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Abstract

In the textile industry, the accurate and efficient classification of fabric defects is paramount for maintaining
high-quality standards. This research explores a novel approach to textile defect classification through feature
optimization using Particle Swarm Optimization (PSO) and Random Forest (RF) classification methods,
utilizing the SCF dataset. The process begins with the extraction of pertinent features from textile images,
employing techniques to capture texture and color information. PSO is then utilized to optimize the feature
set, enhancing the classifier's performance by selecting the most informative features. Subsequently, a
Random Forest classification model is constructed, combining the strengths of multiple base classifiers
through techniques like Random Forest and Boosting to achieve robust-and -accurate predictions. The
proposed methodology is rigorously evaluated using the SCF dataset, demonstrating significant improvements
in classification accuracy and robustness compared to traditional methods. This study highlights the potential
of integrating PSO-driven feature optimization with RF learning for advanced defect detection in textiles,
offering a viable solution for industrial quality control processes.

Keywords: Textile Defect Classification, Feature Optimization, Particle Swarm Optimization, Industrial
Quality Control, Random Forest Method.

1. Introduction

The quality assurance of textile products is a critical aspect of the manufacturing process, as defects can
significantly impact the commercial value and customer satisfaction. Traditional methods for detecting and
classifying textile defects rely heavily on human inspection, which is time-consuming, labor-intensive, and
prone to errors. As a result, there is a growing need for automated systems that can accurately identify and
classify defects in textile materials.

Recent advancements in machine learning and computer vision have paved the way for developing
sophisticated defect detection systems. These systems utilize image processing techniques to extract features
from textile images, followed by classification algorithms to identify defects. However, the effectiveness of
these systems largely depends on the quality of the extracted features and the performance of the classification
models.
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Feature extraction is a crucial step in the defect detection pipeline, involving the identification of relevant
characteristics from the image data. Techniques such as the Gray Level Co-occurrence Matrix (GLCM) and
wavelet transform are commonly used to capture texture and color information from textile images. However,
not all extracted features contribute equally to the classification task, and irrelevant or redundant features can
degrade the performance of the classifier.

To address this challenge, feature optimization techniques can be employed to select the most informative
features. Particle Swarm Optimization (PSO) is a powerful optimization algorithm inspired by the social
behavior of birds and fish. PSO can efficiently explore the feature space to identify an optimal subset of
features that maximizes the classification performance.

Once an optimal feature set is obtained, the next step is to design a robust classification model. RF methods,
which combine the predictions of multiple base classifiers, have shown great promise in improving
classification accuracy and robustness. Techniques such as Random Forest and Boosting aggregate the
strengths of individual classifiers to produce a more accurate and stable model.

In this research, we propose a hybrid approach that integrates PSO-based feature optimization with e
classification to enhance the detection and classification of textile defects. We utilize the SCF dataset, a
comprehensive collection of textile images with various defects, to evaluate the effectiveness of our proposed
method. By optimizing the feature set using PSO and employing ensemble classification techniques, our
approach aims to achieve superior classification performance compared to traditional methods.
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Fig.1. Workflow for Patterned Fabric Defect Detection

The figure outlines a method for textile defect classification, integrating PSO-based feature optimization and
RF classification for improved accuracy. It begins with data acquisition, feature extraction, PSO -based feature
optimization, RF classification, and performance analysis.

This paper is organized as follows: Section 2 reviews related work in textile defect detection, feature
optimization, and RF classification. Section 3 details the methodology, including feature extraction, PSO-
based feature optimization, and RF classification. Section 4 presents the experimental setup and results
obtained using the SCF dataset. Finally, Section 5 concludes the paper and discusses potential future
directions for this research.
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2. Literature Review

The following table summarizes recent studies in the domain of textile defect classification, focusing on
feature optimization methods and machine learning classification techniques. The table highlights the authors,
year of publication, datasets used, feature optimization methods, classification methods, and the reported

accuracy values.

