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Abstract:  We introduce the notion of distal point for a Borel measure with respect to a given 

Homeomorphism. We Prove that a point is distal for every non atomic Borel probability measure if and 

only if it is countably-distal for the given homeomorphism. We prove that the distal point set of a 

measure is a Borel set. We study the distal measures (i.e. measures for which every point is distal) and 

prove that they are approximated with respect to the weak* topology by ones with invariant support. 

Furthermore, the distal measures are dense in the space of measures just when the ones with full 

support are. Afterwards, we consider the almost distal measures (i.e. measures for which almost every 

point is distal) and exhibit one which is not distal. Moreover, a circle homeomorphism has an almost 

distal measure with full support if and only if it is distal. In particular, every countably distal circle 

homeomorphism is distal. We prove for circle homeomorphisms with rational rotation number that the 

almost distal measures are precisely the distal ones. Finally, we prove that every homeomorphism with 

distal measures has uncountably many almost periodic points and those with almost distal measures on 

compact spaces have infinitely many nonwandering points. 

 

Keywords: Distal Homeomorphism, Distal Measure, almost distal measure.  

 

Introduction:  

 

 Let f: X→ X be a homeomorphism of a metric space X. A point x ∈ X is distal if  

 Inf d(fn(x), fn(y)) > 0  (n∈ Z) 

    for every y ∈ X \ {x}. Equivalently, if P (x) = {x} where 

                      P (x) = {y ∈ X:  inf d(fn(x), fn(y)) = 0        (1)                                                                                        

is the proximal cell of x (occasionally we write Pf (x) to indicate the dependence on f). Consequently, 

a necessary condition for x to be distal is that μ(P (x)) = 0 for every Borel probability measure μ which 

is nonatomic (i.e. without points of positive mass). 

It is natural to ask if the latter condition is also sufficient for a point x to be distal. Nevertheless, the 

answer is negative by the following counter example. 

 

Example: 

 

There is a compact metric space X, a homeomorphism f : X→X and a point x ∈ X which is not distal for 

f though μ(P(x)) =0 for   every nonatomic Borel probability measure μ of X. 

 

Proof:  

 

Denote by A ={z=(θ, r) ∈C :1 ≤|z| ≤2}the closed annulus of C. Define F:A →A by F(θ, r) 

=(θ+α(mod1), (r−1)2+1)where α is an irrational number.  
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Clearly Fis a homeomorphism of A. Define X=∂A ∪{p n:n ∈Z}where ∂A denotes the boundary 

of A and pn= Fn(0, 
1

3
) for n ∈Z. Hence X is a compact invariant set of F. Now define the 

homeomorphism f : X→X by f=F|X. Then, x =(0, 0)is not distal since P(x) ={(0, 0), (0, 
1

3
)}but 

μ(P(x)) =0 for every nonatomic Borel probability measure μ is since P(x)has two elements. 

 

However, we will show that the condition μ(P (x)) = 0 for every nonatomic measure μ still implies some 

distality for x. For this we introduce the following definition closely related to the n-expansive and 

countable expansive homeomorphisms [5,7,9]. 

 

Definition:  

 

Let f: X → X be a homeomorphism of a metric space X. We say that x ∈ X is a countable – distal point of f 

if  P(x) is a countable subset of X. We say that f is countable – distal if every point x is. 

 

Theorem: 1  

 

Let f : X → X be a homeomorphism of a Polish metric space X. We say that x ∈ X is a countable- distal 

point of f if and only if μ(P(x)) = 0 for every nonatomic Borel probability measure μ of X. 

 

Proof:  

 

It is clear that every countable-distal point x satisfies μ (P (x)) = 0  for  every nonatomic Borel probability 

measure μ. Conversely, suppose that μ(P (x)) = 0 for every nonatomic Borel probability measure μ but 

P (x) is uncountable. We have that P (x) is a Borel set by Corollary :  For every homeomorphism 

f : X→X of a metric space X and every x ∈ X one has that P (x) is an Fσδ subset of X. In 

particular, P (x) is a Borel set. 

