
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a282

Android Pattern Bypassing Using

A Microcontroller

DABBETA RAKESH

(PG Diploma in Cybersecurity and Digital Forensics)

Abstract: The rapid expansion of Android devices

in the consumer and business markets highlights

how important it is to have strong security

standards in place to guard against changing online

threats. Inherent weaknesses still exist despite

improvements in security protocols, providing

opportunities for malevolent actors to take

advantage of. The strategic integration of an

ATTiny85 microcontroller via the USB interface to

take advantage of potential weaknesses is the main

emphasis of this project, which explores the

complex world of Android device security.

Additionally, by highlighting potential flaws and

associated exploitation methods, this initiative

adds to the continuing discussion about Android

device security. It seeks to clarify the complexities

of contemporary security threats and promote a

proactive strategy for protecting Android devices

against malevolent intrusions through empirical

research and testing.

Keywords:

Project Scope and Limitations, Technical

Restrictions, Problem with Compatibility, Legal

and Moral Aspects to consider, Risk to Security,

Objective of the Proposed Model, Attity 85 USB,

Injecting Brute Force Code, Plug Android to

Device, Attempt to unlock device, Algorithm

Code, System Requirements, Future scope and

Limitations, Conclusion

Introduction:

Understanding and strengthening Android devices'

security features has become more important as a

result of their broad usage, particularly in

authentication procedures like pattern locks.

However, forgetting device passwords is not

unusual, and it frequently results in important data

being inaccessible. This project uses the ATtiny85

microcontroller, which is well-known for its

adaptability and versatility in a variety of

applications, to suggest a fresh method of getting

around device passwords.

The AVR family includes the ATtiny85, a small 8-

bit microcontroller that is well-known for its

versatility and efficiency. It can easily interface

with external USB-to-Serial converters, allowing

communication with USB devices, even if it lacks

native USB capabilities. This project takes

advantage of this feature to apply USB-based brute

force attacks, made possible by the rubber duck

technique, against Android devices that have lost

their passwords.

In addition to its success with microcontrollers, the

ATtiny85 is useful in a variety of embedded

systems, from control systems to sensor interfaces.

Because of its low power consumption, it is perfect

for energy-efficient and battery-powered devices,

such as wearable technology and remote sensors.

Additionally, its use in IoT devices makes it easier

to link sensors and actuators, allowing for remote

control and data gathering features. This project

highlights the adaptability of microcontroller-

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a283

based techniques in cybersecurity scenarios while

providing a workable way to get around forgotten

device passwords by utilising ATtiny85's

capabilities. It clarifies the viability of using

affordable and easily accessible components to

address security issues in contemporary

computing settings through practical trial and

analysis.

Objective:

The main goal of this project is to look into and

take advantage of any security flaws in Android

devices, with an emphasis on authentication

methods like pattern locks. In order to fully

comprehend the underlying security methods used

by Android devices, our approach entails carrying

out a thorough study and analysis step. After that,

we plan to use the ATtiny85 microcontroller's

capabilities along with USB-to-Serial converters

to create an advanced software program that can

carry out USB-based brute force attacks on

Android smartphones. In an effort to get beyond

device authentication, this software will

methodically repeat through different passcode

combinations, exposing any flaws in the security

architecture.

We will uphold strict adherence to ethical

standards throughout the project lifespan, making

sure that all operations are carried out in

compliance with legal and ethical requirements

and steadfastly protecting user privacy and data

integrity. Furthermore, in order to enable thorough

distribution of our findings to relevant

stakeholders, painstaking documentation will be

done to precisely capture the development process,

experimental approaches, and ensuing insights.

Additionally, we will try to find potential

directions for further research and development

activities, such as investigating cutting-edge

methods like machine learning algorithms to

maximise attack effectiveness or creating

preventative measures to lessen the risks

connected with brute force attacks.

Project Scope and Limitations:

Utilising an ATTiny85 microcontroller to

implement Android pattern bypass offers both

exciting potential and inherent constraints and

restrictions. Because of the ATTiny85's

capabilities, pattern bypass is possible without the

need for time intervals, enabling the use of

complex algorithms to unlock Android devices

quickly. Furthermore, the microcontroller can be

configured to record information from the

intended device, possibly obtaining private data

like login credentials or keystrokes. This function

offers insights into device usage patterns and

potential vulnerabilities, making it useful for

forensic analysis or security testing. Furthermore,

the ATTiny85's capacity to insert malware or

viruses into the device raises serious security

issues, highlighting the significance of putting

strong security measures in place to thwart

unwanted access and reduce possible hazards.

