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Abstract: We introduce the notion of distal point for a Borel measure with respect to a given
Homeomorphism. We Prove that a point is distal for every non atomic Borel probability measure if and
only if it is countably-distal for the given homeomorphism. We prove that the distal point set of a
measure is a Borel set. We study the distal measures (i.e. measures for which every point is distal) and
prove that they are approximated with respect to the weak> topology by ones with invariant support.
Furthermore, the distal measures are dense in the space of measures just whenthe ones with full
support are. Afterwards, we consider the almost distal measures (i.e. measures for which almost every
point is distal) and exhibit one which is not distal. Moreover, a circle homeomorphism has an almost
distal measure with full support if and only if it is distal. In particular, every countably distal circle
homeomorphism is distal. We prove for circle homeomorphisms with rational rotation number that the
almost distal measures are precisely the distal ones. Finally, we prove that every homeomorphism with
distal measures has uncountably many almost periodic points and those with almost distal measures on
compact spaces haveinfinitely many nonwandering points.

Keywords: Distal Homeomorphism, Distal Measure, almost distal measure.
Introduction:

Let f: X— X be a homeomorphism of a metric space X. A point x € X is distal if
Inf d(f"(x), f'(y)) > 0 (n€ 2)
for every y € X \{x}. Equivalently, if P (x) = {x} where
P(x) =4y e X: inf d(f"(x), f'(y)) =0 (1)
is the proximal cell of x (occasionally we write Ps(Xx) to indicate the dependence on f). Consequently,
a necessary condition for x to be distal is that u(P (x)) = 0 for every Borel probability measure p which
is nonatomic (i.e. without points of positive mass).
It is natural to ask if the latter condition is also sufficient for a point x to be distal. Nevertheless, the
answer is negative by the following counter example.

Example:

There is a compact metric space X, a homeomorphism f : X—X and a point x € X which is not distal for
f though p(P(x)) =0 for every nonatomic Borel probability measure p of X.

Proof:

Denote by A ={z=(0, r) €C :1 <|z| <2}the closed annulus of C. Define F:A —A by F(0, r)
=(0+a(mod1), (r—1)?>+1)where a is an irrational number.
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Clearly Fis a homeomorphism of A. Define X=0A U{p n:n €Z}where A denotes the boundary
of A and pn= F"(0, é) for n €Z. Hence X is a compact invariant set of F. Now define the

homeomorphism f : X—X by f=F|X. Then, x =(0, 0)is not distal since P(x) ={(0, 0), (O, %)}but
w(P(x)) =0 for every nonatomic Borel probability measure p is since P(x)has two elements.

However, we will show that the condition p(P (x)) = 0 for every nonatomic measure p still implies some
distality for x. For this we introduce the following definition closely related to the n-expansive and
countable expansive homeomorphisms [5,7,9].

Definition:

Let f: X — X be a homeomorphism of a metric space X. We say that x € X is a countable — distal point of f
if P(x) is a countable subset of X. We say that f is countable — distal if every point X is.

Theorem: 1

Let f: X — X be a homeomorphism of a Polish metric space X. We say that x € X is a countable- distal
point of fif and only if u(P(x)) = 0 for every nonatomic Borel probability measure p of X.

Proof:

Itis clear that every countable-distal point x satisfies u (P (x)) =0 for every nonatomic Borel probability
measure p. Conversely, suppose that p(P (x)) = 0 for every nonatomic Borel probability measure p but
P (x) is uncountable. We have that P (x) is a Borel set by Corollary : For every homeomorphism
f : X—X of a metric space X and every x € X one has that P (X) is an Fss subset of X. In
particular, P (x) is a Borel set.

Then, by Theorem 2.8 on p. 12 of [11], there is a Cantor set C < P (x). On the other hand, by Theorem
8.1 on p. 53 of [11], there is a nonatomic Borel probability p with supp(n) & C. However, p is
nonatomic so p(P (x)) =0

thus u(C) = 0 which is absurd. This contradiction ends the proof.

Definition:

Let p be a Borel measure of metric space X. A distal point pu with respect to a homeomorphism f: X — X is
a point X € X such that u(P(x)) = 0. The distal point set of p with respect to f is the set formed by the distal
points of p with respect to f.

Theorem: 2

For every homeomorphism of a compact metric space , the distal point set of every Borel probability measure
is a Borel set.

Proof:

By Corollary(For every homeomorphism f : X—X of a metric space X and every x € X one
has that P (x) is an Fss subset of X. In particular, P (x) is a Borel set) we have that the map
¢ :X—R is defined by ¢(x) =p(P(x)) for x € X is well-defined.