 

Then, by Theorem 2.8 on p. 12 of [11], there is a Cantor set C ⊆ P (x). On the other hand, by Theorem 

8.1 on p. 53 of [11], there is a nonatomic Borel probability μ with supp(μ) ⊆ C. However, μ is 

nonatomic so μ(P (x)) = 0  

thus μ(C) = 0 which is absurd. This contradiction ends the proof.  

 

Definition:  

 

Let μ be a Borel measure of metric space X. A distal point μ with respect to a homeomorphism f : X → X  is 

a point x ∈ X such that μ(P(x)) = 0. The distal point set of  μ with respect to f is the set formed by the distal 

points of μ with respect to f. 

 

Theorem: 2 

 

 For every homeomorphism of a compact metric space , the distal point set of every Borel probability measure 

is a Borel set. 

 

Proof: 

  

By Corollary(For every homeomorphism f : X→X of a metric space X and every x ∈ X one 

has that P (x) is an Fσδ subset of X. In particular, P (x) is a Borel set )  we have that the map 

φ :X→R is defined by φ(x) =μ(P(x)) for x ∈ X is well-defined.  

On the other hand, the set of distal points of μ is precisely φ−1(0)and φn−1.
p.p
→ ↑φ by Lemma : For every x ∈ 

X and ϵ > 0 one has: 

1. Pi[x, ϵ] is closed; 

2. P [x, ϵ] =⋃ Pi [x, ϵ]i ∈ N  

3. P (x) =∩ n∈N+P [x, n-1]  
   

 
Since each φ n−1 is Borel by Lemma (If f : X→X is a homeomorphism of a compact metric space 

X, then ϕє is a Borel map for  every ϵ > 0) we obtain that ϕ is Borel too. Hence ϕ−1(0)is a Borel set. 
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Definition: 

 

A distal measure of a homeomorphism of metric space X is a Borel probability measure whose distal point 

set is X. 

 

A Borel probability measure μ of a metric space X is invariant respect to a continuous map f : X→ X if 

μ( f−1(B))  =  μ(B) for every Borel set B. The invariance of the measure is not required in the previous 

definition. On the other hand, not every probability measure is distal, a necessary condition for a measure to 

be distal is that the measure be nonatomic. This condition is also sufficient for countable – distal 

homeomorphism. 

On the other the distal measures are dense in Μ(X)  for countable – distal homeomorphisms on complete 

separable metric spaces without isolated points. This follows because the distal measures are precisely the 

nonatomic ones which in turn are dense in  Μ(X) by corollary 8.1 in [11]. Although every space X exhibiting 

a homeomorphism  f : X→X whose distal measure are dense in M(X) has no isolated points, we do not know 

if such homeomorphism  f is countable – distal. However, it is possible to obtain some information of the set 

of distal measures of a given homeomorphism. 

 

The support of a Borel probability μ is the set supp(μ) of points x ∈ X such that μ(U) > 0 for any 

neighborhood U of x. It follows that supp(μ) is a non empty compact subset of X. A Borel Probability  

measure μ of X has full or invariant support if supp(μ)  =  X or f(supp(μ)) = supp(μ) respectively. An 

invariant measures has invariant support but not conversely, Also we not known if every homeomorphism 

with distal measures has necessarily an invariant distal measure. A partial answer is stated in the theorem 

below. 

 

Theorem: 3 

 

 Every distal measure of homeomorphism of a compact metric space X can be approximated by ones with 

invariant support. In addition, the distal measures are dense in M(X) if and only if the ones with full support 

are. 

 

Proof :  

 

A topological space Y is a Baire space if the intersection of each countable family of open and dense subsets 

in Y is dense in Y. We say that A ⊆ Y is a Baire subset if A is a Baire space with respect to the topology 

induced by Y. Hereafter we denote by Mdis (f) the set of distal measures of f. 

