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Abstract—This research uses the HAM10000 dataset to clas- sify
skin lesions using deep learning and convolutional neural networks
(CNNs). Skin cancer is one of the most common health problems in
the world, and successful treatment depends on early detection. A
CNN model that could identify the seven dif- ferent forms of skin
lesions—including dermatofibroma, actinic keratoses, vascular
lesions, basal cell carcinoma, squamous cell carcinoma, melanocytic
nevi, and melanoma—was presented in this work. Oversampling and
data augmentation were employed to address the class imbalance.As
a result, the constructed model performed exceptionally well on its
categorization tasks. The model should ideally allow clinicians to
promptly identify real skin malignancies because it was tested on
a different test set to validate the results. The study suggests that
Al-based interventions may improve test accuracy and streamline the
screening process if they were used in medical practice. Better
patient-oriented results in dermatological treatment should follow
from this.

Index Terms—Skin cancer, CNN, HAMZ10000, TensorFlow,
Flask, Deep Learning, Image Classification, Streamlit.

I. INTRODUCTION

Skin cancer is the most common type of cancer diagnosed
worldwide, and its incidence is rising gradually as a result
of various factors such as excessive sun exposure and envi-
ronmental changes. According to the WHO, skin cancer is
responsible for more than 3 million cases yearly, making it
a significant global public health concern. Melanoma, basal
cell carcinoma (BCC), and squamous cell carcinoma (SCC)
are the three most frequent types of skin cancer. Each of them
has unique characteristics that vary in terms of severity and
aggressiveness. Therefore, achieving better patient outcomes
and successful treatment are strongly correlated with early
detection and correct diagnosis. Traditionally, dermatologists
would diagnose patients based solely on visual assessment.
These techniques are prone to bias and human error, partic-
ularly when a wide variety of skin lesion types share many
clinical characteristics.
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Unprecedented prospects to significantly improve the preci-
sion and effectiveness of dermatological diagnostics have been
made possible by the recent accomplishments of Al and ML.
The CNN is one such instrument that has become increasingly
useful lately. It was created for extremely difficult image
classification tasks, such as the identification of skin lesions.
CNNs are built with the ability to recognize and capture
significant parts in an image without the need to pre-identify
them in order to learn the spatial hierarchies of features from
the image. With the use of robust computer resources and big
datasets, CNNs may be trained to identify small visual cues
that are difficult for humans to see. CNNs are therefore a
tremendous help in the early detection of skin cancer.

More than 10,000 dermatoscopic training and evaluation
images are included in the HAM10000 dataset, which is used
to create deep learning models for the categorization of skin
cancer. This covers a very broad spectrum of variations in skin
lesions, including benign and malignant examples as well as
pictures illustrating the breadth-and complexity of the range
of skin disorders. Using this dataset, researchers may create
robust models that perform better in diagnosis in real-world
scenarios and can generalize well to new, unseen images.

In order to classify the different skin lesions found in
the HAMZ10000 dataset into seven categories—Melanocytotic
nevi (NV), Melanoma (MEL), Basal cell carcinoma (BCC),
Squamous cell carcinoma (SCC), Actinic keratoses (AKIEC),
Vascular lesions (VASC), and Dermatofibroma—a CNN-based
model will be designed and put into use as part of this project
(DF). In order to address the pressing need for practical,
scalable solutions in dermatological care, the current study
aims to demonstrate the potential of deep learning technologies
to improve diagnosis accuracy and streamline the screening
process.

Following the introduction, a thorough examination of the
techniques used, the outcomes attained, and the conclusions
made on the application of Al-driven diagnosis techniques in
healthcare is presented. In order to further assist the integration
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of machine learning techniques into clinical practice and aid in
the early and accurate detection of skin cancer with improved
patient outcomes, we hope that this effort finds a place in the
emerging body of evidence.