On the other hand, the set of distal points of  is precisely @~ 1(0)and (pnfl.p—'F;T(p by Lemma : For every x €
X and € > 0 one has:

1. Pi[X, €] is closed;

2. P[X, €] =UjenP1 [x €]

3. P(X) =N nen+P [x, n°1]

Since each ¢ »-1 1S Borel by Lemma (If f : X—X is a homeomorphism of a compact metric space
X, then ¢. is a Borel map forevery € > 0) we obtain that ¢ is Borel too. Hence ¢ *(0)is a Borel set.
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Definition:

A distal measure of a homeomorphism of metric space X is a Borel probability measure whose distal point
set is X.

A Borel probability measure p of a metric space X is invariant respect to a continuous map f : X— X if
u( f~1(B)) = w(B) for every Borel set B. The invariance of the measure is not required in the previous
definition. On the other hand, not every probability measure is distal, a necessary condition for a measure to
be distal is that the measure be nonatomic. This condition is also sufficient for countable — distal
homeomorphism.

On the other the distal measures are dense in M(X) for countable — distal homeomorphisms on complete
separable metric spaces without isolated points. This follows because the distal measures are precisely the
nonatomic ones which in turn are dense in M(X) by corollary 8.1 in [11]. Although every space X exhibiting
a homeomorphism f: X—X whose distal measure are dense in M(X) has no isolated points, we do not know
if such homeomorphism fis countable — distal. However, it is possible to obtain some information of the set
of distal measures of a given homeomorphism.

The support of a Borel probability p is the set supp(p) of points x € X such that p(U) > 0 for any
neighborhood U of x. It follows that supp(it) is a non empty compact subset of X. A Borel Probability
measure p of X has full or invariant support if supp(pn) = X or f(supp(n)) = supp(p) respectively. An
invariant measures has invariant support but not conversely, Also we not known if every homeomorphism
with distal measures has necessarily an invariant distal measure. A partial answer is stated in the theorem
below.

Theorem: 3

Every distal measure of homeomorphism of a compact metric space X can be approximated by ones with
invariant support. In addition, the distal measures are dense in M(X) if and only if the ones with full support
are.

Proof :

A topological space Y is a Baire space if the intersection of each countable family of open and dense subsets
in Y is dense in Y. We say that A € Y is a Baire subset if A is a Baire space with respect to the topology
induced by Y. Hereafter we denote by Mygis () the set of distal measures of f.

Let f:X—Xbe a homeomorphism with distal measures of a compact metric space X. By Lemma (For every
homeomorphism with distal measures f : X—X of a compact metric space X there is a dense subset R of

M gis(f)such that supp(n) =D(f)for all p €R.)there is a dense subset of the space of distal measures all of
whose elements have support equal to D(f). Since D(f) is invariant by Corollary(The measure distal center is
a compact invariant set.), This Completes the proof

Now suppose that Mis(f) is dense in M(X). Then, D(f) =X( by Lemmab5 in [8]) so, by Lemma(For every
homeomorphism with distal measures f: X—X of a compact metric space X there is a dense subset R of
Muis(f)such that supp(pn) =D(f)for all p €R.) there is a dense subset R of Mis(f)such that supp(n) =X for all
1 €R. Since Myis(f) is dense in M(X), we have that R is dense in M(X)and we are done.

Fig 1: An almost distal measure which is not distal.
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Definition:

An almost distal measure of a homeomorphism of a metric space X is a Borel probability measure whose
distal point set has a full measure.

Example:
There is a homeomorphism of the two -torus T 2 exhibiting an almost distal measure which is not distal.
Proof:

We obtain T 2 by identifying the circle C1 and C; in Fig. 1. Denote by C the circle in T2 resulting by
such an identification. Consider the flow in T2 as in that figure. The circle C is the set of equilibrium
points of this flow, with the remainder orbits spiraling forward and backward to C as described in the
figure. The homeomorphism is precisely the time-1 map of this flow.

If suitable chosen, the flow has the property that this time-1 map satisfies P (x) N C = {x} (for x €
C) and C € P (x) (for x € T 2\ C). Let p be the Lebesgue measure of the circle C. It follows that
(P (x)) = 0 (for x € C) and (P (x)) = 1 (for x € T 2\C).From this we get that p is almost distal.
Since C is a proper subset of T2, p is not distal.

Theorem: 4

A circle homeomorphism has an almost distal measure with full support if and only if it is distal. In
particular, every countably-distal circle homeomorphism is distal. Every almost distal measure of a
circle homeomorphism with rational rotation number is distal.