The development of firmware for the ATTiny85

microcontroller includes coding algorithms for

data extraction, pattern recognition, and perhaps

virus injection. It is necessary to handle the

microcontroller's constraints, such as its limited

memory and computing capability. These

limitations could limit the amount of data that can

be injected or recorded, as well as the complexity

of algorithms. It is essential to make sure that the

ATTiny85 hardware and Android devices are

compatible, taking into account factors like

firmware compatibility, power requirements, and

communication protocols.

Additionally, the project needs to follow the

ethical and legal rules that regulate penetration

testing and security research. Malicious activity or

unauthorised access may result in severe legal

repercussions. As a result, user education and

awareness are crucial project components.

Security concerns can be reduced and overall

device security can be improved by informing

users about the possible dangers of pattern bypass

attacks and encouraging recommended practices,

such as creating strong passwords and turning on

extra security features.

In conclusion, the ATTiny85 microcontroller

presents considerable difficulties and restrictions,

even though it has interesting potential for

developing Android pattern bypass. To guarantee

acceptable and legal use of this technology, careful

evaluation of the project's scope, technical

limitations, and ethical considerations is required.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a284

Technical Restrictions:

The ATTiny85 microcontroller's limited memory

and processing capacity may limit the intricacy of

algorithms. constraints imposed by hardware on

the volume of data that can be injected or

collected.

Problems with Compatibility:

ensuring that Android devices and the ATiny85

hardware are compatible, including taking care of

power needs and communication standards.

Firmware updates and version mismatches

between the microcontroller and Android devices

present compatibility issues.

Legal and Moral Aspects to Consider:

compliance with legal requirements for

penetration testing and security research in order

to prevent illegal access and any legal

repercussions. Ethical issues pertaining to the

prudent use of technology and its possible effects

on user security and privacy.

Risks to Security:

potential for using the ATTiny85's virus injection

capability to infect Android devices with malware

or security flaws.

Risks associated with unauthorized data capture

and potential misuse of captured information,

highlighting the importance of robust security

measures.

User Awareness and Education:

 Spreading best practices for improving device

security and informing users about the dangers of

lock bypass attacks is crucial. To lesson any risks,

users should be encouraged to be vigilant and to

implement security precautions like creating

strong passwords.

Objective of the Proposed Model:

In addition to providing an alternate approach for

accessing Android devices with forgotten pattern

locks, the suggested model seeks to address a

number of crucial aspects in order to improve its

effectiveness and usability. First, the approach

aims to prioritise user privacy and data security by

ensuring that the bypass process does not

jeopardise the device's integrity or reveal

important information to unauthorised parties.

Using a microcontroller-based approach, the

model seeks to accomplish the bypass operation in

a secure and non-invasive manner, reducing the

danger of data loss or security breaches that could

occur with more intrusive approaches like rooting

or software exploits.

Furthermore, the suggested approach seeks to

provide an affordable solution that is available to a

broad spectrum of consumers, irrespective of their

level of technical proficiency or available

resources. The model aims to reduce the obstacles

to entry for users who want to incorporate the

bypass mechanism into their devices by utilising

open-source software libraries and widely

accessible microcontroller hardware. For people

who might not have access to specialised tools or

technological help, this accessibility is especially

crucial.By giving users precise instructions and

documentation on how to utilise the bypass

mechanism in a safe and responsible manner, the

concept also seeks to encourage responsibility and

openness. To help users make wise decisions, this

contains recommendations for best practices in

risk mitigation, data backup, and device security.

The overall goal of the suggested architecture for

utilising a microcontroller to get around Android

pattern locks is to prioritise user privacy,

accessibility, and transparency in addition to

offering a workable way to access protected

devices. By taking these factors into account, the

model seeks to provide a thorough and user-

focused method for resolving pattern lock-related

issues on Android devices. The ATTiny 85

microcontroller is used to implement pattern

cracking for Android Pattern Bypassing.