Let f:X→Xbe a homeomorphism with distal measures of a compact metric space X. By Lemma (For every 

homeomorphism with distal measures f : X→X of a compact metric space X there is a dense subset R of  

M dis(f)such that supp(μ) =D(f)for all μ ∈R.)there is a dense subset of the space of distal measures all of 

whose elements have support equal to D(f). Since D(f) is invariant by Corollary(The measure distal center is 

a compact invariant set.),  This Completes the proof 

 

Now suppose that Mdis(f) is dense in M(X). Then, D(f) =X( by Lemma5 in [8]) so, by Lemma(For every 

homeomorphism with distal measures f:  X→X of a compact metric space X there is a dense subset R of 

Mdis(f)such that supp(μ) =D(f)for all μ ∈R.) there is a dense subset R of Mdis(f)such that supp(μ) =X for all 

μ ∈R. Since Mdis(f) is dense in M(X), we have that R is dense in M(X)and we are done. 

 

 
 

Fig 1: An almost distal measure which is not distal. 
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Definition:   

 

An almost distal measure of a homeomorphism of a metric space X is a Borel probability measure whose 

distal point set has a full measure. 

 

Example: 

 

There is a homeomorphism of the two -torus T 2 exhibiting an almost distal measure which is not distal. 

 

Proof:  

 

We obtain T 2   by identifying the circle C1 and C2 in Fig. 1. Denote by C the circle in T 2 resulting by 

such an identification. Consider the flow in T 2 as in that figure. The circle C is the set of equilibrium 

points of this flow, with the remainder orbits spiraling forward and backward to C as described in the 

figure. The homeomorphism is precisely the time-1 map of this flow. 

If suitable chosen, the flow has the property that this time-1 map satisfies P (x) ∩ C = {x} (for x ∈ 

C) and C ⊆ P (x) (for x ∈ T 2 \ C). Let μ be the Lebesgue measure of the circle C. It follows that 

μ(P (x)) = 0 (for x ∈ C) and μ(P (x)) = 1 (for x ∈ T 2 \ C). From this we get that μ is almost distal. 

Since C is a proper subset of T 2, μ is not distal. 

 

Theorem: 4  

 

A circle homeomorphism has an almost distal measure with full support if and only if it is distal. In 

particular, every countably-distal circle homeomorphism is distal. Every almost distal measure of  a 

circle homeomorphism with rational rotation number is distal. 

 

Proof:  

 

To finish we will give two dynamical consequences of the existence of distal or almost distal 

measures. First recall that a stable class of a homeomorphism f  : X  → X is a subset equals to {y 

∈ X  : limn→∞ d(fn(x), fn(y)) = 0} for some x ∈ X. On the other hand, a Borel measure μ of X is 

positively expansive if there is δ > 0 such that μ( { y ∈ X : d(fn(x), fn(y)) ≤ δ for all n  ∈ N }) = 

0 for every x∈  X. 

 

Every continuous map with positively expansive invariant measures has uncountably many stable classes 

[1]. Below we will obtain the same conclusion for homeomorphisms with almost distal measures 

(invariant or not). 

 

Theorem: 5  

 

Every homeomorphism with almost distal measures of a metric space has uncountably many stable 

classes. 

 

Proof: Let f  :X →  X be a homeomorphism of a compact metric space X exhibiting an almost distal 

measure μ. Suppose by contradiction that the set of stable classes of f is countable. It  is apparent that the 

stable classes form a partition of X. Moreover, such classes are Borel sets (see the proof of Lemma 2.4 

in [1]). It follows that μ(Ws(x)) > 0 for some x ∈ X where Ws(𝑥) = {y ∈ X :limn→∞ d(fn(𝑥), fn(y)) = 0 

for every 𝑥∈ X. Since μ is almost distal, there is y  ∈ Ws(x) such that y is a  distal  point  of  μ.  Now  fix  

x¯   ∈   Ws(x).  Then,  d(fn(x¯), fn(x)) → 0  and,  since  y ∈ Ws(x),  we  also  have d(fn(x), fn(y))  → 0  

as  n →∞.  From  this  we  obtain  d(fn(x¯), fn(y)) →  0  as  n→∞.  We  conclude  that x¯ ∈ Ws(y)  and  

so  Ws(x)    ⊆  Ws(y).  But  clearly  Ws(y) ⊆P (y)  so  Ws(x)  ⊆ P (y).  As  y  is  a  distal  point of μ, we 

get μ(P (y)) = 0 and so μ(Ws(x)) = 0 which is absurd. Therefore, f has uncountably many stable 

