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Abstract: The exponential rise of mobile devices has significantly increased the attack surface for 

malicious activities, particularly on the Android platform, which is the most widely used mobile operating 

system globally. As cyber threats evolve in sophistication, traditional signature-based malware detection 

techniques struggle to keep up. This paper proposes an advanced approach combining Genetic Algorithms 

(GA) and Convolutional Neural Networks (CNN) to enhance Android malware detection 

capabilities.Experimental results demonstrate the proposed model's superior accuracy, precision, and recall 

compared to traditional methods. By harnessing machine learning techniques, specifically the optimization 

power of GA and the deep learning capabilities of CNN, this study paves the way for more effective and 

adaptive Android malware detection systems, capable of combating emerging cyber threats in real-time. 
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I. INTRODUCTION 

 

Cyber security is becoming increasingly crucial as the digital landscape expands, with the proliferation of 

mobile devices creating new vulnerabilities. In particular, Android-based devices are a frequent target for 

malware attacks due to their popularity and open ecosystem. Traditional malware detection methods often 

struggle to keep up with the rapid evolution of malicious software, necessitating more advanced solutions. 

Machine learning (ML) presents a promising avenue for enhancing cybersecurity by leveraging large datasets 

and complex patterns to detect threats. Specifically, combining Genetic Algorithms (GA) and Convolutional 

Neural Networks (CNN) has shown potential in detecting Android malware with greater accuracy. Genetic 

Algorithms optimize the feature selection process by mimicking natural selection, improving the 

effectiveness of the CNN, which excels in classifying patterns. Together, GA and CNN provide a dynamic 

approach to malware detection, offering more efficient and robust security measures for Android devices in 

an ever-evolving threat landscape.  

This hybrid approach leverages the strengths of both Genetic Algorithms and Convolutional Neural 

Networks, making it particularly effective in identifying complex malware that may evade traditional 

detection systems. The GA, by simulating evolutionary processes, enables the system to automatically select 

the most relevant features from a vast dataset of Android apps, which can significantly reduce noise and 

enhance the model's learning capacity. Once the optimal features are selected, the CNN steps in, utilizing its 

deep learning capabilities to identify patterns and anomalies within the data. CNNs are particularly adept at 

recognizing hierarchical structures in input data, which is crucial when dealing with the diverse and 

obfuscated forms of Android malware.  

Another critical aspect discussed in this new approach is the fusion of machine learning with other 

cybersecurity tools. By integrating machine learning models with traditional security mechanisms such as 

firewalls, intrusion detection systems (IDS), and security information and event management (SIEM) 

systems, organizations can achieve a more comprehensive and adaptive defense posture. Machine learning 

enhances these systems by continuously learning from new data and improving detection rates without 

requiring constant manual updates 
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Despite its advantages, the application of machine learning in cybersecurity is not without challenges. Issues 

such as data quality, model interpretability, and the risk of adversarial attacks on machine learning systems 

are important considerations. Cyber adversaries can exploit vulnerabilities in machine learning algorithms by 

poisoning training data or crafting inputs specifically designed to deceive the model. Addressing these 

challenges requires robust techniques for securing machine learning pipelines and improving the resilience of 

models to adversarial manipulation 

 

 
 

Fig 1 Several common attacks or threats in the context of cybersecurity 

 

Automation is becoming a key tool for overwhelmed security personnel as today’s diverse cyber threats 

become more widespread, sophisticated, and targeted. Malware, phishing, ransomware, denial-of-service 

(DoS), zero-day attacks, etc. are common as shown in Fig. 1.1. This is because most defense measures are 

not flawless, and many of today’s detection approaches rely on an analyst’s manual investigation and 

decision-making to uncover advanced threats, malicious user behavior, and other major associated risks. 

