IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Personalized Medicine And Active Pharmaceutical Ingredients

*1Avdhut S. Khollam, ²Apeksha S. Fulsundar, ³Viraj B. Shelke ¹Student, Vidya Niketan Institute of Pharmacy and Research center, Bota.

^{2,3}Assistant professor, Department of Pharmacognosy, Vidya Niketan Institute of Pharmacy and Research center, Bota.

Abstract:

Active Pharmaceutical Ingredients (APIs) are the core components of pharmaceutical products that directly contribute to their therapeutic effects. The development, synthesis, and formulation of APIs are pivotal in ensuring the efficacy, safety, and quality of medicinal products. With the growing emphasis on personalized medicine, the role of APIs has evolved significantly, transitioning from a generalized therapeutic approach to one that is tailored to individual genetic, phenotypic, and environmental profiles. Personalized medicine relies on pharmacogenomics to optimize drug selection and dosing, ensuring that patients receive the most effective treatment while minimizing adverse effects. This review aims to explore the current state of API development in the context of personalized medicine, highlighting advances in genetic testing, pharmacokinetic and pharmacodynamic considerations, and regulatory challenges. Furthermore, it addresses the ethical, economic, and technological implications of personalized APIs, including the use of AI-driven drug discovery and the integration of companion diagnostics. As the pharmaceutical industry continues to innovate, personalized APIs are expected to play a key role in the future of precision medicine, offering the potential for improved patient outcomes and more efficient drug therapies.

Keyword: Personalised, Medicine Drug formulation, Drug delivery system, Precision medicine, Bio pharmaceuticals, Pharmacokinetics, Pharmacodynamics, Companion diagnostics, Targeted therapy, Genetic biomekar, Biomekar's discovery, Genetic polymorphism, Drug metabolism, Drug interaction, Pharmacogenetic variability.

Introduction:

Active Pharmaceutical Ingredients (APIs) are the essential components in pharmaceutical drugs responsible for the therapeutic effect. Whether in small molecules or biologics, APIs are designed to interact with specific biological targets in the body, such as enzymes, receptors, or proteins, to achieve a desired therapeutic outcome. The quality, efficacy, and safety of a drug are inherently tied to the properties of the API, including its chemical composition, stability, bioavailability, and pharmacokinetics. The traditional approach to drug development has often been based on a one-size-fits-all model, where the same drug is prescribed to a wide population with the hope of achieving a universal therapeutic effect. However, the realization that individuals respond to drugs differently based on genetic, environmental, and lifestyle factors has paved the way for personalized medicine—a more patient-centered approach to treatment. This paradigm shift emphasizes the need to tailor drug therapies, including the selection and dosage of APIs, to the unique genetic makeup and characteristics of each patient. As a result, pharmacogenomics has become a critical field in pharmaceutical development, enabling clinicians to optimize therapeutic outcomes while minimizing the risk of adverse effects. The development of personalized APIs, specifically designed to work effectively for individual patients, holds great potential for revolutionizing the treatment of various diseases. This includes cancer therapies where targeted APIs can treat specific genetic mutations or diseases, cardiovascular drugs with tailored dosing based on metabolic profiles, and psychotropic drugs that are customized to an individual's enzyme activity. The increasing focus on personalized medicine brings with it numerous challenges for the pharmaceutical industry. These include the need for advanced technologies such as genetic screening and precision diagnostic tools, the integration of artificial intelligence in drug discovery, and new regulatory frameworks to ensure the safety and efficacy of customized treatments.

A. Method of biomasses conversion in APIs synthesis

- The processes that transform the biomass to value-added chemicals (furfural, levulinic acid, etc.) in the presence of catalyst (hydrosulfuric, hydrochloric, and phosphoric acids) and conditions of high temperature and pressure fall under chemical conversions[1,6].
- Although the factors of low yield are always being confronted as major challenges for commercialization. Therefore, in order to bridge the gap between the challenges, various innovative methods have been employed to convert biomass to chemicals. Likewise, a novel process was reported using catalysts based on modified carbon that were expanded to transform organic acids and sugar by the Northwest National Laboratory[4,8].