 

For the second consequence, we recall that a subset F ⊂ Z is syndetic if there is l > 0 such that [n, n + l] ∩ F 

/= ∅ for every n ∈ Z. We say that x ∈ X is an almost periodic point of a homeomorphism f : X → X if for 

every neighborhood U of x there is a F ⊂ Z syndetic such that fn (x) ∈ U for every n ∈ F . 
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We say that x is a non wandering point of f if U⋃ fn(U)  ≠ ∅n∈N+   for every neighborhood U of x. 

The set of almost periodic (resp. non wandering) points is denoted by AP (f ) (resp. Ω(f )). The latter is 

often referred to as the non wandering set of f . Every almost periodic point is non wandering. 

 

Every distal homeomorphism of a compact metric space satisfies that every point is almost periodic 

(and     so non wandering too) [3]. In light of this result, it is tempting to say that every homeomorphism 

with distal or almost distal has many almost periodic or non-wandering points. This will be obtained 

in our last result. 

 

Theorem: 6 

 

Every homeomorphism with distal measures of a metric space has uncountably many almost periodic 

points. Every homeomorphism with almost distal measures of a compact metric space has infinitely 

many non wandering points. 

  

  Some important lemmas  

 W e start with some basic notation.  Let f : X →X be a homeomorphism of a metric space X . For all 

x ∈X and ϵ > 0 then P [ x, ϵ]    

  = { y ∈X : d(f i(x) , f i(y))  ≤  ϵ for some i ∈ Z  

   Pi [ x ,ϵ ] = { y ∈X : d(f i(x) , f j(y))  ≤  ϵ for some – I ≤ j≤ i}, ∀ i∈N. 

 

Lemma 1. For every x ∈X and ϵ > 0 one has: 

1.Pi[x, ϵ] is closed; 

  2. P [x, ϵ] =⋃ Pi [x, ϵ]i ∈ N ; 

  3. P (x) = ∩ n∈N+     P[x, n-1] 
   

 Proof:  

 

To prove 1 take a sequence xk  ∈ Pi[x, ∈] with xk →  z for some z ∈ X. Since xk  ∈ Pi[x, ∈], there exists 

sequence  - i ≤jk≤i  satisfying  d( fjk (x), fjk (xk)) ≤ ∈_, ∀k ∈ N. 

assume that j k = j for some fixed  - i ≤jk≤i  yielding d(f j(x) , f j(y))  ≤  ϵ,    ∀k ∈ N    

Letting k →∞ above obtain d(f j(x) , f j(y))  ≤  ϵ for some – i ≤ j≤ i, this proves z ∈Pi[x, ∈] yielding 1 

 

To prove 2 take  y ∈ P[x, ϵ]. Then d(f j(x) , f j(y))  ≤  ϵ for some j ∈ Z. By taking i = |j| we obtain  – i ≤ 

j≤ I  satisfying  d(fj(x), fj(y)) ≤ ϵ.  Hence  y  ∈ Pi[x, ϵ]  for  some  i  ∈ N  thus  proving  P [x, ϵ] ⊆    

⋃ Pi[x, ϵ]i∈N  .  The reversed inclusion is obvious so (2) holds  

    

 To prove 3 it is already clear. 

 

Lemma 2. If f : X→X is a homeomorphism of a compact metric space X, then ϕє is a Borel 

map for every ϵ > 0. 

 

Proof: 

 

First  note  that  Pi[x, ϵ]  ⊆ Pi' [x, ϵ]  whenever  i  ≤ i'.  Then,  ϕє  =  supi∈N ϕє,i  by  Lemma 1. 

