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Abstract 

 

In the textile industry, the accurate and efficient classification of fabric defects is paramount for maintaining 

high-quality standards. This research explores a novel approach to textile defect classification through feature 

optimization using Particle Swarm Optimization (PSO) and Random Forest (RF) classification methods, 

utilizing the SCF dataset. The process begins with the extraction of pertinent features from textile images, 

employing techniques to capture texture and color information. PSO is then utilized to optimize the feature 

set, enhancing the classifier's performance by selecting the most informative features. Subsequently, a 

Random Forest classification model is constructed, combining the strengths of multiple base classifiers 

through techniques like Random Forest and Boosting to achieve robust and accurate predictions. The 

proposed methodology is rigorously evaluated using the SCF dataset, demonstrating significant improvements 

in classification accuracy and robustness compared to traditional methods. This study highlights the potential 

of integrating PSO-driven feature optimization with RF learning for advanced defect detection in textiles, 

offering a viable solution for industrial quality control processes. 

 

Keywords: Textile Defect Classification, Feature Optimization, Particle Swarm Optimization,  Industrial 

Quality Control, Random Forest Method. 

 

1. Introduction  

 

The quality assurance of textile products is a critical aspect of the manufacturing process, as defects can 

significantly impact the commercial value and customer satisfaction. Traditional methods for detecting and 

classifying textile defects rely heavily on human inspection, which is time-consuming, labor-intensive, and 

prone to errors. As a result, there is a growing need for automated systems that can accurately identify and 

classify defects in textile materials. 

 

Recent advancements in machine learning and computer vision have paved the way for developing 

sophisticated defect detection systems. These systems utilize image processing techniques to extract features 

from textile images, followed by classification algorithms to identify defects. However, the effectiveness of 

these systems largely depends on the quality of the extracted features and the performance of the classification 

models. 
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Feature extraction is a crucial step in the defect detection pipeline, involving the identification of relevant 

characteristics from the image data. Techniques such as the Gray Level Co-occurrence Matrix (GLCM) and 

wavelet transform are commonly used to capture texture and color information from textile images. However, 

not all extracted features contribute equally to the classification task, and irrelevant or redundant features can 

degrade the performance of the classifier. 

 

To address this challenge, feature optimization techniques can be employed to select the most informative 

features. Particle Swarm Optimization (PSO) is a powerful optimization algorithm inspired by the social 

behavior of birds and fish. PSO can efficiently explore the feature space to identify an optimal subset of 

features that maximizes the classification performance. 

 

Once an optimal feature set is obtained, the next step is to design a robust classification model. RF methods, 

which combine the predictions of multiple base classifiers, have shown great promise in improving 

classification accuracy and robustness. Techniques such as Random Forest and Boosting aggregate the 

strengths of individual classifiers to produce a more accurate and stable model. 

 

In this research, we propose a hybrid approach that integrates PSO-based feature optimization with e 

classification to enhance the detection and classification of textile defects. We utilize the SCF dataset, a 

comprehensive collection of textile images with various defects, to evaluate the effectiveness of our proposed 

method. By optimizing the feature set using PSO and employing ensemble classification techniques, our 

approach aims to achieve superior classification performance compared to traditional methods. 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Workflow for Patterned Fabric Defect Detection 

 

The figure outlines a method for textile defect classification, integrating PSO-based feature optimization and 

RF classification for improved accuracy. It begins with data acquisition, feature extraction, PSO-based feature 

optimization, RF classification, and performance analysis. 

 

This paper is organized as follows: Section 2 reviews related work in textile defect detection, feature 

optimization, and RF classification. Section 3 details the methodology, including feature extraction, PSO-

based feature optimization, and RF classification. Section 4 presents the experimental setup and results 

obtained using the SCF dataset. Finally, Section 5 concludes the paper and discusses potential future 

directions for this research. 
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2. Literature Review 

 

The following table summarizes recent studies in the domain of textile defect classification, focusing on 

feature optimization methods and machine learning classification techniques. The table highlights the authors, 

year of publication, datasets used, feature optimization methods, classification methods, and the reported 

accuracy values. 