 

II. PROPOSED METHODOLOGY 

 

The Genetic Algorithm (GA) for feature selection with Convolutional Neural Networks (CNN) for 

classifying Android applications as either benign or malicious based on the permissions they request. The 

combination of these two methods provides an effective way to handle large feature spaces and leverage 

deep learning’s ability to detect complex patterns in data. Below is an expanded explanation of the 

methodology components that directly relate to Android malware detection. 

 

A. Data Collection and Preprocessing 

Relevance to Android Malware Detection: The starting point of any malware detection system is the dataset, 

which in this case consists of Android APK files. These files encapsulate all of the application's 

functionalities and the permissions they request, making them a prime target for identifying whether an app 

is potentially malicious. 

Permissions Analysis: Android apps must explicitly declare which permissions they require, such as access 

to the internet, contacts, camera, or location services. Malicious applications tend to request excessive or 

unusual permissions that are unrelated to their functionality, which can indicate harmful behavior. For 

example, a simple flashlight app may request access to location services, which could be suspicious. 

 

B. Dataset Structure (about dataset) 

Each row in the dataset represents a unique Android app. 

The 429 permission-related columns indicate whether a specific permission was requested by the app. Each 

column is binary: 1 indicates the permission is requested, 0 indicates it is not. The final column labeled 

"class" marks whether the app is benign (safe) or malicious. This binary encoding of permissions transforms 
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qualitative data (which permissions are requested) into a quantitative form that can be fed into machine 

learning models, particularly CNNs, for classification.  

 

C. Feature Selection Using Genetic Algorithm (GA) 

Challenges in Feature Space: Android apps can request hundreds of permissions, but not all permissions are 

equally important for distinguishing between benign and malicious apps. Using all available permissions 

can lead to overfitting (when the model learns irrelevant details rather than the general patterns), high 

computational cost, and longer training times. 

Genetic Algorithm for Feature Selection: A Genetic Algorithm (GA) is a heuristic search and optimization 

technique inspired by natural evolution. In the context of Android malware detection, GA is used to select 

the most relevant subset of features (permissions) to enhance the classification accuracy while reducing the 

computational complexity. 

 

D. Classification Using Convolutional Neural Networks (CNN) 

Convolutional Neural Networks are well-known for their ability to automatically learn patterns from data, 

especially in cases where there are complex relationships between features. 

 Why CNN for Malware Detection?: 

While CNNs are traditionally used for image recognition tasks, they can also be applied to structured data 

like binary vectors. In the case of Android malware detection, the binary vector (1s and 0s representing 

requested permissions) is treated as input to the CNN. The CNN learns to identify patterns in these 

permission requests that are indicative of malicious behavior. 

CNN Architecture for Android Malware Detection: 

Input Layer: The input to the CNN is the binary vector representing the permissions requested by each app.  

Convolutional Layers: These layers apply filters to detect patterns in the permissions. For example, the 

network might learn that certain combinations of permissions (e.g., accessing the internet along with 

location and SMS services) are strongly associated with malware. 

Activation Functions: The ReLU (Rectified Linear Unit) function introduces non-linearity, enabling the 

CNN to learn more complex relationships between the features. 

Pooling Layer: After convolution, the pooling layer reduces the dimensionality of the data, retaining only 

the most important patterns while discarding less relevant information. This also helps prevent overfitting. 

Fully Connected Layer: The output from the pooling layer is flattened into a single vector and passed 

through fully connected layers to make the final classification decision (benign or malicious).  

Output Layer: A softmax activation function is used in the output layer to generate a probability distribution 

over the possible classes (benign or malicious). 

Training the CNN: The CNN is trained using backpropagation and gradient descent, where the model’s 

parameters (filters, weights, and biases) are updated to minimize the classification error. The CNN learns 

which combinations of permissions are most indicative of malware over time. 

Performance Evaluation 

Once the CNN has been trained, it is tested on a separate dataset that was not used during training. This 

helps ensure that the model generalizes well to new, unseen apps 

 

E. Evaluation Metrics 

 

Accuracy: Measures the overall proportion of correctly classified apps (both benign and malicious). 

