

Sustainable Fish Feed In Muzaffarpur Bihar

Sangeeta Giri

BRA Bihar Ambedkar University, Muzaffarpur

Progress Report on PhD Research: Sustainable Fish Feed in Muzaffarpur, Bihar

Abstract

This research focuses on developing sustainable fish feed practices in Muzaffarpur, Bihar, addressing the increasing demand for fish in global food production. Aquaculture, a key player in providing high-quality protein, heavily relies on marine resources, particularly fish meal and fish oil. These are not sustainable for long-term use, and the growing demand for fish products poses a significant challenge to the sustainability of aquaculture.

The objectives of the research include analyzing current fish feed practices, evaluating the sustainability of existing feed sources, and identifying alternative, locally-sourced protein options for fish feed, such as agricultural by-products and plant-based proteins. The research follows a comprehensive methodology including literature review, fieldwork, interviews with fish farmers, and laboratory analysis of fish feed samples.

Preliminary findings indicate a substantial reliance on commercial fish feed, which presents sustainability challenges. Small-scale field trials have been initiated, testing alternative feed sources with active participation from local fish farmers. Stakeholder engagement is emphasized, aiming to promote sustainable fish feed practices.

Future research will focus on expanding field trials, conducting more detailed laboratory analyses, and enhancing stakeholder involvement. This study contributes to the development of sustainable practices in aquaculture, with implications for environmental preservation and the long-term viability of the industry in Bihar.

Introduction:

The primary focus of this PhD research is to study and develop sustainable fish feed practices in Muzaffarpur, Bihar. Over the past six months, I have made significant progress in understanding the local context, challenges, and potential solutions in the sustainable fish feed industry.

Aquaculture has the potential to provide high-quality protein for the global population in the coming decades. According to the Food and Agriculture Organization of the United Nations (FAO), fisheries and aquaculture are vital to global food security and poverty alleviation. Although the supply of fish from marine capture fisheries is stabilizing at around 90 million tons (FAO, 2010), the demand for fish and fish products is increasing. Production from world fisheries and aquaculture is projected to reach about 172 million tons in 2021, with most of the growth

coming from aquaculture (FAO, 2012). Aquaculture has seen an average annual growth rate of 8% over the past two decades (FAO, 2008)

making it the fastest growing food production sector in the world.

However, there is a major challenge facing aquaculture in continuing this growth. Fish need feed with high levels of protein and energy. Traditionally, for carnivorous or omnivorous fish, these are provided mainly as fish meal (FM) and fish oil, which also contributes to the health-promoting aspects of fish in the human diet, for example, with omega-3 fatty acids. The challenge lies in the need to increase feed production without increasing the demand for these marine raw material resources while maintaining the health benefits.

Aquaculture today consumes 60% of the FM and 85% of the fish oil produced

(FAO, 2008), mainly from industrial coastal fisheries and from the trimmings produced during processing for human consumption. Therefore, the industry is heavily dependent on marine resources. Production from these resources cannot be increased without increasing the environmental impact. At best, sustainably managed fisheries may be able to yield the current harvest of 5 million tons of FM and 1 million tons of fish oil (IFFO, 2011), but this is far below the current and expected demand. Therefore, to meet the growing demand for fish, aquaculture must identify alternatives. The research reported in this thesis focuses on alternatives for the proteins in fish feed.

Research Objectives:

1. Analyze the current fish feed practices in Muzaffarpur.
2. Evaluate the sustainability of existing fish feed sources and practices.
3. Identify alternative sources and methods for sustainable fish feed.
4. Assess the feasibility and potential impact of these alternatives.

Progress Overview:

1. **Literature Review:**

- Conducted a comprehensive review of existing literature on sustainable fish feed practices, focusing on global trends and how they can be adapted to the local context in Muzaffarpur

1.0M HARI ENTERPRISE(ABIS FISH FEED SUPPLIE)

bochaha muzaffarpur

Fishery · Muzaffarpur, Bihar

2.A.S Feed and Fishing Centre

Fishery · Bhagwanpur, Bihar

- Identified gaps in knowledge and potential research areas for further investigation.

2. **Fieldwork and Data Collection:**

- Completed initial field visits to various fish farms in Muzaffarpur to observe current practices and gather data.
- Conducted interviews with local fish farmers and industry stakeholders to understand their challenges and perspectives on sustainable fish feed.
- Collected samples of existing fish feed for laboratory analysis to assess their nutritional content and environmental impact.

3. **Preliminary Analysis:**

- Analyzed data from field visits and interviews to identify common practices and challenges faced by fish farmers.
- Initial findings suggest a heavy reliance on commercial fish feed, which may not be the most sustainable option for long-term use.