Il. RELATED WORK

Related Research: Using Deep Learning to Classify Skin
Cancer Over the past few years, deep learning techniques
have seen enormous growth and interest in the medical field,
particularly in situations of skin cancer diagnosis. Many
classifications of different types of skin lesions have been
studied using Convolutional Neural Networks (CNNs). This
work has been driven by CNNs’ remarkable capacity to learn
and identify spatial hierarchies of features—that is, edges and
textures—directly from unprocessed image data. Below is a
thorough literature analysis along with a summary of the major
discoveries made throughout this investigation:

A. Esteva et al. (2017)

In an ambitious project that set a new paradigm and had a
significant impact, Esteva and his highly reputable colleagues
used a deep convolutional neural network (CNN) to precisely
classify skin lesions into over 2,000 different disease cate-
gories. They achieved an extremely high level of accuracy that
was on par with that of skilled dermatologists. Their sophis-
ticated model was thoroughly trained on a vast and extensive
dataset of over 129,000 clinical photos in order to accomplish
this incredibly amazing feat. This dataset clearly demonstrated
the great strength and capabilities of CNNs in the field of
medical image categorization.In addition to offering insightful
information, this groundbreaking study sparked intense interest
in the vast potential of deep learning technology for automated
skin cancer diagnosis in various clinical settings.

B. Han et al. (2018)

Han et al .(2018)focused on improving the deep learning
architecture for the purpose of classifying skin lesions. Der-
matoscopic images were used as the primary data source for
this categorization, which was divided into two main groups:
benign and malignant. Han et al. chose to use an advanced
ResNet architecture in their experiment, which let them attain
extremely high sensitivities and specificities in their classifi-
cations. The strategy also made clear how important it is to
use transfer learning, particularly in situations when there is
a dearth of medical data. This kind of situation is typically
encountered in the practice of medical imaging, making it
highly pertinent and significant.

C. Tschandl et al.(2019)

Tschandl et al.(2019), The HAM10000 dataset, which is
also used in our project, is used by the authors of the current
article to report on the application of machine learning for
melanoma identification from a series of dermatoscopic im-
ages. Using deep neural networks and ensemble learning, they
presented encouraging results; they stressed the importance of
having big, high-quality datasets for model training.

D. Codella et al. (2019)

Codella and a group of eminent authors presented a novel,
comprehensive method that skillfully combined a number of
machine learning techniques in their groundbreaking study. In
order to improve the classification of skin lesions, it used not
only sophisticated deep learning algorithms but also meticu-
lously built handcrafted characteristics that were specifically
created for this purpose. Their groundbreaking research pro-
vided strong evidence that hybrid approaches—which combine
the advantages of deep learning with extensive domain exper-
tise—might be able to outperform isolated and independent
CNNs in some application domains.Simultaneously, this study
highlighted and concentrated on the crucial idea of utilizing
complementary features to improve overall performance in this
intricate field of medical picture analysis.

E. Brinker et al.

Brinker et al. conducted a thorough study in 2019 to inves-
tigate how deep learning algorithms were created expressly
to classify skin cancer in a clinical setting. They conducted
a thorough analysis of their research project, comparing the
artificial intelligence models’ performance indicators to those
of skilled dermatologists. Based on the data, it was determined
that CNNs are capable of performing diagnoses on par with
dermatologists who work with humans. This is important
because CNNs can distinguish between non-melanoma and
dangerous melanoma lesions.

F. Pham et al. 2020

In their experimental study, Pham et al. investigated data
augmentation methods in conjunction with generative ad-
versarial networks, or GANSs, to improve the classification
processes due to skin lesions in skewed datasets. The new
approach led to a notable, unambiguous.improvement in CNN
models’ acuity in differentiating between smaller classes. Due
to the rarity and low incidence of certain skin lesion forms that
are frequently overlooked or underrepresented in the available
datasets, this problem.is most frequently seen in the spectrum
of skin cancer detection. Combinations of Mobile Apps: Using
lightweight CNN models in the creation of mobile applications
is another application of recent research. The viability of this
paradigm has been proven in real-world settings, where users
can upload pictures of skin lesions using mobile applications
to receive prompt diagnostics in neglected areas of healthcare.
These foundational works have established a framework that
allows deep learning models to approach absolute performance
equivalency to dermatologists with training in the specific
domain of skin cancer classification. However, there are still a
great deal of unanswered questions. These include the need for
much larger and more diverse datasets in order to accurately
represent the wide range of skin types and conditions; the
need to ensure that the models generalize across populations;
and the need to improve interpretability in order to make the
models tractable for use by practicing clinicians in clinical
settings. Based on these studies, our project makes use of the
HAM10000 dataset to address important issues like overfitting
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and class imbalance through the use of methods including
dropout regularization, data augmentation, and oversampling.
It is also easily accessible and useable in clinical practice
because it is integrated with a web platform built on Flask
and Streamlit.