 

 It  then suffices to show that ϕє,i  is   

 measurable for any ϵ  >  0 and i  ∈ N. For this we have to prove that the set φϵ,i
−1(] − ∞, a[) is 

a Borel set, ∀a >  0. Actually,  

 

We shall prove that this set is open ∀a  >  0. Take  x ∈ φϵ,i
−1(] − ∞, a[) and a sequence xk  ∈ X  with 

xk  → x. Because x ∈ φϵ,i
−1(] − ∞, a[), we have μ(Pi[x, ϵ]) < a. 

  

As μ is regular [11], there is O  open with Pi[x, ϵ] ⊆ O  such that μ(O) < a. 

 We claim that Pi[xk, ϵ] ⊆ O  for k  large. Otherwise,  by  compactness,  we  can  choose  a  sequence  

yk  ∈ Pi[xk, ϵ] \ O  such  that  yk    → y  for  some y  ∈ X.  As  yk  ∈/  O  and  O  is  open,  we  get  y  ∈/  
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є,i 

O.  However,  yk  ∈ Pi[xk, ϵ]  and  then  there  is  a  sequence−i  ≤ jk     ≤ i  satisfying  d(fjk (xk), fjk 

(yk)) ≤ ϵ  for all k  ∈ N. Clearly we can assume jk  = j  for some fixed 

 −i ≤ j  ≤ i  hence d(fj(xk), fj(yk)) ≤ ϵ  for all k  ∈ N. Letting k  → ∞ above we obtain d(fj(x), fj(y)) 

≤ ϵ. Since −i ≤ j ≤ i, this prove  

 

y ∈ Pi[x, ϵ] and so y ∈ O. This is a contradiction which proves the claim. From this claim one has 

φє,i(xk) = μ(Pє,i(xk)) ≤ μ(O)  

a, and so xk belongs to φϵ,i
−1(] − ∞, a[)  for k 

 large. Hence φϵ,i
−1(] − ∞, a[)  is open. 

 

 Lemma 3. If f : X→X is a homeomorphism of a compact metric space X, then M dis(f) is 

a Baire subset of M(X).  

 Proof : F or all For all δ, ϵ > 0 and i ∈ N we define 

C(ϵ, i, δ) = {μ ∈ M(X) : μ(Pi[x, ϵ]) ≥ δ  for some x ∈ X}. 

 

  By Lemma1 we have 

μ ∈ M(X) \ Mdis(f ) ⟺ μ(P (x)) > 0 for some x ∈ X 

 

⇔∃ n  ∈ N + such that    lim
m →∞

μ(P[x ,m−1])  ≥n−1  

for some  x ∈  X 

 

⇔ ∃n, m ∈ N +, x ∈ X such that μ(P[x , l -1]) ≥ n -1 for all l ≥ m 

 

⇔∃ n, m ∈ N +  and x ∈X  

 

 such that   

 

 ∀ l ≥m ∃ i ∈  N  

 

such that  

 

 μ(𝑃𝑖[x , l
−1]  ≥n−1  

⟺ μ ∈ ⋃ ⋃ ⋂ ⋃ C(l−1i ∈Nl≥m i∈Nm ∈ N+n ∈ N+ , i, n−1)   
                                                                                             

And so 

 

M(X) \ 𝑀𝑑𝑖𝑠(f ) = ⋃ ⋃ ⋂ ⋃ C(l−1i ∈Nl≥m i∈Nm ∈ N+n ∈ N+ , i, n−1)       (2) 

                                                                                 

 Next we prove that C(ϵ, i, δ) is closed in M(X) for any ϵ, δ > 0 and any i ∈ N. 

 

 Fix ϵ, δ  > 0 and i∈N. Take a sequence μn∈C(ϵ, i, δ) converging to μ ∈ M(X) with respect to the 

weak* topology. As μn C(ϵ, i, δ) there is a sequence xn ∈ X   with xn→x such that μ(Pi[xk, ϵ])≥δ  

for any k∈N. 

 

If we prove μ(Pi[x, ϵ])≥δ  we would obtain μ ∈ C(ϵ, i, δ) and then C(ϵ, i, δ) is closed in M(X). Hence 

it suffices to prove 

μ(Pi[x, ϵ]) ≥ δ. 