ATTINY 85 USB:

As the central processing unit in charge of

coordinating the entire procedure, the ATTiny85

microcontroller plays a crucial part in the

workflow for getting around Android pattern

locks. Its duties include a number of vital functions

that are essential to the bypass mechanism's

effective operation. Initially, the ATTiny85

establishes communication through its USB

interface and serves as the receiver of commands

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a285

from the computer system. Usually, these

commands contain directions for adding pattern

combinations to the lock screen interface of an

Android device. In order to interpret the intended

activities to be performed, the microcontroller

parses the data and extracts pertinent information

after receiving the orders.

After processing the commands, the ATTiny85

microcontroller moves on to the execution phase,

where it follows the instructions to implement the

bypass mechanism. In order to mimic user

interactions with the Android device's touchscreen

interface, signals and control sequences must be

generated. The microcontroller uses a brute force

method to get over the security lock by

methodically injecting pattern combinations into

the device's lock screen. The ATTiny85 works

closely with the Android handset through its USB

connection during the bypass procedure. It

transmits the simulated user inputs to the device's

lock screen interface, including touch motions that

match pattern combinations. The microcontroller

keeps an eye on the device's reactions in real time

and modifies its behaviour in response to input.

Until the right unlock pattern is found, this

iterative process keeps going.

Injecting Brute Force Code:

One of the most important steps in the process of

getting around pattern locks on Android devices is

introducing brute force code. This part involves

the methodical execution of specially written code

designed to mimic user input on the touchscreen

interface of the device. The ATTiny85

microprocessor, which powers the injection

procedure, is at the centre of this activity. Custom

code created especially for the brute force attack is

programmed into the ATTiny85 microcontroller.

The microcontroller is instructed by this code to

simulate user inputs on the Android device's lock

screen, including touch movements and pattern

entries. Sending commands and interacting with

the device is made possible by the

microcontroller's access to the touchscreen

interface through a USB interface.

The ATTiny85 microcontroller begins carefully

attempting different pattern combinations one after

the other when it is told to initiate the brute force

attack. The injected code sets the pattern entry

sequence, which can range from simple to

complex combinations, as the microcontroller

cycles through multiple permutations in a brute

force manner. Throughout the injection operation,

the microcontroller closely monitors the device's

response to each pattern entry. It evaluates the

device's feedback, including whether the entered

pattern is accepted or refused, to determine the

next course of action. If the pattern entered is

wrong, the microcontroller adjusts its strategy and

advances to the next combination in the sequence.

Until the right unlock pattern is found or a preset

threshold is achieved, the brute force injection

process keeps going iteratively. In the former case,

access to the Android device is made possible by

the microcontroller successfully getting beyond

the pattern lock. On the other hand, the injection

procedure might be stopped, and other approaches

might need to be taken into consideration if the

threshold is reached unsuccessfully. In general,

introducing brute force code into the Android

smartphone is a methodical and regulated way to

get around pattern locks. This component uses the

ATTiny85 microcontroller's programmable

features to run custom code that simulates user

interactions. It repeatedly tries various pattern

combinations until it gains successful access.

Plug Android to Devices:

An essential component of the bypassing

procedure is the Android device's USB connection,

which allows the ATTiny85 microcontroller and

the target device to communicate seamlessly. The

microcontroller can communicate with the

Android device's lock screen interface thanks to

this physical connection, which acts as a conduit

for data transfer and command execution. A USB

cable, which creates a direct connection between

the ATTiny85 and the Android device, is the

primary component of this connection. Standard

USB connectors are usually found on both ends of

the USB cable, making it compatible with a variety

of devices. The microcontroller can successfully

communicate with the Android device thanks to

the USB cable's ability to supply power and data

communication once it is connected.

The microcontroller and the Android device

exchange data in both directions via the USB

connection. This implies that the device can

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a286

receive feedback and replies from the

microcontroller in addition to orders and

instructions. Because it allows the microcontroller

to track the device's responses and modify its

operations accordingly, this bidirectional

connection is crucial for carrying out the bypass

mechanism. The USB connection allows the

Android device to power the microcontroller in

addition to transferring data. This guarantees that

the microcontroller stays switched on and

functional during the bypassing procedure,

enabling the bypass mechanism to be executed

continuously. As a result, the USB connection has

two functions: it supplies power to enable

communication and offers data connectivity.

All things considered, the Android device's USB

port serves as a vital component of the

circumvention process, facilitating smooth data

transfer and communication between the target

device and the ATTiny85 microcontroller. This

connection gives the microcontroller access to the

lock screen interface of the device, enabling the

bypass mechanism to be executed and, eventually,

offering a technique to unlock locked Android

smartphones.