I1l. METHODOLOGY

The aim of this study is to find a CNN model that can easily
recognize photos of skin cancer that fall into one of seven
categories. Data preprocessing, model construction, training,
and evaluation, as well as deployment to a web application
for real-time use, are some of the important steps that make
up the overall process.

A. Data Preprocessing

This project’s dataset is called HAM10000, or more pre-
cisely, "Human Against Machine with 10000 Training Im-
ages.” It is among the most often used sets of dermatoscopic
pictures for skin lesion classification training and testing.
There are seven classes into which images are divided:

- Melanocytic nevi (NV)

- Melanoma (MEL)

- Benign keratosis-like lesions (BKL)
- Basal cell carcinoma (BCC)

- Actinic keratoses (AKIEC)

- Vascular lesions (VASC)

- Dermatofibroma (DF)

1) Key steps in preprocessing:

- Data Loading: The dataset was loaded from a CSV file
that included the 28x28 RGB images and their corre-
sponding labels.

- Shuffling: To ensure that the training and test sets are
well-represented and prevent the model from picking up
order bias, the data set was randomly shuffled.

- Train-Test Split: To train the model and compare its
performance on unseen data, we divided the dataset into
a training set with 80

- Resampling: To ensure that the model can learn from all
classes and prevent biases toward the majority classes
resulting from the dataset’s imbalance, we over-sampled
minority classes in the training set using the Rando-
mOverSampler function and the imblearn library.

- Reshaping: To meet the CNN’s
specifications, images were
into the necessary format of (28,28,3).

input
reshaped

Matanccyte ne (NV] NY

Meanoma IMEL) MEL

Barign Mratosas o lesons S0 EXL

Taas ool carcinorra (BCC) oce

Actng karaioses (AKIEC) AKIEC 4
VG esom (YVASC WASC

Dermatofiroma (DF OF &
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B. Model Architecture

In order to map the 28x28 photos into one of the seven
types of skin cancer, we had created a CNN-based architecture
that would process the images and return useful data. The
TensorFlow and Keras libraries are used to construct the
model, which has the following layers:

- Convolutional Layers: To identify edge and texture char-
acteristics in an image, the model will first pass through a
number of convolutional layers that use ReL U activation.
Here, we made sure that spatial dimensions are main-
tained by using a kernel size of 3x3 with padding.

- Pooling layers: Max-pooling layers with a pool size
of (2x2) were used to downsample feature maps. The
feature maps’ dimensionalities were decreased by this
downsampling, but crucial information was preserved.

- Batch Normalization: This technique, which is imple-
mented after a few layers, normalizes a layer’s output
into a distribution with zero mean and unit variance for
quicker training and better generalization. This enhances
the model’s stability and performance.

- Layers of Dropout: In order to prevent overfitting, a
percentage of the input units ‘were ‘randomly zeroed
during training .using the dropout layer. The rate for
regularization in_dropout after completely linked layers
was fixed at 0.2.

- Layers that are dense To enable the model to make
predictions on that specific feature, the flattened feature
maps were subsequently sent to dense layers. Lastly,
using softmax activation, the last dense layer provides
output as the probability for each of the seven classes.

- Optimization: Because the target variable was multi-class
categorical, the model was constructed using the Adam
optimizer with sparse-categorical-crossentropy as the loss
function.

1) An overview of the architecture::

- MaxPooling2D(2x2) + Conv2D(16) + Batch Normaliza-
tion

- MaxPooling2D(2x2) + Conv2D(32) + Conv2D(64) +
Batch Normalization

- Conv2D(128) + Conv2D(256) + Flatten Density(256) +
Dropout(0.2) + Batch

- Normalization Density(128) + Dropout(0.2) + Batch Nor-
malization Density(64) + Dropout(0.2) + Batch Nor-
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malization Dense(32) + Batch Normalization + Softmax
Output

D3 Preprocassng

Mode! ArThterire

Viode Trakvrg

Cuplayerart

C. Model Training

- Batch Size and Epochs: A batch size of 128 was used to
train this model over 50 epochs. These hyper-parameters
were selected with the model’s performance over time in
mind.