Table.1. Literature Review

Author(s) & Dataset Feature Optimization ML Classification Accuracy
Year Method Method Value
Zhao et al., Self-collected Genetic Algorithm (GA) | Support Vector Machine | 93.5%
2021 (SVM)
Lietal., 2020 Self-collected Principal Component Random Forest 89.2%
Analysis (PCA)
Liuetal., 2021 | SCF Particle Swarm k-Nearest Neighbors (k- 90.7%
Optimization (PSO) NN)
Wang et al., Self-collected Ant Colony Optimization | Convolutional Neural 95.0%
2022 (ACO) Network (CNN)
Chenetal., Kaggle Fabric Simulated Annealing Extreme Gradient 92.1%
2023 Defect Dataset (SA) Boosting (XGBoost)
Zhang et al., Self-collected Particle Swarm Decision Tree Ensemble | 94.5%
2021 Optimization (PSO)
Kumar SCF Genetic Algorithm (GA) | Artificial Neural Network | 91.4%
&Verma, 2023 (ANN)
Gupta et al., SCR Principal Component Gradient Boosting 88.8%
2022 Analysis (PCA) Machine (GBM)
Huang et al., Self-collected Harmony Search (HS) Support Vector Machine | 92.3%
2022 (SVM)
Sharma et al., SCF Particle Swarm Random Forest 93.0%
2023 Optimization (PSO)

The literature indicates that combining feature optimization techniques with ML classification methods can
significantly enhance the accuracy of textile defect classification systems. This study aims to build on these
insights by leveraging the SCF dataset, optimizing feature sets using PSO, and employing RF methods to
achieve superior classification performance.
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3. Methodology

This section details the methodology employed for the classification of textile defects, including feature
extraction, PSO-based feature optimization, and RF classification. The flow of the methodology is outlined in
the following steps:
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Fig.1. Framework of Proposed methodology
3.1. Dataset Description for SCF
The SCF dataset is designed for defect detection and classification in fabrics within an industrial context. This
dataset is derived from the comprehensive textile dataset for defect detection and has been processed to
facilitate the training and evaluation of machine learning models. The below table summarizes the key
features of the SCF dataset,

Table.2. Key Features

Attribute Description

Image Original images resized from 768x512 to 512x512 pixels,

Processing then divided into 64x64 pixel patches.

Defect Types Includes categories such as "Good," "Hole," "Objects,” "Oil
Spot,” and "Thread Error."”

Data Imbalanced class distribution with varying numbers of

Distribution images per defect type.

Purpose Intended for tra_ining and evall_Ja_tting machine learning
models for textile defect classification.

Availability Available on Kaggle as "SCF (64X64 patches)" by

angelolmg.
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Fig.3. Sample images
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Fig.2. Dataset Distribution
This image provides a breakdown of the total number of images per»defect*t,ypé';in the SCF dataset, along with
the distribution into training (80%) and testing (20%) sets for machine learning model development and
evaluation.

3.2. Pre-Processing: Hybrid K_SVD with DWT for Denoising Fabric Images

This algorithm can help address quantization errors, background noise, and Gaussian noise present in fabric
images, enhancing the quality of the input data for further processing or analysis.

x* +y?
G(x,y) = exp— * (X,
(X, Y) SO (X, Y)
Where:
o G(x,y) is the Gaussian kernel.
e ¢ isthe standard deviation.
e I(x,y) is the input image.
e x denotes convolution.
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3.3. Feature Extraction

Feature extraction is a critical stage in analyzing textile images, pivotal in transforming raw image data into a
robust set of informative and non-redundant features. These extracted features serve as the building blocks for
tasks such as classification and defect detection in textile materials.

Structural-Based Feature Selection Using Optimization Method:

According to feature selection algorithms, only few approaches can handle noisy data, and the majority of
methods manage the removal of redundant features or irrelevant characteristics independently. The kind of
data is extremely important for determining the selection accuracy attained with various feature reduction
algorithms.

The two main types of feature selection methods are filters and wrappers. Wrapper techniques often
outperform filter methods in terms of performance.

