low-
level tasks. The technique of circumventing the
Android pattern lock requires complicated
between the Attiny85
microcontroller and the Android device's

communication

touchscreen, as well as precise control over
hardware components. The C programming
language allows this connection by allowing
developers to directly modify the Attiny85's GPIO
pins, allowing signals to be transmitted to the
touchscreen controller in order to properly
replicate human input events.

Efficient code execution is critical in situations
where resources are restricted, such as with the
Attiny85 microcontroller. C's ability to generate
optimised code ensures that the microcontroller
can do the essential activities quickly and with
little resource consumption. This efficiency is
critical for enabling smooth pattern bypass without
significantly exhausting the microcontroller's
battery, hence increasing the device's overall
usability. Furthermore, C may manage peripheral
devices attached to the microcontroller, such as
LEDs or buzzers, which are used to provide
feedback throughout the pattern bypass process.
By interacting with these peripherals via C code,
developers can build sensible user feedback
systems, improving the device's user experience
and usability.

C's portability and interoperability contribute to its
popularity in this environment. C code for the
Attiny85 microcontroller can be readily converted
to work on other hardware platforms if necessary.
This flexibility not only speeds up the

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a288

http://www.ijcrt.org/

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

development process, but it also allows for smooth
integration with a wide range of microcontroller
architectures, giving you more hardware options
for different projects or applications. Furthermore,
C's capability for interrupt management is useful
in circumstances where the Attiny85 must respond
quickly to external events or timers. Developers
can efficiently manage these events by using
interrupt service routines (ISRs) written in C,
allowing the microcontroller to execute duties
such as timing operations and responding to user
input in a timely way.

Future Scope and Limitations:

1. Attiny85 enhances pattern bypass capabilities
in brute force attacks, improving security
bypass methods.

2. Its small size and low power consumption
enable discreet data capture from devices,
facilitating forensic analysis and security
testing.

3. Ethical considerations and limitations should
be acknowledged when using Attiny85.

4. While powerful, Attiny85's potential to inject
viruses or malicious code into devices poses
significant risks.

5. Ongoing research and vigilance are essential as
technology evolves to counteract emerging
security threats in cybersecurity.

Conclusion:

In conclusion, a viable solution to the security
issues encountered by users who can forget their
pattern locks is the creation of an Android pattern
bypass using a microcontroller. We have
effectively shown through this research that it is
possible to combine software and hardware
elements to produce a dependable and effective
workaround. We have given consumers a practical
way to get back into their gadgets without
sacrificing security by utilising a microcontroller's
capabilities. This project can be improved in a
number of ways going forward to increase its
usefulness and functionality. Adding further
authentication layers to make sure that only
authorised users can access the bypass capability
is one possible improvement. This can entail using
a fingerprint or other biometric authentication.

Furthermore, improving the bypass mechanism's
user interface and experience has the potential to
dramatically increase its utility. This could entail
creating a separate mobile app that easily connects
with the bypass functionality, giving users a more
natural and streamlined experience. Additionally,
investigating the incorporation of cloud-based
backup and synchronisation functions may
improve the project's resilience and accessibility.
This would allow users to securely store their
pattern lock data and bypass credentials, allowing
them to regain access to their devices from
anywhere with an internet connection. Overall, by
iterating and improving on the current solution, we
can ensure that the Android pattern bypass using a
microcontroller project remains relevant and
effective in meeting the changing security needs of
customers.

References:

1. K. Barmpatsalou, D. Damopoulos, G.
Kambourakis, and V. Katos, "A critical review of
7 times of mobile phone exploration," Digital
Investigation, vol. 10, no. 4, pp. 323-349, 2013.

2. CCL Group Ltd, the UK's leading exploration
and consultancy firm in 2016.

3. E. Onyejegbu, A. Dorzhigulov, and A.P. James,
"Biometric Pixel Fusion Crossbar," 2021 IEEE
International Symposium on Circuits and Systems
(ISCAS), pages 1-5, 2020.

4. Yeun Ku, Leo Hyun Park, Soyeon Shin, and
Tekyoung Kwon, "As reported behavioural
enrolment for mobile stoner authentication," IEEE
Access, Volume 7, runners 69363-69378, 2019.

5. Puninder Kaur, Geeta, and Vidhu Kiran Sharma,
"Analysis of Secure Locking Techniques on Smart
Phones," 2022 5th International Conference on
Contemporary Computing and Informatics (IC31),
pp. 1807-1811.

6. Altaf Khan, Alexander G. Chefranov, “Captcha-
based graphical encryption with strong password
space and usability study,” 2020 International
Conference on Electrical, Communications and
Computer Engineering (ICECCE), p. 1-6, 2020.

7.P. Dibb and M. Hammoudeh, "Forensic Data
Recovery from Android OS Devices: An Open
Source

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a289

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

Toolkit", 2013 European Intelligence and Security
Informatics Conference, 2013.

8. Jeff Lessard and Gary Kessler, "Android
Forensics: Simpliying Cell Phone Examinations",
Small Scale Digital Device Forensics Journal, vol.
4,no. 1, pp. 1941-6164, 2010.

IJCRT2411033 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a290

http://www.ijcrt.org/