1. Chemical approach

- The processes that transform the biomass to value-added chemicals (furfural, levulinic acid, etc.) in the presence of catalyst (hydrosulfuric, hydrochloric, and phosphoric acids) and conditions of high temperature and pressure fall under chemical conversions [4,8].
- Although the factors of low yield are always being confronted as major challenges for commercialization. Therefore, in order to bridge the gap between the challenges, various innovative methods have been employed to convert biomass to chemicals. Likewise, a novel process was reported using catalysts based on modified carbon that were expanded to transform organic acids and sugar by the Northwest National Laboratory [4,8].

2. Biotechnological approaches

- The pathway of biotechnological approaches explored the usage of biocatalyst (enzymes) or cells for the transformation of biomass into utility chemicals. In nutshell, it is considered as one of the most easy, simple, and convenient methods for the formation of industrial products from biomass [8].
- In contrast to chemical conversions that involve high temperatures and pressures, biological conversions are relatively mild. However, the concept of these biotechnological-based conversions is not the novel addition because earlier as well the various commercially used chemicals are being produced from yeast and bacteria (in terms of acetone-butanol, citric acid ethanol, lactic acid, etc [9,10].
- The merits of less formation time of by-products and higher yield of product and selectivity (of biocatalysts) to convert renewable resources into chemicals have created fascination in recent time.
- That is why persistent efforts have been made for the alteration of enzymes and living organisms to produce the desired chemicals and particularly from the renewable sources. High yield and selectivity as well as minimal waste streams favor biological conversions as pathways for converting biomass into higher value chemicals. But there are numerous hindrances with the ongoing biological-based transformations (e.g. the higher energy requirements, lower production rates, continuous stirring) for achieving the desired results in bulk [3,6].

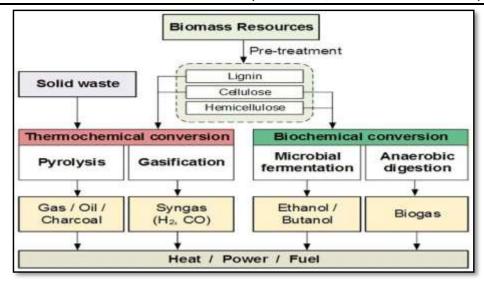


Fig No. 1: Biomass Resources

3. Metabolic approach for API production

- The branch of metabolic engineering is one of the empowering skill of science that has an eminent role in the expansion and progress of cell factories to further produce pharmaceuticals, fuels, chemicals, and food ingredients via following the route of microbial fermentations [11].
- With the burgeoning and opening outgrowth of genetic engineering, it probably became much realistic to generate the miniature protein-based compounds like insulin, certain growth hormones employing the process of fermentation. Concurrently, metabolic engineering created the pathway for converting the minute microbes into cellular factories, owing to inexpensive raw materials like biomass-derived sugars to fuels and chemicals [12,15].
- Various industry uses of novel bioprocesses were shown for converting feedstock to agricultural-based products. One of its different biotech pathways was recently explored by DSM (Dutch multinational corporation) for the production of antibiotic cephalexin, which was earlier followed for the chemical conversion of penicillin. Similarly, Novozymes has formed a clubbed endeavor with Cargill with the interest of developing a bio-based procedure for the manufacturing of 3 hydroxypropionic acid. Nevertheless, Gevo has further created the opportunity of biofuel by following a process for the production of isobutanol. In addition, Amyris has further developed a yeast-based fermentation process for the production of farnese that can be employed as biodiesel and can also be converted into squalene, which has wide usage in cosmetics.

B. Types of Active Pharmaceutical Ingredient

1. Small Molecule APIs

- Small molecule APIs are organic compounds with low molecular weights, typically less than 500 daltons. These APIs usually have well-defined chemical structures and can be synthesized chemically or derived from natural products. Common examples include aspirin, ibuprofen, and metformin. Small

molecules primarily function by interacting with specific cellular targets, such as enzymes or receptors [16].