 

Table.1. Literature Review 

Author(s) & 

Year 

Dataset Feature Optimization 

Method 

ML Classification 

Method 

Accuracy 

Value 

Zhao et al., 

2021 

Self-collected Genetic Algorithm (GA) Support Vector Machine 

(SVM) 

 

93.5% 

Li et al., 2020 Self-collected Principal Component 

Analysis (PCA) 

 

Random Forest 89.2% 

Liu et al., 2021 SCF Particle Swarm 

Optimization (PSO) 

k-Nearest Neighbors (k-

NN) 

 

90.7% 

Wang et al., 

2022 

Self-collected Ant Colony Optimization 

(ACO) 

Convolutional Neural 

Network (CNN) 

 

95.0% 

Chen et al., 

2023 

Kaggle Fabric 

Defect Dataset 

Simulated Annealing 

(SA) 

Extreme Gradient 

Boosting (XGBoost) 

 

92.1% 

Zhang et al., 

2021 

Self-collected Particle Swarm 

Optimization (PSO) 

Decision Tree Ensemble 

 

94.5% 

Kumar 

&Verma, 2023 

SCF Genetic Algorithm (GA) Artificial Neural Network 

(ANN) 

 

91.4% 

Gupta et al., 

2022 

SCF Principal Component 

Analysis (PCA) 

Gradient Boosting 

Machine (GBM) 

 

88.8% 

Huang et al., 

2022 

Self-collected Harmony Search (HS) Support Vector Machine 

(SVM) 

 

92.3% 

Sharma et al., 

2023 

SCF Particle Swarm 

Optimization (PSO) 

 

Random Forest 93.0% 

 

The literature indicates that combining feature optimization techniques with ML classification methods can 

significantly enhance the accuracy of textile defect classification systems. This study aims to build on these 

insights by leveraging the SCF dataset, optimizing feature sets using PSO, and employing RF methods to 

achieve superior classification performance. 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                      © 2024 IJCRT | Volume 12, Issue 10 October 2024 | ISSN: 2320-2882 

IJCRT2410524 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e461 
 

3. Methodology 

 

This section details the methodology employed for the classification of textile defects, including feature 

extraction, PSO-based feature optimization, and RF classification. The flow of the methodology is outlined in 

the following steps: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.1. Framework of Proposed methodology 

 

3.1. Dataset Description for SCF 

 

The SCF dataset is designed for defect detection and classification in fabrics within an industrial context. This 

dataset is derived from the comprehensive textile dataset for defect detection and has been processed to 

facilitate the training and evaluation of machine learning models. The below table summarizes the key 

features of the SCF dataset, 

 

Table.2. Key Features 

Attribute Description 

Image 

Processing 

Original images resized from 768x512 to 512x512 pixels, 

then divided into 64x64 pixel patches. 

Defect Types 
Includes categories such as "Good," "Hole," "Objects," "Oil 

Spot," and "Thread Error." 

Data 

Distribution 

Imbalanced class distribution with varying numbers of 

images per defect type. 

Purpose 
Intended for training and evaluating machine learning 

models for textile defect classification. 

Availability 
Available on Kaggle as "SCF (64X64 patches)" by 

angelolmg. 

 

 

Supervised classification  

PSO (Entropy Based Optimized Feature  

Extraction and Selection) 

 

Feature Extraction and Selection 

 

Hybrid Ksvd_Dwd 

algorithm  

Pre-processing 
 

Output 

Training Data 

 
Testing Data 

 

 

 

Multi Classification 
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              Good                        Hole                 Object               Oil Spot            Thread error 

 

Fig.3. Sample images  

 

 
Fig.2. Dataset Distribution 

 

This image provides a breakdown of the total number of images per defect type in the SCF dataset, along with 

the distribution into training (80%) and testing (20%) sets for machine learning model development and 

evaluation. 

 

 

3.2. Pre-Processing: Hybrid K_SVD with DWT for Denoising Fabric Images 

 

This algorithm can help address quantization errors, background noise, and Gaussian noise present in fabric 

images, enhancing the quality of the input data for further processing or analysis. 
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Where: 

 

 G(x,y) is the Gaussian kernel. 

 σ is the standard deviation. 

 I(x,y) is the input image. 

 ∗ denotes convolution. 
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3.3. Feature Extraction  

 

Feature extraction is a critical stage in analyzing textile images, pivotal in transforming raw image data into a 

robust set of informative and non-redundant features. These extracted features serve as the building blocks for 

tasks such as classification and defect detection in textile materials.  