Attempt to Unlock Device:

After the ATTiny85 microcontroller injects brute

force code, the attempt to unlock the Android

smartphone is a crucial step in the bypassing

procedure. The system enters the unlocking phase

after the custom code has been entered into the

lock screen interface of the device.

The ATTiny85 microcontroller acts as the main

executor during this stage, simulating user inputs

by delivering signals to the Android device that

correspond to different pattern combinations. The

microcontroller uses its programmable capabilities

to carefully plan the pattern entry sequence,

cycling through several permutations in a

methodical way. By simulating a user trying to

manually unlock the device, each pattern entry is

sent to the device through the USB connection.

The algorithm keeps a careful eye on how the

device reacts to each pattern entry as it moves

forward with the unlocking attempts. To decide

what to do next, the microcontroller decodes the

device's feedback, which includes whether the

entered pattern was accepted or rejected.

Until the right unlock pattern is found or a preset

threshold is achieved, the unlocking procedure

iteratively continues. In the former case, the

Android device is accessed after the system

successfully gets around the pattern lock. On the

other hand, the system could need to reconsider its

strategy and look into different ways to unlock the

device if the barrier is approached without success.

Overall, when brute force code was injected, the

attempt to unlock the Android device shows a

methodical and controlled method of getting over

pattern locks. The technique provides a workable

way to unlock locked Android smartphones by

iteratively testing various pattern combinations

until successful access is obtained through careful

coordination and monitoring by the ATTiny85

microcontroller.

Algorithm Code:

1. Initialisation (setup):

The ATTiny85 microcontroller and other required

parts are initialised by the setup function. Updating

the Digi Keyboard library, which offers features

for simulating keyboard input, is part of this.

2. Main loop:

The ATTiny85 microcontroller coordinates the

brute force attempt to unlock the Android device

in the main loop (loop ()).

3. Counting Attempts:

The microcontroller records how many times the

user tries to open the

gadget that makes use of the 'count' variable. This

enables the system to manage situations in which

the maximum number of attempts is reached and

to restrict the number of attempts.

4. Managing Maximum Attempts:

The microcontroller enters a block of code to deal

with this scenario when the number of attempts

hits 5, signifying that the maximum number of

attempts has been achieved. In order to avoid

detection and keep the device from locking out

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a287

subsequent attempts, it starts a 31-second pause

before trying again.

5.Brute Force Keystrokes:

 The ATTiny85 microcontroller uses the Digi

Keyboard library to transmit keystrokes to the

Android device in a methodical way. It tries to

unlock the device's pattern lock by sending

keystrokes that correspond to various digit

combinations.

6. Incrementing Digits:

 The microcontroller increases the digits in

accordance with each set of keystrokes. Variables

(a, b, c, d, e, f, g, h) that correspond to each pattern

lock digit govern this operation. A digit is

incremented to the next one and resets to 0 if it

reaches 9.

7. Resetting Digits:

The microcontroller resets the attempt count and

begins anew if the first digit (a) hits 9, signifying

that every possible combination of eight digits has

been tried. This guarantees that, if required, the

system can keep trying to unlock the device.

8. End of Loop:

Until successful access is obtained or the

maximum number of attempts is reached, the main

loop keeps going endlessly, methodically trying

various digit combinations.

System Requirements:

1.Hardware:

The ATtiny85 is a microcontroller from Atmel

(now part of Microchip Technology) of the AVR

family. When you state "Attiny 85 USB," you are

most likely referring to a specific use case in which

the ATtiny85 microcontroller is designed to serve

as a USB device. A TTL (transistor-transistor

logic) converter is a device that converts signals

between TTL voltage levels and other voltage

standards, which are commonly used in digital

electronic circuits. It ensures compatibility across

systems with differing voltage requirements. A

TTL to RS-232 converter, for example, allows

TTL-level microcontrollers to communicate with

devices that use RS-232 voltage levels. These

converters serve an important role in integrating

components that use different voltage standards,

allowing for seamless communication and

interaction within electronic systems.

An Android device is fundamentally a smartphone

that operates on Google’s Android platform.