2. Biologics

- Biologics are complex substances produced using living organisms, such as microorganisms, or derived from biological sources. Unlike small molecule APIs, biologics can include a wide variety of products, including proteins, nucleic acids, and monoclonal antibodies. They are used to treat various conditions, including cancer, autoimmune diseases, and infectious diseases. Due to their complexity, biologics often require specialized manufacturing techniques and stringent regulatory oversight [17].

3. Peptide APIs

- Peptide APIs consist of short chains of amino acids and can be naturally occurring or synthetically produced. These APIs have gained attention for their specificity and low toxicity. They are frequently used in therapies for diabetes (e.g., insulin), cancer (e.g., peptide vaccines), and hormonal disorders. The development of peptide APIs is dependent on advancements in synthesis and delivery technologies [18].

4. Nucleotide-Based APIs

- Nucleotide-based APIs, including antisense oligonucleotides and RNA interference, are innovative therapies targeting genetic material to modify gene expression. These APIs hold potential for treating genetic diseases, cancer, and viral infections by inhibiting specific gene expressions. Due to their unique mechanism of action, they require precise formulation and delivery methods [19]. MCR

C. Importance of quality control in API production.

1. Regulatory Compliance

- Production must comply with stringent regulations set by health authorities such as the U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA), and other global regulatory bodies [20].

2. Safety of End Products

- APIs are the active components in medications that produce the intended therapeutic effect. Any impurity or deviation in the production process can lead to safety risks for patients. Rigorous QC processes help identify contaminants or incorrect doses, thereby ensuring the safety of the end product [21].

3. Consistency and Reliability

- Quality control ensures that APIs are produced consistently, with the required potency, purity, and quality from batch to batch. This reliability is essential for healthcare providers and patients who depend on the efficacy of these drugs [22].

4. Cost Efficiency

- Implementing stringent quality control measures can save companies money in the long term by reducing waste, rework, and recalls. Identifying defects early in the production process can prevent costly adjustments later on [23].

D. THE GROWTH OF INDIAN API INDUSTRY

- The Indian generic API industry is described as highly organized. This implies that there is structure, coordination, and regulation within the industry. India's API industry is known for its cost competitiveness. Indian manufacturers can produce APIs at lower costs compared to many other countries due to factors such as lower labor costs, economies of scale, and favourable regulatory environments [24,26].
- Organizations likely adhere to certain standards and regulations set by governing bodies. The industry is experiencing growth at a rate of about 10% per annum in value terms. This indicates that the Indian generic API industry is expanding steadily. Factors contributing to this growth may include increasing demand for generic medications globally, advancements in technology, and India's competitive advantage in pharmaceutical manufacturing. India has a large pool of skilled professionals in the pharmaceutical sector, including chemists, researchers, and engineers. This skilled workforce contributes to the development, production, and quality control of APIs. Indian API manufacturers have invested in modern infrastructure and technology to enhance production capabilities and comply with international quality standards. This investment has improved efficiency and competitiveness in the global market [27].
- India has a robust regulatory framework for the pharmaceutical industry, with agencies such as the Central Drugs Standard Control Organization (CDSCO) ensuring compliance with quality standards and regulations. Adherence to stringent regulatory requirements has enhanced the reputation of Indian APIs in global markets. Indian API manufacturers have increasingly focused on research and development (R&D) activities to innovate and develop new APIs. This emphasis on R&D has enabled the industry to expand its product portfolio and cater to evolving healthcare needs worldwide, he increasing demand for affordable generic medicines globally has provided opportunities for Indian API manufacturers. India is a leading supplier of generic drugs to markets across the world, and APIs form a crucial component of these pharmaceutical products. Overall, the growth of the Indian API industry is driven by factors such as cost competitiveness, skilled workforce, investment in infrastructure, regulatory compliance, focus on R&D.
- With continued emphasis on quality, innovation, and sustainability, the Indian API industry is expected to further expand its presence in the global pharmaceutical market. In these circumstances, it should be noted that the pharmaceutical industry is facing increasing pressure from a variety of sources, such as stricter and more demanding regulatory requirements for novel NCEs to be approved as APIs;

rising R&D costs; and the inability to pay the high prices for the costly novel formulations resulting from novel APIs due to the cost-constrained healthcare systems across the globe and significant revenue losses owing to patent expirations on their inventions.