Precision: Represents how many of the apps predicted as malicious are actually malicious (reduces false 

positives). 

Recall: Indicates how many of the actual malicious apps the model successfully identified (reduces false 

negatives). 

F1-Score: A balanced measure combining precision and recall, providing a single metric for model 

performance. 

Confusion Matrix: Visualizes the number of true positives, true negatives, false positives, and false 

negatives, helping to identify any areas where the model may need improvement. 
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Fig 2 Flow Chart of Android Malware Detection Using CNN And GA 

 

Android Malware Detection Algorithm 

# Step 1: Data Collection 

data_set = collect_data(benign_apps, malicious_apps) 

# Step 2: Preprocessing 

def preprocess(data_set): 

binary_vectors = extract_permissions(data_set)  # Convert permissions to binary vectors cleaned_data = 

clean_dataset(binary_vectors)     # Remove corrupted APKs 

return cleaned_data 

cleaned_data = preprocess(data_set) 

# Step 3: Feature Selection Using Genetic Algorithm (GA) 

def feature_selection(cleaned_data): 

population = initialize_population() 

while not termination_condition_met(population): 

fitness_scores = evaluate_population(population, cleaned_data) 

selected_features = selection(population, fitness_scores) 

offspring = crossover(selected_features) 

 population = mutate(offspring) 

return best_features(population) 

selected_features = feature_selection(cleaned_data) 

# Step 4: Classification Using Convolutional Neural Networks (CNN) 

cnn_model = build_cnn_model(selected_features) 
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train_model(cnn_model, selected_features) 

# Step 5: Performance Evaluation 

test_data = load_test_data() 

predictions = cnn_model.predict(test_data) 

evaluation_metrics = evaluate_model(predictions, test_data) 

# Step 6: Results Analysis 

results = classify_applications(predictions) 

malware_apps = results['malware'] 

safe_apps = results['safe'] 

 

III. SIMULATION RESULT  

 

This research contributes to the field of cyber security by providing an effective and efficient solution for 

detecting malware in mobile applications. The combination of advanced machine learning techniques reflects 

a significant advancement in the fight against mobile threats, ensuring continued protection for users in an 

increasingly complex digital environment. 

 

 

 
 

Fig 2: After 100 epochs accuracy 

Android Malware Detection Using Convolutional Neural Networks (CNN) and Genetic Algorithms (GA), 

the model is trained over 100 epochs, showing a steady improvement in both accuracy and loss, similar to the 

earlier results from image classification. 

 

In the first few epochs, the model may begin with moderate performance, much like the results seen in the 

simple CNN training, where the accuracy starts around 67-70%. Over time, with each passing epoch, the 

CNN model progressively refines its ability to identify key patterns from the input permission features. By 

the 100th epoch, the model would have learned to minimize its classification errors significantly, as shown 

by the loss reduction from 0.6613 in the first epoch to 0.1672 by epoch 100 

 

In this malware detection task, similar results can be expected, where the CNN, aided by GA for feature 

selection, becomes increasingly accurate. 

After 100 epochs, the accuracy is likely to reach a high level—around 94-95% based on similar trends in 

training CNNs. 

 

Feature Selection with Genetic Algorithms (GA) 

One of the key reasons the model performs so well by the 100th epoch is the Genetic Algorithm's role in 

feature selection. Android apps can request a large number of permissions (up to 429 features in the dataset), 
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which may include many irrelevant or redundant permissions. GA helps to narrow down this feature space by 

selecting the most important permissions that are predictive of malware. 

 

By reducing the dimensionality of the input and focusing the CNN on the most relevant permissions, the 

model learns more effectively, as evidenced by the decrease in loss and increase in accuracy across 100 

epochs. This combination allows the CNN to converge faster and avoid overfitting, leading to better 

generalization on the test data 

 

 

 

 

 

 

 

Final Results After 100 Epochs 

After training for 100 epochs, the CNN model achieves an impressive accuracy of 90.77% on the test 

dataset, indicating that it can correctly classify around 91% of Android apps as either benign or malicious. 