Android devices are popular due to their operating

system being open source, having a vast number of

available applications, and their ability to be

modified. These devices typically feature touch

screens, support for different systems, and

connectivity options such as Wi-Fi and mobile

networks. Android smartphones are widely used

across the globe, and variety of companies

engineer them with specific features and designs.

Apps, widgets and mobile settings can be changed

by users to personalize their experience with their

Android device.

2.Software:

An Integrated Development Environment (Ide) is

an environment for coding software which is

uploaded to microcontroller, here Arduino

Microcontroller. Creating programs, their

modification, uploading to Arduino boards, in

brief, everything that concerns programming is

available for users in the Arduino Ide. Essential

features are: text pane for code composition,

message pane to display useful feedback and some

buttons for common functions. The programming

language of all IDE variations, however, is C/C++.

Any of the several USB ports available allows the

user to send code to the microcontroller onto

Arduinos readily. The Arduino Ide makes the tasks

of developing projects much easier. The Arduino

Ide is interface-free and shapes a design space

through standardizing the projects’ components, as

well as the way in which they are connected to

each other.

3.Arduino IDE:

The Integrated Development Environment (IDE),

also referred to as the Arduino IDE, is a software

platform that was developed specifically for

interfacing with an Arduino microcontroller. With

the help of this IDE, users are able to utilize a range

of tools intended to improve the ease of coding and

development. The core of the IDE is the integrated

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a288

text editor, which in fact implements a separate

space for writing and modifying the Arduino code.

This editor is accompanied with a message section

which compliments this editor with helpful

comments on what went wrong during the code

compilation and uploading stages. In addition,

there is a toolbar within the IDE which houses

buttons/ icons to easily access commonly used

functions which helps in effective coding. One

notable characteristic of the Arduino IDE is that it

features the Arduino programming language, a

dialect derived from C/C++.

Furthermore, the Arduino IDE streamlines the

integration of third-party libraries, allowing users

to simply expand the capabilities of their projects

with new functionality. This versatility is essential

for accessing the enormous ecosystem of Arduino-

compatible sensors, modules, and shields on the

market, allowing developers to tackle a wide range

of projects with relative simplicity.

Furthermore, the Arduino IDE integrates

seamlessly with Arduino boards, automatically

identifying connected devices and configuring the

necessary settings for easy programming and

debugging. This level of automation lowers the

barrier to entry for newbies while speeding up the

development cycle for experienced users.

4.Digi Spark:

The Digi Spark is a compact and flexible

microcontroller board distinguished by its small

size and USB connectivity. This small board is

especially popular since it is compatible with the

Arduino IDE, allowing users to take advantage of

the ease of Arduino programming for a variety of

projects. The Digi Spark contains a

microcontroller that can be programmed using the

Arduino programming language. This makes it

accessible to users with diverse degrees of

programming experience, which is consistent with

the user-friendly attitude of Arduino development.

One distinctive feature of the Digi Spark is its USB

connectivity, which not only makes programming

easier but also opens up possibilities for USB-

based projects. Users can use the Digi Spark to

simulate Human Interface Devices (HID) or

construct custom USB functionality, expanding

the range of possible applications.

This step is critical to a seamless programming and

uploading experience. Given its small size and

versatility, the Digi Spark is useful in a variety of

projects, particularly those with limited space or

that require USB connectivity. The active Digi

Spark community helps to the platform's evolution

by sharing projects, tutorials, and support, which

improves the overall development experience for

users exploring the potential of this small yet

powerful microcontroller.

5. programming Language:

In the world of Android pattern bypass using an

Attiny85 microcontroller, the importance of the C

language is demonstrated by its close interface

with hardware and efficiency in managing low-

level tasks. The technique of circumventing the

Android pattern lock requires complicated

communication between the Attiny85

microcontroller and the Android device's

touchscreen, as well as precise control over

hardware components. The C programming

language allows this connection by allowing

developers to directly modify the Attiny85's GPIO

pins, allowing signals to be transmitted to the

touchscreen controller in order to properly

replicate human input events.

Efficient code execution is critical in situations

where resources are restricted, such as with the

Attiny85 microcontroller. C's ability to generate

optimised code ensures that the microcontroller

can do the essential activities quickly and with

little resource consumption. This efficiency is

critical for enabling smooth pattern bypass without

significantly exhausting the microcontroller's

battery, hence increasing the device's overall

usability. Furthermore, C may manage peripheral

devices attached to the microcontroller, such as

LEDs or buzzers, which are used to provide

feedback throughout the pattern bypass process.