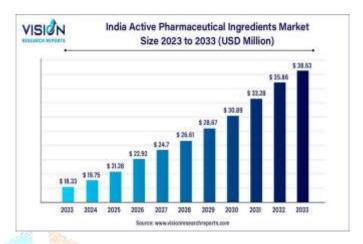


Fig No. 2: Market of API in India

- With continued emphasis on quality, innovation, and sustainability, the Indian API industry is expected to further expand its presence in the global pharmaceutical market. In these circumstances, it should be noted that the pharmaceutical industry is facing increasing pressure from a variety of sources, such as stricter and more demanding regulatory requirements for novel NCEs to be approved as APIs; rising R&D costs; and the inability to pay the high prices for the costly novel formulations resulting from novel APIs due to the cost-constrained healthcare systems across the globe and significant revenue losses owing to patent expirations on their inventions. MOR

E. Challenges in the development of API

1. Complexity of Synthesis Chemical Complexity

- The intricate structure of many APIs can complicate synthesis, leading to longer development times [29].

Calability

- Methods effective on a small scale often fail to translate to larger production [29].

2. Regulatory Hurdles Compliance-

- Meeting the stringent requirements of regulatory bodies like the FDA can delay development [30].

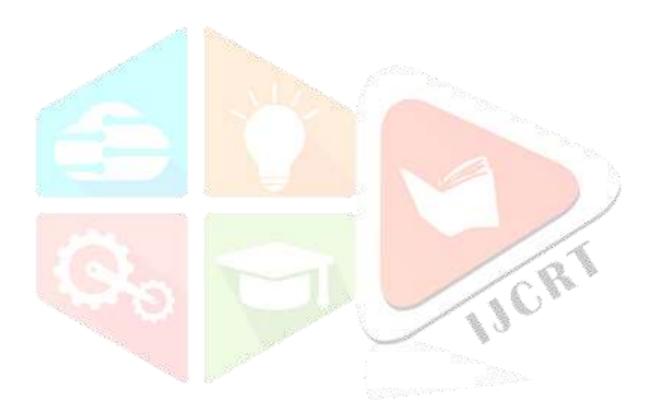
3. Documentation-

- Extensive documentation is necessary for approval, requiring significant resources [30].

4. Quality Control Consistency -

- Ensuring batch-to-batch consistency is essential but challenging [30].

- **Analytical Methods -**
- Developing reliable methods for quality assurance can be complex [31].
- 4. Cost Constraints
- **High Development Costs -**
- R&D can be extremely expensive, particularly for innovative APIs [32].
- **Market Access-**
- Balancing production costs with market prices poses challenges [32].
- **5. Intellectual Property Issues**
- Patents -
- Protecting intellectual property while navigating patent landscapes can be complex [33].
- 6. Supply Chain Issues
- Raw Material Availability
- Securing quality raw materials is often difficult, especially globally [34].
- **Logistics**
- Sensitive APIs require stringent controls during transport [34].


d566

Reference

- [1] Lapworth DJ, Baran N, Stuart ME, et al. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut. 2012;163:287–303.
- [2] Wilkinson J, Hooda PS, Barker J, et al. Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environ Pollut. 2017;231(1):954–970.
- [3] Bottoni P, Caroli S. Presence of residues and metabolites of pharmaceuticals in environmental compartments, food commodities and workplaces: a review spanning the three-year period 2014–2016. Microchem J. 2018;136:2–24.
- [4] Fiorentino G, Ripa M, Ulgiati S. Chemicals from biomass: technological versus environmental feasibility. A review. Biofuel Bioprod Biorefin. 2017;11(1):195–214.
- [5] Sudhakaran VK, Borkar PS. Phenoxymethyl penicillin acylase: sources and study—A sum up. Hindustan Antibiot Bull. 1985b;27(1–4):44–62.
- [6] Demain AL. Small bugs, big business: the economic power of the microbe. Biotechnol Adv. 2000;18(6):499–514.
- [7] Vroom De E (1997). An improved immobilized penicillin G acylase. WO Patent WO. PubMed: 1997004086, A1.
- [8] Bianchi D, Bartolo R, Olini P, et al. Application of immobilised enzymes in the manufacture of betalactam antibiotics. Chim E l'Industria Milan. 1998;80(38):879–885.
- [9] Bongaerts J, Krämer M, Müller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng. 2001;3(4):289–300.
- [10] Kim CU, Lew W, Williams MA, et al. Structure–activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem. 1998;41(14):2451–2460.
- [11] Zhou X, Zhou X, Liu G, et al. Integrated production of gluconic acid and xylonic acid using dilute acid pretreated corn stover by two-stage fermentation. Biochem Eng J. 2018;137:18–22. 2018 Sept 15.
- [12] Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69(16):2671–2690.
- [13] Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol. 2001;55(3):263–283.
- [14] Nielsen J, Keasling JD. Synergies between synthetic biology and metabolic engineering. Nat Biotechnol. 2011;29(8):693–695.