The wrapper approach includes Particle Swarm Optimization (PSO). Due to the need to assess each feature
set, they are typically too expensive to be used if the number of features is high. It is an effective and well -
liked worldwide search strategy. It is a good approach for feature selection issues because it is simple to build,
has a global search capability, is computationally acceptable, and requires fewer parameters. The search space
used to investigate and choose a subset of principle components or main features using PSO is known as the
principal space. By randomly dispersing 1s and Os, a particle swarm is created. Every particle’s primary
component is chosen if it is 1, and the principal component with a value of 0 is disregarded. Each particle,
then, denotes a unique subset of the primary components. By updating its location and velocity as shown in
the expressions below Egs. (1), and (2), one may search for the best collection of characteristics.

xi = xil, xi2,..., Xi D,
where D is the dimension of the standard search space,

vi = {vil, vi2,...,vi3}.

3.4.Classification Models

In this section, various classification models are employed to predict the classes of textile defects based on the
extracted features. These models utilize machine learning algorithms such as Decision Trees (DT), Support
Vector Machines (SVM), K-nearest neighbors (KNN), Ensemble (SVM_KNN) and Random Forests (RF)
learner to learn patterns from the feature space and make accurate predictions. The performance of each
model is evaluated based on metrics like accuracy, precision, recall, and F1-score, providing insights into their
effectiveness in classifying textile defects in the SCF dataset.

I. k-Nearest Neighbor (k-NN)

The k-Nearest Neighbor (k-NN) algorithm is a versatile machine learning method used for classification and
regression tasks. It operates on the principle of similarity, where new data points are classified based on the
majority class of their k-nearest neighbors in the feature space.

In the k-NN algorithm, the choice of distance measure is crucial for determining the similarity between data
points. The most commonly used distance measure is the Euclidean distance, which quantifies the distance
between two points in the feature space. For two feature vectors a and f, the Euclidean distance D (a, B) is
calculated as:

D(a, B) = ji(a-p)’
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Where:

e q;and P are the i-th components of the feature vectors o and 3, respectively.
e The summation is performed over all components of the feature vectors.

The Euclidean distance represents the straight-line distance between two points in a multidimensional space.
It isa common choice due to its simplicity and effectiveness in measuring similarity between data points [15].

ii. Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm widely used for classification tasks, including textile defect
detection. The primary goal of SVM is to find a hyperplane in the feature space that best separates data points
belonging to different classes, such as defect versus non-defect.Once the features are extracted, they are
mapped to a high-dimensional feature space, potentially using a kernel function to make the separation
between classes more distinct. The SVM algorithm then identifies a hyperplane that maximizes the margin
between the closest data points of each class, known as support vectors. These support vectors define the
decision boundary for classification. For new, unseen textile images, the same feature extraction process is
applied, and the features are mapped to the feature space. The SVM predicts the class (defect or non-defect)
of these new images based on which side of the decision boundary they fall on. The decision boundary in
SVM can be represented by a hyperplane equation:

@ X+b=0
Where:

e w: Weight vector defining the hyperplane’s orientation in the feature space.
e X: Feature vector of a new data point.
e b: Bias term that shifts the hyperplane.

SVMs can handle non-linearly separable data by using kernel functions. These functions map the data points
to a higher-dimensional space where a linear separation becomes possible [18].

i, Multilayer Perceptron (MLP)

MLP is a type of artificial neural network composed of multiple layers of nodes or neurons. It consists of an
input layer, one or more hidden layers, and an output layer. MLP is known for its capability to model complex
non-linear relationships between input and output variables.

1. [Initialization: Initialize the weights and biases of the network randomly.

2. Forward Propagation: Calculate the output of the network for a given input by propagating it
forward through the network layers.

70 WO 500 LM
m _ 0
a’ =g(z")
Where:

e 7' isthe weighted sum of inputs to layer I.
e a jsthe activation of layer I.

o WO is the weight matrix for layer I.

e b® isthe bias vector for layer I.

e g isthe activation function.
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3. Compute Loss: Calculate the loss between the predicted output and the actual output.
_1 \2
L —Wi’lll(Yi - yi)

e N isthe number of training examples.
¢ yiis the actual output.
e Jiisthe predicted output.