4. **Experimentation and Trials:**

- Initiated small-scale trials to test alternative fish feed sources, such as locally sourced agricultural by-products and plant-based proteins.
- Collaborated with local fish farmers to conduct controlled experiments and assess the feasibility and effectiveness of these alternative feeds.

5. **Stakeholder Engagement:**

- Engaged with local government agencies, agricultural experts, and fishery associations to discuss potential collaborations and opportunities for implementing sustainable practices.
- Organized workshops to educate fish farmers about the benefits of sustainable fish feed and gather their feedback on the proposed alternatives.

Challenges Encountered:

- Limited availability of data on existing fish feed practices in the region.
- Resistance from some fish farmers to adopt new practices due to perceived risks and costs.
- Need for more comprehensive laboratory analysis of fish feed samples.

****Next Steps:****

- Continue laboratory analysis of alternative fish feed samples and evaluate their performance.
- Expand field trials to include a wider variety of alternative feeds and more diverse farm environments.
- Conduct further stakeholder engagement to build support for sustainable fish feed practices.
- Prepare interim research findings for presentation at upcoming conferences and workshops.

****Conclusion:****

The past six months have been productive in terms of data collection and preliminary analysis. The research is on track to achieve its objectives, with promising avenues for sustainable fish feed identified. Continued efforts in experimentation and stakeholder engagement will be essential in the next phase of the research.

References

1. Shaikhiev I.G., Svergusova S.V., Sapronova Zh.A. Analytical review of approaches to the use of alternative feeds in aquaculture when improving environmental schemes.

Construction economic and environmental management. 2021. Issue 3 (80). P. 24-32.

DOI: 10.37279/2519-4453-2021-3-24-32

2. Liman S.A., Davydenko T.M., Lebedev V.YU., Ushakova N.A. Prospects for the use of the *Hermetia illucens* larvae in feed for industrial aquaculture objects. Achievements of science and technology in agro-industrial complex. 2021. 35 (8). P. 35-39. DOI:

10.53859/02352451_2021_35_8_35

3. Ulrikh E.V., Verkhoturov V.V. Alternative sources of protein for fish feeding (review).

Technology and merchandising of the innovative foodstuff. 2022. Issue 5 (76). P. 72-

78. DOI: 10.33979/2219-8466-2022-76-5-72-78

4. Pestsov G.V., Tretyakova A.V.1, Prokudina O.V. Environmentally safe disposal of agricultural waste using the insect species *Hermetia illucens*. Biosfera. 2022. V. 14 (4).

P. 362-364

5. Ushakova N.A., Bastrakov A.I., Karagodin V.P., Pavlov D.S. Specific features of bioconversion of organic waste by *Hermetia illucens* larvae (Diptera: Stratiomyidae, Linnaeus, 1758). Biology Bulletin Reviews. 2018. V. 138 (2). P. 172-182. DOI:

10.7868/S0042132418020060

6. Bastrakov A.I., Dontsov A.E., Ushakova N.A. Black soldier fly *Hermetia illucens* under in vitro breeding as a renewable source of melanin-chitosan complex.

Proceedings of the RAS Ufa Scientific Centre. 2016. Issue 4. P. 77-79.

7. Antonov A., Lutovinovas E., Ivanov G.A., Pastukhova N. Adaptation and prospects of breeding flies black lvink (*Hermetia illucens*) in circumpolar region. Principles of the ecology. 2017. Issue 3 (24). P. 4-19.

8. Barragan-Fonseca K.B., Dicke M., van Loon J.J.A. Nutritional value of the black soldier fly (*Hermetia illucens* L.) and its suitability as animal feed - a review. Journal of Insects as Food and Feed. 2017. V. 3 (2). P. 105-120. DOI: 10.3920/JIFF2016.0055

9. Marina Mikhailova, Konstantin Zolotarev, Valeriya Nakhod, Tatiana Farafonova and Anton Mikhailov. Nutritional value of black solder fly (*Hermetia illucens*) eggs and larvae reared on fermented milk industry waste as an ingredient of fish feed. E3S Web of Conferences. 2022. V. 363. P. 03017. DOI: 10.1051/e3sconf/202236303017

10. GOST 10385-2014. Combined feeding staffs for fishes. General specifications, 2nd ed., Standartinform: Moscow, 2020; 12 pages.

11. Mikhailova M.V., Mikhailov A.N., Zolotarev K.V., Albulov A.I., Frolova M.A., Mironenko V.M., Glukhov A.V., Muravev V.A. Method for production of a fodder composition for fish. Russian patent RU 2708923 C1; registered at Feb 19, 2019.

End of Report.