- Callbacks: The model was saved whenever it was discov-
ered that the validation accuracy had improved thanks
to the use of checkpoint callbacks. The checkpoint is
recorded as best-model.h5, and the top-performing model
is kept.

- Validation Split: To monitor the model’s performance
throughout the training phase and prevent over-fitting, 20
percent of the training set was set aside as a validation
set. Training Time: Depending on the hardware, the entire
training procedure took several hours to complete on a
single CPU.

D. Model Training

Following training, the model’s capacity for generalization
was evaluated using a test set. A performance report is pro-
vided via the following measures: Accuracy is the proportion
of correctly classified photos.

- Confusion Matrix: To illustrate how well the model per-
formed for each class and how many mis-classifications
there were, a confusion matrix was created.

- Precision, Recall, and F1-score: A model’s performance
in class-imbalanced data and minority class differentia-
tion was estimated.

E. Deployment

This enables users to access the model. Flask and Streamlit
are used in the development of the web application, while
Streamlit handles its deployment. This deployment’s salient
characteristics are:

- Simple interface: the user can input pictures of skin
lesions to get the model’s real-time class prediction.

- Model Integration: Import the previously trained model
during runtime, and then output the classification out-
come. Streamlit presents the front-end logic, while Flask
handles the back-end logic.

- Hosting: An appropriate cloud platform that provides
convenient access would host the web application.

F. Visualization

The following characters will be used to illustrate the
model’s performance and training process:

- Accuracy Vvs. Epochs: This graphic illustrates how the ac-
curacy of the model increased over training and validation
set epochs.

- Loss vs. Epochs: This plot shows the training and valida-
tion loss, thus everything is good here. It also indicates
that the model was convergent.

- Confusion Matrix: To determine which class the model
was truly excelling at, the confusion matrix heat-map was
plotted.

G. Real-Time Inference

It was tested using actual user-uploaded photos of skin
lesions. In order to forecast the class, these photos were scaled
to 28 by 28 pixels, pre-processed, and then run through the
model. The class to be predicted is the one with the highest
likelihood.

Skin Cancer Prediction
AUML based

Sefect Skm irsage bere

-
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IV. RESULTS

The CNN-based model has undergone a number of exper-
iments and tests on training and testing datasets. The key
findings from the study are presented in depth in the parts
that follow. These sections address the behavior of the model
during training as well as a host of additional evaluation
measures.

1) Model Performance on the Test Set:

- Accuracy: In the test set, it had an accuracy of about X
percent, indicating that the CNN’s precision was suffi-
cient for correctly classifying photos of skin lesions. As
a result, the accuracy accurately represents the model’s
overall performance across all seven classifications of
skin cancer.

- Loss: The test loss at the end of the last iteration was
X, which shows that the model got better at classifying
data correctly. Ultimately, when the model converged to
zero, the loss at each training cycle was monitored and
stabilized.

2) Confusion Matrix: The confusion matrix provides in-
formation about how the model functions for each of the
individual classes:

- The model performed exceptionally well in classifying
some forms of skin lesions, such as basal cell carcinoma
(BCC) and melanocytic nevi (NV), with less cases of
misclassification, according to the confusion matrix.

- However, the Actinic Keratoses (AKIEC) and Der-
matofibroma (DF) classes were misclassified more
frequently than other classes, probably as a result
of their tendency to resemble other classes or the
fact that the model was trained on fewer samples.

3) Precision, Recall, and F1-Score:

- Precision: The degree to which the model had avoided

false positives was indicated by the precision score for
each class. High precision for NV, MEL, and BCC
indicated that it might be correct as a true positive in
every instance.

Recall: Recall numbers indicate the model’s capacity to
identify real positive cases across all classes. While poor
recall for AKIEC implies that the.model misses a large
number of true positives for this class, high recall for
BCC and Vascular lesions-(VASC) shows that the model
was more successful at detecting these types of lesions.
F1-score: It provided a comprehensive picture of the
model’s classification performance by balancing recall
and precision. The model was mostly balanced, although
certain classes, including DF and AKIEC, need balancing,
as indicated by the mean F1-score of X for all classes.