By interacting with these peripherals via C code,

developers can build sensible user feedback

systems, improving the device's user experience

and usability.

C's portability and interoperability contribute to its

popularity in this environment. C code for the

Attiny85 microcontroller can be readily converted

to work on other hardware platforms if necessary.

This flexibility not only speeds up the

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a289

development process, but it also allows for smooth

integration with a wide range of microcontroller

architectures, giving you more hardware options

for different projects or applications. Furthermore,

C's capability for interrupt management is useful

in circumstances where the Attiny85 must respond

quickly to external events or timers. Developers

can efficiently manage these events by using

interrupt service routines (ISRs) written in C,

allowing the microcontroller to execute duties

such as timing operations and responding to user

input in a timely way.

Future Scope and Limitations:

1. Attiny85 enhances pattern bypass capabilities

in brute force attacks, improving security

bypass methods.

2. Its small size and low power consumption

enable discreet data capture from devices,

facilitating forensic analysis and security

testing.

3. Ethical considerations and limitations should

be acknowledged when using Attiny85.

4. While powerful, Attiny85's potential to inject

viruses or malicious code into devices poses

significant risks.

5. Ongoing research and vigilance are essential as

technology evolves to counteract emerging

security threats in cybersecurity.

Conclusion:

In conclusion, a viable solution to the security

issues encountered by users who can forget their

pattern locks is the creation of an Android pattern

bypass using a microcontroller. We have

effectively shown through this research that it is

possible to combine software and hardware

elements to produce a dependable and effective

workaround. We have given consumers a practical

way to get back into their gadgets without

sacrificing security by utilising a microcontroller's

capabilities. This project can be improved in a

number of ways going forward to increase its

usefulness and functionality. Adding further

authentication layers to make sure that only

authorised users can access the bypass capability

is one possible improvement. This can entail using

a fingerprint or other biometric authentication.

Furthermore, improving the bypass mechanism's

user interface and experience has the potential to

dramatically increase its utility. This could entail

creating a separate mobile app that easily connects

with the bypass functionality, giving users a more

natural and streamlined experience. Additionally,

investigating the incorporation of cloud-based

backup and synchronisation functions may

improve the project's resilience and accessibility.

This would allow users to securely store their

pattern lock data and bypass credentials, allowing

them to regain access to their devices from

anywhere with an internet connection. Overall, by

iterating and improving on the current solution, we

can ensure that the Android pattern bypass using a

microcontroller project remains relevant and

effective in meeting the changing security needs of

customers.

References:

1. K. Barmpatsalou, D. Damopoulos, G.

Kambourakis, and V. Katos, "A critical review of

7 times of mobile phone exploration," Digital

Investigation, vol. 10, no. 4, pp. 323-349, 2013.

2. CCL Group Ltd, the UK's leading exploration

and consultancy firm in 2016.

3. E. Onyejegbu, A. Dorzhigulov, and A.P. James,

"Biometric Pixel Fusion Crossbar," 2021 IEEE

International Symposium on Circuits and Systems

(ISCAS), pages 1–5, 2020.

4. Yeun Ku, Leo Hyun Park, Soyeon Shin, and

Tekyoung Kwon, "As reported behavioural

enrolment for mobile stoner authentication," IEEE

Access, Volume 7, runners 69363–69378, 2019.

5. Puninder Kaur, Geeta, and Vidhu Kiran Sharma,

"Analysis of Secure Locking Techniques on Smart

Phones," 2022 5th International Conference on

Contemporary Computing and Informatics (IC3I),

pp. 1807-1811.

6. Altaf Khan, Alexander G. Chefranov, “Captcha-

based graphical encryption with strong password

space and usability study,” 2020 International

Conference on Electrical, Communications and

Computer Engineering (ICECCE), p. 1-6, 2020.

7.P. Dibb and M. Hammoudeh, "Forensic Data

Recovery from Android OS Devices: An Open

Source

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411033 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a290

Toolkit", 2013 European Intelligence and Security

Informatics Conference, 2013.

8. Jeff Lessard and Gary Kessler, "Android

Forensics: Simpliying Cell Phone Examinations",

Small Scale Digital Device Forensics Journal, vol.

4, no. 1, pp. 1941-6164, 2010.

http://www.ijcrt.org/