 

Take any compact neighborhood V  of Pi[x, ϵ]. We claim that Pi[xn, ϵ] ⊆ Int(V ) for k  large. If not, 

there is a sequence yn ∈ Pi[xn, ϵ] \ Int(V ) which, by compactness, we can further assume yk → y for 

some y ∈ X. 

On the one hand, we have y ∈/ Int(V ) because Int(V ) is open and, on the other, yn ∈ Pi[xn, ϵ] for 

any n 

hence there is a sequence −i ≤ jn ≤ i satisfying 

d(fjn (xn) fjn (yn)) ≤ ϵ, ∀n ∈ N. 
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We can assume jn = j for some −i ≤ j ≤ i hence 

 

d(fj(xn), fj(yn)) ≤ ϵ, ∀n ∈ N. 

 

Letting n →∞ above we obtain 

d(fj(x), fj(y)) ≤ ϵ, 

and  so  y  ∈ Pi[x, ϵ].  Since  V   is  a  neighborhood  of  Pi[x, ϵ],  we  obtain  y  ∈ Int(V )  which  is  a  

contradiction. This contradiction shows Pi[xn, ϵ] ⊆ Int(V ) for k  large and, then, 

δ ≤ μn(Pi[xn, ϵ]) ≤ μn(V ), ∀n large. 

 As μn → μ and V is closed, Theorem 6.1 in [11] implies 

δ lim sup μn(V ) μ(V ). 

n→∞ 

Hence μ(V ) ≥ δ  for any compact neighborhood V  of Pi[x, ϵ]. From this we get 

μ(Pi[x, ϵ]) ≥ δ 

 

    and so C(ϵ, i, δ) is closed in M(X), for all ϵ, δ > 0 and i∈N. 

 

Then,   ⋃ C(l−1, i, n−1) i∈N is an Fσ subset of M(X) (∀n, l ∈ N+) from which we get that  

⋂ ⋃ C(l−1, i, n−1) i∈Nl≥m  is an Fσδ  subset of    M(X) (  ∀m, n∈  N+). Since the space   M(X) of 

Borel probability measures equipped with the weak* topology is a compact (hence complete), 

every Fσδ subset of it is Baire (cf. Lemma 1 in [8]). Consequently,  ⋂ ⋃ C(l−1, i, n−1) i∈Nl≥m is a 

Baire subset of M(X), ∀m, n ∈ N+. Therefore, M(X) \ Mdis(f ) (and so Mdis(f )) are Baire subsets by 

(1). This finishes the proof 

 

Lemma 4. Every almost distal measure of a homeomorphism f : X → X of a metric space X is 

nonatomic  

 

Proof: 

 

Suppose by contradiction that μ({x0}) > 0 for some x0 ∈ X. Since μ is almost distal, there is a 

measurable set E with μ(E) = 1 such that μ(x) = 0 for all x ∈ E. As μ({x0}) > 0 and μ(E) = 1, 

one has x0 ∈ E and so μ({x0}) = 0 which is absurd. This completes the proof.  

 

Lemma 5. If μ is an almost distal measure of a circle homeomorphism f, then supp(μ) ⊆ Ω(f ). 

 

Proof: 

We have that S1 \ Ω(f ) is a disjoint collection of open intervals J. It follows that diam(fn(J)) → 0 

as n → ±∞ hence J ⊆ P (x) for every x ∈ J. Now, assume by contradiction that there is an almost distal 

measure μ with supp(μ) ¢ Ω(f ). Then, μ(J) > 0 for some interval J as above.  

Hence μ(P (x)) ≥ μ(J) > 0 for all x ∈ J from which we get J  ⊆ S1 \ Dist(f, μ). It then follows that 

μ(S1 \ Dist(f, μ)) > 0 and so μ(Dist (f, μ)) < 1 which is absurd.  

 

Lemma 6. For every homeomorphism f : X → X of a metric space X and every k∈ N+, every distal 

point of a Borel measure μ with respect to f is a distal point of μ with respect to fk. In particular, 

every almost distal measure of f is an almost distal measure of fk. 