 
Structural-Based Feature Selection Using Optimization Method: 

 

According to feature selection algorithms, only few approaches can handle noisy data, and the majority of 

methods manage the removal of redundant features or irrelevant characteristics independently. The kind of 

data is extremely important for determining the selection accuracy attained with various feature reduction 

algorithms.  

 

The two main types of feature selection methods are filters and wrappers. Wrapper techniques often 

outperform filter methods in terms of performance. 

 

The wrapper approach includes Particle Swarm Optimization (PSO). Due to the need to assess each feature 

set, they are typically too expensive to be used if the number of features is high. It is an effective and well -

liked worldwide search strategy. It is a good approach for feature selection issues because it is simple to build, 

has a global search capability, is computationally acceptable, and requires fewer parameters. The search space 

used to investigate and choose a subset of principle components or main features using PSO is known as the 

principal space. By randomly dispersing 1s and 0s, a particle swarm is created. Every particle’s primary 

component is chosen if it is 1, and the principal component with a value of 0 is disregarded. Each particle, 

then, denotes a unique subset of the primary components. By updating its location and velocity as shown in 

the expressions below Eqs. (1), and (2), one may search for the best collection of characteristics.  

xi = xi1, xi2,..., xi D, 

where D is the dimension of the standard search space, 

vi = {vi1, vi2,...,vi3}. 

 

3.4.Classification Models   

 

In this section, various classification models are employed to predict the classes of textile defects based on the 

extracted features. These models utilize machine learning algorithms such as Decision Trees (DT), Support 

Vector Machines (SVM), K-nearest neighbors (KNN), Ensemble (SVM_KNN) and Random Forests (RF) 

learner to learn patterns from the feature space and make accurate predictions. The performance of each 

model is evaluated based on metrics like accuracy, precision, recall, and F1-score, providing insights into their 

effectiveness in classifying textile defects in the SCF dataset. 

 

i. k-Nearest Neighbor (k-NN) 

 

The k-Nearest Neighbor (k-NN) algorithm is a versatile machine learning method used for classification and 

regression tasks. It operates on the principle of similarity, where new data points are classified based on the 

majority class of their k-nearest neighbors in the feature space. 

In the k-NN algorithm, the choice of distance measure is crucial for determining the similarity between data 

points. The most commonly used distance measure is the Euclidean distance, which quantifies the distance 

between two points in the feature space. For two feature vectors α and β, the Euclidean distance D (α, β) is 

calculated as: 
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Where: 

 

 αi and βi  are the i-th components of the feature vectors α and β, respectively. 

 The summation is performed over all components of the feature vectors. 

 

The Euclidean distance represents the straight-line distance between two points in a multidimensional space. 

It is a common choice due to its simplicity and effectiveness in measuring similarity between data points [15]. 

 

ii. Support Vector Machine (SVM) 

 

SVM is a supervised machine learning algorithm widely used for classification tasks, including textile defect 

detection. The primary goal of SVM is to find a hyperplane in the feature space that best separates data points 

belonging to different classes, such as defect versus non-defect.Once the features are extracted, they are 

mapped to a high-dimensional feature space, potentially using a kernel function to make the separation 

between classes more distinct. The SVM algorithm then identifies a hyperplane that maximizes the margin 

between the closest data points of each class, known as support vectors. These support vectors define the 

decision boundary for classification. For new, unseen textile images, the same feature extraction process is 

applied, and the features are mapped to the feature space. The SVM predicts the class (defect or non-defect) 

of these new images based on which side of the decision boundary they fall on. The decision boundary in 

SVM can be represented by a hyperplane equation: 

 

0. bxT  

Where: 

 

 w: Weight vector defining the hyperplane's orientation in the feature space. 

 x: Feature vector of a new data point. 

 b: Bias term that shifts the hyperplane. 

 

SVMs can handle non-linearly separable data by using kernel functions. These functions map the data points 

to a higher-dimensional space where a linear separation becomes possible [18]. 

 

iii. Multilayer Perceptron (MLP) 

 

MLP is a type of artificial neural network composed of multiple layers of nodes or neurons. It consists of an 

input layer, one or more hidden layers, and an output layer. MLP is known for its capability to model complex 

non-linear relationships between input and output variables. 

 

1. Initialization: Initialize the weights and biases of the network randomly. 

 

2. Forward Propagation: Calculate the output of the network for a given input by propagating it 

forward through the network layers. 