4. Backpropagation: Update the weights and biases of the network to minimize the loss by propagating
the error backward through the network and adjusting the weights using gradient descent.

aL oL dad" 8l
awil dall @zl Wl
AL _ 9L | da”l 02"
bl falll a0 Apl
5. Update Weights and Biases: Update the weights and biases using the gradients computed during
backpropagation.

Wi =wl — . 2L
aw

(1 _— (1) . 0L
b b Q- o

Where:
e q is the learning rate.
6. Repeat: Repeat steps 2-5 for a fixed number of iterations or until convergence.

The MLP algorithm iteratively adjusts the weights and biases of the network to minimize the difference
between the predicted output and the actual output, allowing it to learn complex patterns and relationships in
the data.

iv. SVM-KNN ensemble algorithm

The SVM-KNN ensemble algorithm for textile image classification combines the strengths of SVM and KNN
to improve classification accuracy.

1. Feature Extraction: Extract features X = {Xxu, X2, ...,Xn} from textile images, where xi represents the feature
vector for the i-th image.

2. SVM : SVM classifier using the feature vectors X and their corresponding labels Y = {y1, y2, ...,yn}. The
SVM optimization problem can be represented as:

ming p¢ t||w||? +C 7 &
subjectto: yj(w-x; +b) > 1 —&and & > 0
Where:

e wand b are the weight vector and bias of the hyperplane, respectively.

o §are slack variables to allow for misclassified points.

o Cisaregularization parameter controlling the trade-off between margin maximization and
misclassification penalty.
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KNN : KNN classifier using the same feature vectors X and labels Y. KNN classifies new data points based
on the majority vote of its k nearest neighbors.

Ensemble Integration: Combine the predictions of the SVM and KNN classifiers using a weighted average:

fr“.'z.w-u.‘/l( ) - Q- j S U( ; (J- x ) * .,'/\'.\4.\'('[ ]
Where:

o fensemble(X) is the ensemble prediction for a new image x.
o fsym(x) and funn(x) are the individual predictions of the SVM and KNN classifiers, respectively.
e o isa weight parameter (0 < a < 1) that determines the relative influence of each classifier.

Classification: Classify new textile images using the ensemble classifier fensembie(X).

Evaluation: Evaluate the performance of the ensemble using metrics like accuracy, precision, recall, and F1-
score on a separate validation dataset.

V. Random Forest

Random Forest constructs multiple decision trees during training and combines their results to enhance
performance and robustness. The algorithm is called "random™ because each tree is trained on a different
bootstrap sample, a random subset of the training data, ensuring tree diversity. Additionally, at each split
node, a random subset of features is selected, and the best split is chosen from this subset. Random Forest
works by growing several decision trees with random inputs, ensuring independence and diversity among the
trees. The final prediction is based on the majority vote for classification or the average for regression. The
steps involve creating B bootstrap samples, growing decision trees for each sample by selecting random
subsets of m features at each node, and using these trees to make final predictions by aggregating their results.

Given a forest of N trees, the prediction I(y) for classification is determined by:

I(y) = arg maxc Ihn (y) =C
Where:

e hy(y) is the prediction of the n-th tree.
e lisanindicator function that is 1 if h, (y) equals class c, and O otherwise.
e The sum aggregates the votes for each class c, and the class with the maximum votes is selected.

Random Forest is a versatile and powerful algorithm for machine learning tasks, particularly when dealing
with complex and noisy datasets. Its ability to handle high-dimensional data, provide feature importance, and
combine multiple trees for robust predictions makes it a popular choice in various applications, including
textile defect detection [16].

This approach combines the strengths of RF classifiers to improve classification accuracy and robustness for
textile defect detection. Adjustments can be made to optimize the parameters of classifiers and the integration
method to achieve the best performance.
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3.5.Feature Selection

Feature selection is crucial for improving model efficiency and interpretability by identifying the most
relevant features, while PSO efficiently searches for the optimal subset of features to maximize model
performance.

I. Particle Swarm Optimization (PSO)

PSO for feature selection optimizes a subset of features by iteratively updating a swarm of particles’ positions
and velocities based on the fitness of the feature subsets, aiming to maximize the performance of a machine
learning model.