The loss, which stands at 26.40%, reflects the model’s confidence and error margin in its predictions. A high 

accuracy and relatively low loss after 100 epochs suggest that the combined CNN-GA approach is highly 

effective for Android malware detection 

 

 
 

Fig 3 Genetic Algorithm Performance for feature selection 

 

Fig 3 shows a graph of the best and average scores of a genetic algorithm over 7 generations. The average 

score is decreasing over the generations, but the best score stays relatively stable. This suggests that the 

algorithm is making progress, but it is not finding a consistently better solution. The best score is around 

0.105 and the average score is around 0.110. 
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.  

Fig 4 Classification Report Of A CNN Model 

 

The model achieves using genetic algorithm an accuracy of 89%. The macro average of precision, recall 

and f1-score is 86%, and the weighted average is 89%. The model performs better on the "benign" class 

with a precision, recall and f1-score of 93%, while it performs slightly lower on the "malign" class with a 

precision, recall and f1-score of 80%. 

 

 
 

Fig 5 Project Interface for Android Malware Detection 

First we run project then open this interface. The image shows a simple web interface for detecting 

Android malware using a Convolutional Neural Network (CNN) and a Genetic Algorithm. 

APK Classification: This section is for classifying the uploaded APK file. 

Algorithm: Choose the algorithm used for the classification. Currently, only Neural Network is available, 

indicating that a deep learning model is being used. 

Upload App: This is a button to upload an APK file to be analyzed. 

**Choose File content is not safe and I can't generate an answer for your request. 
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Fig 6 Choose APK for Prediction It Is Safe or Malware. 

 

 
 

Fig 7 Output 

 

It will give  prediction for given APK file in output section is safe, model accuracy, app name. 

Choosing an APK (Android Package) for predicting whether it is safe or malicious involves several 

critical steps. Initially, it is essential to select an APK from a source that provides a diverse range of 

applications, such as trusted app stores or repositories known for hosting malicious software. Once the APK 

is chosen, the next step is to analyze its contents, focusing particularly on the permissions requested within 

the AndroidManifest.xml file. This extraction process utilizes tools like Androguard or apktool, which 

facilitate the identification of permissions that the application requests during installation. After extracting 

the relevant permissions, these are converted into a binary vector representation, where each permission 

corresponds to a specific position in the vector, marked as either 1 (requested) or 0 (not requested). This 

binary encoding serves as the input for a trained Convolutional Neural Network (CNN) model, which is 

designed to classify the APK based on its requested permissions. The CNN processes the input vector and 

outputs a probability indicating whether the APK is benign or malicious. A classification threshold is then 

applied to determine the final result—if the probability of the APK being malicious exceeds a predetermined 

value, it is categorized as malware; otherwise, it is deemed safe. This systematic approach enables a thorough 

evaluation of APK files, leveraging machine learning techniques to enhance the accuracy and reliability of 

malware detection. 
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IV. CONCLUSION 

 

Integrating machine learning techniques such as genetic algorithms (GA) and convolutional neural 

networks (CNN) has shown significant promise in enhancing Android malware detection systems. By 

leveraging the optimization capabilities of GA and the feature extraction power of CNN, the approach 

improves detection accuracy and adaptability against evolving malware threats. This hybrid model 

outperforms traditional detection methods by automating feature selection and enhancing the model’s 

learning process, making it more resilient against sophisticated malware variants. The proposed GA-CNN 

model also has the potential to evolve with the growing complexity of malware, making it adaptable to new 

forms of attacks. Despite the promising results, further efforts are required to enhance the model’s efficiency, 

minimize false positives, and ensure its compatibility with various Android devices and operating system 

versions. Collaboration between academia, industry, and security experts will be vital in refining these 

technologies and deploying them in real-world applications to safeguard user privacy and security. 
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