 
)()1()()( . llll baWz    

)( )()( ll zga   

Where: 

 

 z(l)   is the weighted sum of inputs to layer l. 

 a(l)  is the activation of layer l. 

 W(l) is the weight matrix for layer l. 

 b(l)  is the bias vector for layer l. 

 g is the activation function. 
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3. Compute Loss: Calculate the loss between the predicted output and the actual output. 

 
^
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 N is the number of training examples. 

 yiis the actual output. 

 𝑦̂i is the predicted output. 

 

4. Backpropagation: Update the weights and biases of the network to minimize the loss by propagating 

the error backward through the network and adjusting the weights using gradient descent.  

 

 
5. Update Weights and Biases: Update the weights and biases using the gradients computed during 

backpropagation. 

 

 
Where: 

 

 α is the learning rate. 

 

6. Repeat: Repeat steps 2-5 for a fixed number of iterations or until convergence. 

 

The MLP algorithm iteratively adjusts the weights and biases of the network to minimize the difference 

between the predicted output and the actual output, allowing it to learn complex patterns and relationships in 

the data. 

 

iv. SVM-KNN ensemble algorithm 

 

The SVM-KNN ensemble algorithm for textile image classification combines the strengths of SVM and KNN 

to improve classification accuracy. 

 

1. Feature Extraction: Extract features X = {x1, x2, ...,xn} from textile images, where xi represents the feature 

vector for the i-th image. 

 

2. SVM :  SVM classifier using the feature vectors X and their corresponding labels Y = {y1, y2, ...,yn}. The 

SVM optimization problem can be represented as: 

 

 
Where: 

 

 w and b are the weight vector and bias of the hyperplane, respectively. 

 ξi are slack variables to allow for misclassified points. 

 C is a regularization parameter controlling the trade-off between margin maximization and 

misclassification penalty. 
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KNN :  KNN classifier using the same feature vectors X and labels Y. KNN classifies new data points based 

on the majority vote of its k nearest neighbors. 

 

Ensemble Integration: Combine the predictions of the SVM and KNN classifiers using a weighted average: 

 

 
Where: 

 

 fensemble(x) is the ensemble prediction for a new image x. 

 fSVM(x) and fKNN(x) are the individual predictions of the SVM and KNN classifiers, respectively. 

 α is a weight parameter (0 ≤ α ≤ 1) that determines the relative influence of each classifier.  

 

Classification: Classify new textile images using the ensemble classifier fensemble(x). 

 

Evaluation: Evaluate the performance of the ensemble using metrics like accuracy, precision, recall, and F1-

score on a separate validation dataset. 

 

v. Random Forest 

 

Random Forest constructs multiple decision trees during training and combines their results to enhance 

performance and robustness. The algorithm is called "random" because each tree is trained on a different 

bootstrap sample, a random subset of the training data, ensuring tree diversity. Additionally, at each split 

node, a random subset of features is selected, and the best split is chosen from this subset. Random Forest 

works by growing several decision trees with random inputs, ensuring independence and diversity among the 

trees. The final prediction is based on the majority vote for classification or the average for regression. The 

steps involve creating B bootstrap samples, growing decision trees for each sample by selecting random 

subsets of m features at each node, and using these trees to make final predictions by aggregating their results. 

 

Given a forest of N trees, the prediction l(y) for classification is determined by: 

 

cyIyl hnc  )(maxarg)(  

Where: 

 

 hn(y) is the prediction of the n-th tree. 

 I is an indicator function that is 1 if hn (y) equals class c, and 0 otherwise. 

 The sum aggregates the votes for each class c, and the class with the maximum votes is selected.  

 

Random Forest is a versatile and powerful algorithm for machine learning tasks, particularly when dealing 

with complex and noisy datasets. Its ability to handle high-dimensional data, provide feature importance, and 

combine multiple trees for robust predictions makes it a popular choice in various applications, including 

textile defect detection [16]. 

 

This approach combines the strengths of RF classifiers to improve classification accuracy and robustness for 

textile defect detection. Adjustments can be made to optimize the parameters of classifiers and the  integration 

method to achieve the best performance. 
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3.5.Feature Selection 

 

Feature selection is crucial for improving model efficiency and interpretability by identifying the most 

relevant features, while PSO efficiently searches for the optimal subset of features to maximize model 

performance. 