Proof:

To finish we will give two dynamical consequences of the existence of distal or almost distal
measures. First recall that a stable class of a homeomorphism f : X — X is a subset equals to {y
€ X ' limy—e d(f'(X), f'(y)) = 0} for some x € X. On the other hand, a Borel measure p of X is
positively expansive if there is & > 0 such that u( {y € X : d(f"(x), f"(y)) <oé foralln e N}) =
0 for every xe X.

Every continuous map with positively expansive invariant measures has uncountably many stable classes
[1]. Below we will obtain the same conclusion for homeomorphisms with almost distal measures
(invariant or not).

Theorem: 5

Every homeomorphism with almost distal measures of a metric space has uncountably many stable
classes.

Proof: Let f :X — X be a homeomorphism of a compact metric space X exhibiting an almost distal
measure p. Suppose by contradiction that the set of stable classes of f is countable. It is apparent that the
stable classes form a partition of X. Moreover, such classes are Borel sets (see the proof of Lemma 2.4
in [1]). It follows that p(Ws(x)) > 0 for some x € X where Ws(x) = {y € X :limn—o d(fn(x), fn(y)) =0
for every xe X. Since p is almost distal, there isy € Ws(x) such thaty isa distal point of u. Now fix
X € Ws(x). Then, d(fn(x ), fn(x)) — 0 and, since y € Ws(x), we also have d(fn(x), fn(y)) — 0
as n —oo. From this we obtain d(fn(x ), fn(y)) — 0 as n—oo. We conclude that x € Ws(y) and
so Ws(x) < WSs(y). But clearly Ws(y) €P (y) so Ws(x) € P (y). As y is a distal point of p, we
get w(P (y)) = 0 and so n(Ws(x)) = 0 which is absurd. Therefore, f has uncountably many stable

For the second consequence, we recall that a subset F c Z is syndetic if there is 1 > 0 such that [n,n+1] N F
/= @ for every n € Z. We say that x € X is an almost periodic point of a homeomorphism f: X — X if for
every neighborhood U of x there is a F c Z syndetic such that f" (x) € U foreveryn e F .
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We say that x is a non wandering point of T if UU,ens f2(U) # @ for every neighborhood U of x.
The set of almost periodic (resp. non wandering) points is denoted by AP () (resp. Q(f)). The latter is
often referred to as the non wandering set of f. Every almost periodic point is non wandering.

Every distal homeomorphism of a compact metric space satisfies that every point is almost periodic
(and so non wandering too) [3]. In light of this result, it is tempting to say that every homeomorphism
with distalor almost distal has many almost periodic or non-wandering points. This will be obtained
in our last result.

Theorem: 6

Every homeomorphism with distal measures of a metric space has uncountably many almost periodic
points. Every homeomorphism with almost distal measures of a compact metric space has infinitely
many non wandering points.

Some important lemmas
W e start with some basic notation. Let f: X —X be a homeomorphism of a metric space X . For all
x eXand e>0thenP [ X, €]

={yeX: d(fi(x),fi(y)) < eforsomei€Zz

P [x,e]={yeX:d(fi(x),fl(y)) < eforsome—-1<j<i}, VieN.

Lemma 1. For every x €X and € > 0 one has:
1.Pi[X, €] is closed;

2. P [X, E] :Ui eN Pi [X, E],

3. P(X) =Nnen+ P[x,n?]

Proof:

To prove 1 take a sequence xi € Pi[x, €] with x, — z for some z € X. Since x, € P,[x, €], there exists
sequence -i<j,<i satisfying d( ¥ (x), f (xs)) <€_, vk € N.

assume that j « = j for some fixed - i <j,<i yielding d(f'(x),f'(y)) < €, VKEN

Letting k —o0 above obtain d(f/(x) ,f/(y)) < e for some —i < j<i, this proves z €P,[x, €] yielding 1

To prove 2 take y € P[X, €]. Then d(fi(x) ,fl(y)) < eforsome j € Z. By taking i = |j| we obtain —i<
j< | satisfying d(f?(x), F1(y)) <e. Hence y € Pi[X, ¢ for some 1 € N thus proving P [X, €] S
U ien Pi[x, €] . The reversed inclusion is obvious so (2) holds

To prove 3 it is already clear.

Lemma 2. If f : X—X is a homeomorphism of a compact metric space X, then ¢ is a Borel
map forevery € > 0.

Proof:
First note that Pi[X, €] € Pi'[X, €] whenever i <i'. Then, ¢ = supien de,i by Lemma 1.

It then suffices to show that ¢c; is
measurable for any ¢ > Oand i € N. For this we have to prove that the set ¢.; (] — o, a[) is
a Borel set, va> 0. Actually,

We shall prove that this set is open Va > 0. Take X € @¢; *(] — o, a[) and a sequence Xk € X with
Xk — X. Because X € @i (] — o, a[), we have p(Pi[X, €]) < a.