1. Initialization: Initialize a swarm of particles with random positions and velocities. Each particle
represents a potential solution, which is a binary vector indicating whether a feature is selected or not.

Particle i : X; = (z:1, Tioy eony Tin )
Wherexij denotes whether feature j is selected in particle i.
2. Fitness Evaluation: Evaluate the fitness of each particle based on its feature subset using a machine

learning model trained on the selected features and evaluated on a validation set. The fitness function
is typically the performance of the model (e.g., accuracy, F1-score).

Fitness of Particle 7 : f(X;)

3. Update Personal Best: Update the personal best solution for each particle based on its current fitness
value.

Personal Best of Particle 7 : X

4. Update Global Best: Update the global best solution based on the fitness values of all particles in the
swarm.

Global Best Solution: X e

5. Update Particle Positions and Velocities: Update the velocity of each particle based on its current
velocity, personal best, and global best solutions.
Vi = wV; + erry( Xz,,,,, X;) CB"‘.’(—nght‘ X;)
Where:

Vi is the velocity of particle i.

o is the inertia weight.

c1 and c; are acceleration coefficients.

r1 and r2 are random numbers between 0 and 1.

Update the position of each particle based on its current position and velocity.

X;=X;+V;
6. Termination: Repeat steps 2-5 until a termination condition is met (e.g., a maximum number of
iterations is reached, convergence is achieved).
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7. Feature Subset Extraction: Extract the feature subset corresponding to the global best solution found
by PSO. This subset represents the selected features that optimize the performance of the machine
learning model.

4. Result and Discussion

This section outlines the results of the textile image classification model, where five algorithms (DT,
SVM, KNN, ensemble SVM-KNN, RF) were chosen. Feature selection techniques, including the PSO
algorithm, were applied. The model was implemented in MATLAB 2019R and adopts some in built
methods for ease of implementation on a system equipped with 8 GB RAM. The subsequent analyses shed
light on the model's performance and its implications for air quality classification.
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This output appears to be a dataset with various features and a label column indicating the classification of
each entry, likely used for machine learning tasks. The features seem to include numerical measurements and
calculated values, while the label column suggests a multi classification task (e.g., good, objects, oil spot,
thread error, hole).
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Fig.7. Scatterplot of JA vs. CS for Textile Sample Classification

The figure shows a scatterplot of JA vs CS with labels. The x-axis likely represents some measure of image
intensity or texture, labeled as “JA” while the y-axis likely represents another measure, labeled “CS”. Points
are colored with different labels, possibly indicating different classifications of textile samples.
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Fig.8. Distribution of Jaccard Similarity across Different Classes

The box plot visualizes the distribution of a quality measure, likely Jaccard similarity (JS), across different
classes. The horizontal axis represents the class labels, and the vertical axis shows the range of JS values. The
box represents the middle 50% of the data (interquartile range), with the horizontal line inside the box
denoting the median JS. The whiskers extend to the most extreme values within 1.5 times the interquartile
range. Circles beyond the whiskers indicate outliers.
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Fig.9. Distribution of CS Feature across Textile Defect Categories
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The box plot illustrates the distribution of the CS feature across categories: good, hole, objects, oil spot,
thread, and error. The boxes represent the middle 50% of the data, with medians marked by lines inside the
boxes. Whiskers extend to the minimum and maximum values, excluding outliers, which are shown as
individual points. Notably, the 'good’ category exhibits a much larger spread in CS values, indicating
significant variability compared to other categories. Additionally, 'good' has the highest median CS value.