 

i. Particle Swarm Optimization (PSO) 

 

PSO for feature selection optimizes a subset of features by iteratively updating a swarm of particles' positions 

and velocities based on the fitness of the feature subsets, aiming to maximize the performance of a machine 

learning model. 

 

1. Initialization: Initialize a swarm of particles with random positions and velocities. Each particle 

represents a potential solution, which is a binary vector indicating whether a feature is selected or not.  

 
Wherexij denotes whether feature j is selected in particle i. 

 

2. Fitness Evaluation: Evaluate the fitness of each particle based on its feature subset using a machine 

learning model trained on the selected features and evaluated on a validation set. The fitness function 

is typically the performance of the model (e.g., accuracy, F1-score). 

 
3. Update Personal Best: Update the personal best solution for each particle based on its current fitness 

value. 

 
 

4. Update Global Best: Update the global best solution based on the fitness values of all particles in the 

swarm. 

 

 
 

5. Update Particle Positions and Velocities:Update the velocity of each particle based on its current 

velocity, personal best, and global best solutions. 

 
Where: 

 

 Vi is the velocity of particle i. 

 ω is the inertia weight. 

 c1 and c2 are acceleration coefficients. 

 r1 and r2 are random numbers between 0 and 1. 

 

Update the position of each particle based on its current position and velocity. 

 
6. Termination: Repeat steps 2-5 until a termination condition is met (e.g., a maximum number of 

iterations is reached, convergence is achieved). 
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7. Feature Subset Extraction: Extract the feature subset corresponding to the global best solution found 

by PSO. This subset represents the selected features that optimize the performance of the machine 

learning model. 

 

4. Result and Discussion 

This section outlines the results of the textile image classification model, where five algorithms (DT, 

SVM, KNN, ensemble SVM-KNN, RF) were chosen. Feature selection techniques, including the PSO 

algorithm, were applied. The model was implemented in MATLAB 2019R and adopts some in built 

methods for ease of implementation on a system equipped with 8 GB RAM. The subsequent analyses shed 

light on the model's performance and its implications for air quality classification. 

 

 
Fig.6. Sample FE data 

 

This output appears to be a dataset with various features and a label column indicating the classification of 

each entry, likely used for machine learning tasks. The features seem to include numerical measurements and 

calculated values, while the label column suggests a multi classification task (e.g., good,  objects, oil spot, 

thread error,  hole). 
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Fig.7. Scatterplot of JA vs. CS for Textile Sample Classification 

The figure shows a scatterplot of JA vs CS with labels.  The x-axis likely represents some measure of image 

intensity or texture, labeled as “JA”  while the y-axis likely represents another measure, labeled “CS”. Points 

are colored with different labels, possibly indicating different classifications of textile samples. 

 
Fig.8. Distribution of Jaccard Similarity across Different Classes 

 

The box plot visualizes the distribution of a quality measure, likely Jaccard similarity (JS), across different 

classes. The horizontal axis represents the class labels, and the vertical axis shows the range of JS values. The 

box represents the middle 50% of the data (interquartile range), with the horizontal line inside the box 

denoting the median JS. The whiskers extend to the most extreme values within 1.5 times the interquartile 

range. Circles beyond the whiskers indicate outliers. 

 

 
 

Fig.9. Distribution of CS Feature across Textile Defect Categories 
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The box plot illustrates the distribution of the CS feature across categories: good, hole, objects, oil spot, 

thread, and error. The boxes represent the middle 50% of the data, with medians marked by lines inside the 

boxes. Whiskers extend to the minimum and maximum values, excluding outliers, which are shown as 

individual points. Notably, the 'good' category exhibits a much larger spread in CS values, indicating 

significant variability compared to other categories. Additionally, 'good' has the highest median CS value. 

 

Confusion Matrix and Performance Metrics for Textile Defect Detection 

 

In the evaluation of a classification model designed to assist in fabric analysis, four essential outcomes 

provide valuable insights into the model's performance. These outcomes are organized in a table to clarify 

their definitions and implications. Understanding these outcomes is pivotal in assessing the model's accuracy 

and its ability to differentiate between defects where textile fabric is present and defects where it is not. Let's 

explore these outcomes: 

 

Table.4. Confusion Matrix 

 

Predicted: 

Good 

Predicted: 

Objects 

Predicted: 

Oil Spot 

Predicted: 

Thread Error 

Predicted:  

Hole 

Actual: Good  TN  FP  FP  FP  FP 

Actual: Objects  FN  TP  FP  FP  FP 

Actual: Oil Spot  FN  FN  TP  FP  FP 

Actual: Thread Error  FN  FN  FN  TP  FP 

Actual: Hole  FN  FN  FN  FN  TP 

 

 True Positive (TP): The model correctly predicts the specific defect category (e.g., objects, oil spot, 

thread error, hole). 