As p is regular [11], there is O open with Pi[X, €] € O such that u(O) < a.
We claim that Pi[xk, €] € O for k large. Otherwise, by compactness, we can choose a sequence
Yk € Pi[Xk,€]\O such that yx« — y for somey € X. As yk £ O and O is open, we get y £
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O. However, yk € Pi[Xk, €] and then there is a sequence—i < jk < i satisfying d(fiK (xx), fik
(yk)) <e for all k € N. Clearly we can assume jk = j for some fixed

—i <j <i hence d(fJ (xk), FI (yk)) <e for all k € N. Letting k — o« above we obtain d(fJ (x), I (y))
<e. Since —i <j <1, this prove

y €Pi[X, €] and so y € O. This is a contradiction which proves the claim. From this claim one has

Pei(Xk) = u(Pe.i(xx)) < p(O)
a, and so xk belongs to @.; (] —,a[) for k

large. Hence, @; *(] — 0, a[) is open.

Lemma 3. If f : X—X is a homeomorphism of a compact metric space X, then Myis(f) is
a Baire subset of M(X).

Proof : F or all Forall 3, >0 and i € N we define

C(e,1,0) = {u e M(X) : n(Pi[X, €]) > for some x € X73}.

By Lemmal we have
r € M(X) \ Mqis(f) < (P (x)) > 0 for some x € X

©3In eN*suchthat  lim p(P[x,m™!]) >n~?!
m —oo
forsome x € X

& 3an,me N *, x € X such that w(P[x,1])>n " forall1>m
©3In,meN”’ and x €X

such that

Vi>m3ie N

such that

u(P[x,171] >n7t
S uE Une Nt Ume N+t nlzmieN Ui eN C(l_l , i,n_l)

And so
M(X) \ Mdis(f) = Unent Ument NMizmien Uien C(l_l 1, n_l) (2)
Next we prove that C(e, i, 9) is closed in M(X) for any €,6 > 0 and any i € N.

Fix €,6 > 0 and ieN. Take a sequence uneC(, i, 8) converging to p € M(X) with respect to the
weak™* topology. As un C(e, i, §) there is a sequence x,, € X with Xp—X such that p(Pi[Xk, €])>06
for any keN.

If we prove n(Pi[X, €])>6 we would obtain pu € C(e, i, 8) and then C(e, 1, §) is closed in M(>X). Hence
it suffices to prove
n(Pi[x, €]) > 4.

Take any compact neighborhood V of Pi[X, €]. We claim that Pi[xn, €] € Int(V ) for k large. If not,
there is a sequence yn € Pi[Xn, €]\ INnt(V ) which, by compactness, we can further assume yx — y for
some y € X.

On the one hand, we have y € Int(V ) because Int(V ) is open and, on the other, yn € Pi[Xn, €] for
any n

hence there is a sequence —i <j, <1 satisfying

d(FIN (xn) N (yn)) <¢ ¥n € N.

IJCRT2411021 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a175


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

We can assume j, = j for some —i <j <i hence
d(fJ (xn), F (yn)) <€, ¥n eN.

Letting n — oo above we obtain
d(f (x), FI(y)) <e,
and so y € Pi[X, €]. Since V is a neighborhood of Pi[Xx, €], we obtain y € Int(V ) which is a
contradiction. This contradiction shows Pi[Xn, €] € Int(V ) for k large and, then,
d <un(Pi[Xn, €]) <pun(V), ¥n large.
As pun — p and V is closed, Theorem 6.1 in [11] implies
O limsupun(V) wVv).
n—oo
Hence pw(V ) >§ for any compact neighborhood V of Pi[X, €]. From this we get
n(Pilx, €]) 28

and so C(e, 1,9) is closed in M(X), for all €,6 > 0 and ieN.

Then, UienC(7%i,n"1)is an F, subset of M(X) (vn, | € N*) from which we get that
Ni>m Uien C(A7%,1,n71) is an Fss subset of  M(X) ( vm, neé N7¥). Since the space M(X) of
Borel probability measures equipped with the weak* topology is a compact (hence complete),
every Fos subset of it is Baire (cf. Lemma 1 in [8]). Consequently, Njsm Uien CA7%,i,n" ) is a
Baire subset of M(X), vm, n € N*. Therefore, M(X) \ Mgis(f) (and so Muais(f)) are Baire subsets by
(1). This finishes the proof

Lemma 4. Every almost distal measure of a homeomorphism f : X — X of a metric space X is
nonatomic

Proof:

Suppose by contradiction that p({xo}) > 0 for some Xo € X. Since p is almost distal, there is a
measurable set E with p(E) = 1 such that p(x) = 0 for all x € E. As p({xo}) > 0 and W(E) =1,
one has Xo € E and so u({xo}) = 0 which is absurd. This completes the proof.