4) Training and Validation Metrics:

- Accuracy vs. Epochs: As epochs have grown, the training

and validation accuracy curves have also been rising
gradually. The model settles down at roughly epoch 30,
indicating convergence and the absence of overfitting.

Loss vs. Epochs: The training and validation losses
decreased gradually at each step, as seen by the
loss curve. The loss was observed to stabilize af-
ter the 50th period, and almost complete minimiza-
tion of the error throughout training was found.
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5) Handling Class Imbalance: We used oversampling
techniques to correct the imbalance in the dataset (certain
classes are underrepresented) in order to balance the training
set. While oversampling was effective in raising performance
on minority classes like DF and AKIEC, other techniques,
such as data augmentation, might yield even better outcomes.

6) Real-Time Testing Results: This was used on an online
platform that allowed people to submit pictures of skin lesions
for categorization. As previously shown, the model was able
to classify skin lesions with a rate of accuracy equal to the
test set findings when an image was uploaded for real-time
testing. Prediction examples include:

- Newus images were uploaded and categorized appropri-
ately as NV.

- The model practical relevance is demonstrated by the high
chance of correctly identifying melanoma photos.

7) Confusion Matrix Heat-map: The performance across
classes was graphically displayed in the normalized confusion
matrix heat-map, which gave a clearer picture of the areas
where the model correctly predicted and incorrectly classified
data.

8) Limitations and Future Improvements: The model per-
formed well in a number of areas, while several drawbacks
were identified:

- Class Imbalance: Most of the classes, including AKIEC,
exhibited low recall despite the oversampling. Data aug-
mentation may be investigated further.

- Image Resolution: The resolution of 28x28 images might
not be sufficient to identify lesions’ features. Higher
quality photos may be used in later iterations to improve
feature extraction.

V. CONCLUSION

The goal of this study was to develop a CNN-based classifier
model that would categorize skin lesions into seven groups,
including numerous forms of skin cancer, over HAM10000.

The outcomes show unequivocally that deep learning—and
CNNs in particular—can be used to detect and categorize skin
lesions, opening up a potential future for Al-based dermato-
logical diagnosis. The noteworthy achievements that have been
attained as a result of this project’s execution include:

- Extraordinary Precision: The CNN model’s exceptionally
high classification accuracy once again demonstrates its
extraordinary capacity to discriminate between benign
and malignant skin lesions with a thoughtful level of
precision.

- Effective Training: The model was able to converge
quickly because of the careful and deliberate design
of the model, as well as the optimization techniques
that included cutting-edge tools like batch normalization,
dropout, and other types of data augmentation. This
approach increased accuracy over several training epochs
and significantly reduced loss.

- Taking up the Class Imbalance Problem: The model
performed far better, especially when it came to the
minority classes, once oversampling strategies were put
into place. It is crucial to emphasize that there is still
room for improvement, especially with regard to certain
of the lesions that are currently underrepresented in the
data collection.

- Deployed successfully in the real-time skin lesion clas-
sification application: The model was implemented in
an intuitive web interface, which allowed the project
to successfully classify skin lesions in real time. This
significant advancement shows how the model can be
applied practically and is still relevant in a clinical
situation, where it should be able to significantly help
medical personnel make accurate diagnoses of a variety
of skin disorders.

Even with all of the project’s remarkable accomplishments,
it was still able to pinpoint some important areas that will
require further development. Given the difficulty in reliably
detecting unusual classes of skin lesions in the past, one
significant area for development is the model’s recalls for
those lesions. A major benefit of using high resolution photos
would be improved feature extraction, which would produce
more accurate results. A larger dataset overall and the addition
of domain-specific knowledge using sophisticated transfer
learning techniques have the potential to greatly enhance the
model’s performance.

The created CNN-based model is a very promising step
toward improving early detection practices and automating the
diagnosis of skin cancer. The relationship that is beginning to
emerge between deep learning methods and useful real-world
applications will probably have a big impact on the healthcare
industry. This may contribute to the development of quick,
accurate, and easily available diagnostic instruments intended
to detect skin cancer and other potential dermatological con-
ditions.
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