Confusion Matrix and Performance Metrics for Textile Defect Detection

In the evaluation of a classification model designed to assist in fabric analysis, four essential outcomes
provide valuable insights into the model's performance. These outcomes are organized in a table to clarify
their definitions and implications. Understanding these outcomes is pivotal in assessing the model's accuracy
and its ability to differentiate between defects where textile fabric is present and defects where it is not. Let's
explore these outcomes:

Table.4. Confusion Matrix

Predicted: Predicted: | Predicted: Predicted: Predicted:
Good Objects Qil Spot | Thread Error Hole
Actual: Good N FP FP FP FP
Actual: Objects FN TP FP FP FP
Actual: Oil Spot FN FN TP FP FP
Actual: Thread Error | FN FN FN TP FP
Actual: Hole FN FN FN FN TP

e True Positive (TP): The model correctly predicts the specific defect category (e.g., objects, oil spot,
thread error, hole).

e True Negative (TN): The model correctly predicts the textile is good (no defect).
e False Positive (FP): The model incorrectly predicts a defect category when the textile is good.
e False Negative (FN): The model incorrectly predicts the textile is good when there is an actual defect.

This table summarizes the model's performance in terms of correctly and incorrectly classified textile defect
images across different categories.Minimizing false positives and false negatives is. crucial for accurate and
reliable defect detection. The following metrics are used to evaluate the model's performance [20]:

Accuracy: Accuracy measures the proportion of correctly predictedinstances out of the total instances.
NumberofCorrectPredictions

Accuracy= .
TotalNumberof Predictions

Precision: Precision indicates the ratio of correctly predicted positiveobservations to the total predicted
positives.

TruePositive
TruePositive + FalseNegative

Precision=

Recall (Sensitivity or True Positive Rate): Recall represents theratio of correctly predicted positive
observations to the actual positives.

TruePositive
TruePositive + FalseNegative

Recall=

F1-Score: F1-Score is the harmonic mean of precision and recall, providinga balance between them.
PrecisionX Recall
F1-Score=2X

Precision+ Recall
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I. Results for feature extraction techniques with ML models:
This section discusses the improvements brought by the proposed design and the impact of various existing
models. The tables compare the effectiveness of different ML architectures, illustrating their performance
metrics across several feature extraction techniques and PSO optimization methods. This analysis highlights
how the proposed design outperforms traditional approaches and demonstrates the impact of RF model on
classification accuracy, sensitivity, specificity, precision, and F1-score.

Table.9. Performance Analysis of PSO with ML Models

Algorithm Performance Metrics
Details
Accuracy Sensitivity Specificity Precision F1-Score

DT 94.46

SVM 93.75 92.5 93.86 92.78 92.85
KNN 94.22 93.23 94.45 93.84 93.20
Ensemble 94.65 94.81 95.16 94.95 95.18
RF 98.70 96.23 97.68 96.05 96.88

Notably, the RF method stands out with the highest performance metrics: an accuracy of 98.70%, sensitivity
of 96.23%, specificity of 97.68%, precision of 96.05%, and an F1-score of 96.88%. Following closely is the
Ensemble model, achieving an accuracy of 94.61%, sensitivity of 94.81%, specificity of 95.16%, precision of
94.95%, and an F1-score of 95.18%. The KNN and SVM models also perform well, with KNN recording an
accuracy of 94.54%, sensitivity of 93.23%, specificity of 94.45%, precision of 93.84%, and an F1-score of
93.20%, while SVM achieves an accuracy of 93.75%, sensitivity of 92.5%, specificity of 93.86%, precision of
92.78%, and an F1-score of 92.85%. Overall, the RF method demonstrates superior performance across all
evaluated metrics when combined with PSO.

5. Conclusion

In conclusion, this research demonstrates the significant advantages of combining PSO with RF learning
techniques for textile defect classification. The PSO-optimized RF model achieved the highest performance
metrics with an accuracy of 98.70%, sensitivity of 96.23%, specificity of 97.68%, precision of 96.05%, and an
F1-score of 96.88%. By optimizing feature sets through PSO and leveraging the strengths of hybrid models
like Random Forest and Boosting, the proposed methodology achieves superior performance metrics across
various machine learning algorithms. This approach, evaluated using the SCF dataset, consistently
outperforms traditional methods, highlighting its potential to enhance the accuracy and robustness of textile
defect detection systems. The findings suggest that integrating PSO-driven feature optimization with RF
classifiers can significantly improve industrial quality control processes, ensuring higher standards in textile
manufacturing.
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