Lemma 5. If p is an almost distal measure of a circle. homeomorphism f, then supp(p) € Q(f).

Proof:

We have that S\ Q(f) is a disjoint collection of open intervals J. It follows that diam(f"(J)) — 0
as n — oo hence J € P (x) for every x € J. Now, assume by contradiction that there is an almost distal
measure p with supp(p) ¢ Q(f). Then, pu(J) > 0 for some interval J as above.

Hence w(P (x)) > n(J) > Ofor all x € J from which we get J < S\ Dist(f, p). It then follows that
(St \ Dist(f, n)) > 0 and so w(Dist (f, n)) < 1 which is absurd.

Lemma 6. For every homeomorphism f: X — X of a metric space X and every k€ N*, every distal
point of a Borel measure p with respect to f is a distal point of p with respect to f¥. In particular,
every almost distal measure of f is an almost distal measure of <,

Proof:

Since infrez d(f<"(x), F<"(y)) = 0 implies infaez d(f"(x), f(y)) = 0, one has Ptk (X) S P (x) and the
proof follows.
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Theorem: 4

A circle homeomorphism has an almost distal measure with full support if and only if it is distal. In
particular, every countably-distal circle homeomorphism is distal. Every almost distal measure ofa
circle homeomorphism with rational rotation number is distal.

Proof: Let f : S!S be a circle homeomorphism. First assume that f has an almost distal
measure with full support. Then, Q(f) = S' (If p is an almost distal measure of a circle
homeomorphism f, then supp(n) € Q(f).) and so f is topologically conjugated to a circle rotation.
From this we obtain that f is distal and the proof follows. If f is countably distal, then fhas a
distal measure with full support (e.g. the Lebesgue measure) and so f is distal by the previous part.

Next assume that f has rational rotation number and, by contradiction, that f has an almost distal
measure |. Since f has rational rotation number, the periodic points of f have a common period
keN*(say). In addition, by using Lemma (For every homeomorphism f : X — X of a metric space X
and every ke N*, (For every homeomorphism f : X — X of a metric space X and every k € N *every
distal point of a Borel measure p with respect to fis a distal point of pu with respect to f<. In particular,
every almost distal measure of f is an almost distal measure of f<.) and replacing f by < if necessary

we can assume that Q(f) =Fix(f) ={x €S*:f(x) =x}. Then, we have

{x}, if x € Int (Fix(D));
P(x) = CI()) if ] for some component ] of ST\ Fix(f) )
J U {x}, x € Fr(J)for some component ] of ST\ Fix(f)

where Fr () and CI () denote the boundary and closure operations in S?.

Suppose by contradiction that ¥ has an almost distal measure p which is not distal. Then, u(P (xo)) >
0 for some xo € S'. Since u is nonatomic by Lemma (Every almost distal measure of a
homeomorphism f : X — X of a metric space X is nonatomic)by (3) applied to X = xo would imply
r(J) > 0 for some connected component J of ST \ Fix (f ). However, supp(p) € Q(f) (Lemma 5)
so supp(n) € Fix(f ) thus p(J) =0 since J € ST \Fix(f). This is a contradiction which proves
the result.

Theorem: 6

Every homeomorphism with distal measures of a metric space has uncountably many almost periodic
points. Every homeomorphism with almost distal measures of a compact metric space has infinitely
many non-wandering points)

Let f::X—Xis a homeomorphism of a metric space X. Assume that f has a distal measure p. By
Theorem3, p.67 in [3] we have that for every x €X there is xx€AP(f)such that x*€P(x). On the other
hand, since x*€P(x), we have x €P(xx*) and so X=_x*€AP(F)P(xx).

Now suppose by contradiction that AP(f)is countable. Since the proximal cells are all Borel sets by
Corollary(For every homeomorphism f: X—Xof a metric space Xand every x €X one has that P(x)is an
Foo subset of X. In particular, P(x)is a Borel set).

We would have w(X) <_Y.x.capn M(P(x *)). But p is distal so pu(P(x*)) =0for all x«€AP(f)thus p(X)
=0which is absurd. Therefore, AP(f)is uncountable.

Now assume that X is compact and that f has an almost distal measure. If Q(f)were finite, then the
number of stable classes of f is finite. Applying Theorem 5. we obtain a contradiction. Therefore, Q(f)is
infinite.
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