 True Negative (TN): The model correctly predicts the textile is good (no defect). 

 False Positive (FP): The model incorrectly predicts a defect category when the textile is good. 

 False Negative (FN): The model incorrectly predicts the textile is good when there is an actual defect. 

 

This table summarizes the model's performance in terms of correctly and incorrectly classified textile defect 

images across different categories.Minimizing false positives and false negatives is crucial for accurate and 

reliable defect detection. The following metrics are used to evaluate the model's performance [20]: 

 

Accuracy: Accuracy measures the proportion of correctly predictedinstances out of the total instances. 

Accuracy=
edictionsrofTotalNumbe

edictionsrrectNumberofCo

Pr

Pr
 

 

 

Precision: Precision indicates the ratio of correctly predicted positiveobservations to the total predicted 

positives. 

Precision=
iveFalseNegatveTruePositi

veTruePositi


 

 

Recall (Sensitivity or True Positive Rate): Recall represents theratio of correctly predicted positive 

observations to the actual positives. 

Recall= 
iveFalseNegatveTruePositi

veTruePositi


 

 

F1-Score: F1-Score is the harmonic mean of precision and recall, providinga balance between them. 

F1-Score=2X
callecision

callecisionX

RePr

RePr


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i. Results for feature extraction techniques with ML models: 

This section discusses the improvements brought by the proposed design and the impact of various existing 

models. The tables compare the effectiveness of different ML architectures, illustrating their performance 

metrics across several feature extraction techniques and PSO optimization methods. This analysis highlights 

how the proposed design outperforms traditional approaches and demonstrates the impact of RF model on 

classification accuracy, sensitivity, specificity, precision, and F1-score. 

 

Table.9. Performance Analysis of PSO with ML Models 

Algorithm 

Details 

Performance Metrics 

Accuracy Sensitivity Specificity Precision F1-Score 

DT 94.46     

SVM 93.75 92.5 93.86 92.78 92.85 

KNN 94.22 93.23 94.45 93.84 93.20 

Ensemble 94.65 94.81 95.16 94.95 95.18 

RF 98.70 96.23 97.68 96.05 96.88 

 

Notably, the RF method stands out with the highest performance metrics: an accuracy of 98.70%, sensitivity 

of 96.23%, specificity of 97.68%, precision of 96.05%, and an F1-score of 96.88%. Following closely is the 

Ensemble model, achieving an accuracy of 94.61%, sensitivity of 94.81%, specificity of 95.16%, precision of 

94.95%, and an F1-score of 95.18%. The KNN and SVM models also perform well, with KNN recording an 

accuracy of 94.54%, sensitivity of 93.23%, specificity of 94.45%, precision of 93.84%, and an F1-score of 

93.20%, while SVM achieves an accuracy of 93.75%, sensitivity of 92.5%, specificity of 93.86%, precision of 

92.78%, and an F1-score of 92.85%. Overall, the RF method demonstrates superior performance across all 

evaluated metrics when combined with PSO. 

 

5. Conclusion 

In conclusion, this research demonstrates the significant advantages of combining PSO with RF learning 

techniques for textile defect classification. The PSO-optimized RF model achieved the highest performance 

metrics with an accuracy of 98.70%, sensitivity of 96.23%, specificity of 97.68%, precision of 96.05%, and an 

F1-score of 96.88%. By optimizing feature sets through PSO and leveraging the strengths of hybrid models 

like Random Forest and Boosting, the proposed methodology achieves superior performance metrics across 

various machine learning algorithms. This approach, evaluated using the SCF dataset, consistently 

outperforms traditional methods, highlighting its potential to enhance the accuracy and robustness of textile 

defect detection systems. The findings suggest that integrating PSO-driven feature optimization with RF 

classifiers can significantly improve industrial quality control processes, ensuring higher standards in textile 

manufacturing. 
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