 

Proof:  

 

Since infn∈Z d(fkn(x), fkn(y)) = 0 implies infn∈Z d(fn(x), fn(y)) = 0, one has Pfk (x) ⊆ P (x) and the 

proof follows. 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                            © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882 

 

IJCRT2411021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a177 
 

Theorem: 4  

 

A circle homeomorphism has an almost distal measure with full support if and only if it is distal. In 

particular, every countably-distal circle homeomorphism is distal. Every almost distal measure of   a 

circle homeomorphism with rational rotation number is distal. 

Proof: Let f : S1→S1 be a circle homeomorphism. First assume that f has an almost     distal 

measure with full support. Then, Ω(f ) = S1 (If μ is an almost distal measure of a circle 

homeomorphism f, then supp(μ) ⊆ Ω(f ).) and so f is topologically conjugated to a    circle rotation. 

From this we obtain that f is distal and the proof follows. If f is countably distal, then f has a 

distal measure with full support (e.g. the Lebesgue measure) and so f is distal by the previous part.    

 

 Next assume that f has rational rotation number and, by contradiction, that f has an almost distal 

measure μ. Since f has rational rotation number, the periodic points of f have a common period 

k∈N+(say). In addition, by using Lemma (For every homeomorphism f : X → X of a metric space X 

and every k∈ N+, (For every homeomorphism f : X → X of a metric space X and every k ∈ N +every 

distal point of a Borel measure μ with respect to f is a distal point of μ with respect to fk. In particular, 

every almost distal measure of f is an almost distal measure of fk.) and replacing f by fk if necessary  

  we can assume that Ω(f) =Fix(f) ={x ∈S1:f(x) =x}. Then, we have 

 

P(x) = {

{x}, if  x ∈ Int (Fix(f));

Cl(J) if J for some component J of S1\Fix(f)

J ∪ {x}, x ∈ Fr(J)for some component J of S1\Fix(f)

                                                                   (3)                                                 

  

where Fr (·) and Cl (·) denote the boundary and closure operations in S1. 

 

Suppose by contradiction that f has an almost distal measure μ which is not distal. Then, μ(P (x0)) > 

0 for some x0 ∈ S1. Since μ is nonatomic by Lemma (Every almost distal measure of a 

homeomorphism f : X → X of a metric space X is nonatomic)by (3) applied to x = x0 would imply 

μ(J) > 0 for some connected component J of S1 \ Fix (f ). However, supp(μ) ⊆ Ω(f ) (Lemma 5) 

so supp(μ) ⊆ Fix(f ) thus μ(J) = 0 since J ⊆ S1 \ Fix(f ). This is a contradiction which proves 

the result. 

 

Theorem: 6  

 

Every homeomorphism with distal measures of a metric space has uncountably many almost periodic 

points. Every homeomorphism with almost distal measures of a compact metric space has infinitely 

many non-wandering points) 

 

Let f::X→Xis a homeomorphism of a metric space X. Assume that f has a distal measure μ. By 

Theorem3, p.67 in [3] we have that for every x ∈X there is x∗∈AP(f)such that x∗∈P(x). On the other 

hand, since x∗∈P(x), we have x ∈P(x∗) and so X=_x∗∈AP(f)P(x∗).  
 

Now suppose by contradiction that AP(f)is countable. Since the proximal cells are all Borel sets by 

Corollary(For every homeomorphism f:X→Xof a metric space Xand every x ∈X one has that P(x)is an 

Fσδ subset of X. In particular, P(x)is a Borel set). 

We would have μ(X) ≤_∑ μ(P(x ∗))x∗∈AP(f) . But μ is distal so μ(P(x∗)) =0for all x∗∈AP(f)thus μ(X) 

=0which is absurd. Therefore, AP(f)is uncountable. 

 

Now assume that X is compact and that f has an almost distal measure. If Ω(f)were finite, then the 

number of stable classes of f is finite. Applying Theorem 5. we obtain a contradiction. Therefore, Ω(f)is 

infinite. 
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