- [15] [15] Tyo KE, Alper HS, Stephanopoulos GN. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 2007;25(3):132–137.
- [16] "Small Molecules as Therapeutic Agents," Journal of Medicinal Chemistry, vol. 63, no. 1, 2020, pp. 1-5. DOI: 10.1021/acs.jmedchem.9b01234.
- [17] "The Role of Biologics in the Treatment of Chronic Diseases," Nature Reviews Drug Discovery, vol. 15, no. 2, 2016, pp. 75-91. DOI: 10.1038/nrd.2015.64.
- [18] "Peptides as Therapeutic Agents: A Review," European Journal of Medicinal
- Chemistry, vol. 67, 2013, pp. 1-12. DOI: 10[18].1016/j.ejmech.2013.03.0
- [19] "Nucleotide-Based Therapeutics: A Review," Molecular Therapy, vol. 25, no. 1, 2017, pp. 20-30. DOI: 10.1016/j.ymthe.2016.08.012.
- [20] FDA (2016). Guidance for Industry: Quality Systems Approach to Pharmaceutical cGMP Regulations.
- [21] World Health Organization (WHO). Guidelines on Good Manufacturing Practices.
- [22] ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use) Guidelines.
- [23] Juran, J. M. (1999). Juran's Quality Handbook.
- [24] Hoque, A., & Das, S. (2021). Trends in productivity growth of Indian pharmaceutical industry: a growth accounting analysis. Journal of Pharmaceutical Research International, 33(47A), 437-446.
- [25] Tripathy, I. G., Yadav, S. S., & Sharma, S. (2009). Measuring the efficiency of pharmaceutical firms in India: An application of data envelopment analysis and to bit estimation. Comparative Analysis of Enterprise Data (CAED), 74-75.
- [26] Wouters, O. J., McKee, M., & Luyten, J. (2020). Estimated research and development investment needed to bring a new medicine to market, 2009-2018. Jama, 323(9), 844-853.
- [27] Hedges, J. (2015). "Challenges in the synthesis of complex drug molecules." Organic Process Research & Development, 19(9), 1130-1137.
- [28] DA. (2021). "Guidance for Industry: Q8(R2) Pharmaceutical Development." U.S. Department of Health and Human Services.
- [29] Hedges, J. (2015). "Challenges in the synthesis of complex drug molecules." Organic Process Research & Development, 19(9), 1130-1137.
- [30] FDA. (2021). "Guidance for Industry: Q8(R2) Pharmaceutical Development." U.S. Department of Health and Human Services.

- [31] Huber, C. et al. (2018). "Quality control of pharmaceutical APIs: Analytical methods and challenges." Pharmaceutical Development and Technology, 23(3), 233-243. [32] DiMasi, J.A. et al. (2016). "Innovation in the pharmaceutical industry: New estimates of R&D costs." Journal of Health Economics, 47, 20-33.
- [33] Ronn, K. (2020). "Intellectual property rights in pharmaceuticals: Strategies and challenges." European Journal of Law and Economics, 50(2), 127-146.
- [34] Nunes, C. et al. (2021). "Challenges in pharmaceutical supply chains: A review of recent trends." Journal of Supply Chain Management, 57(1), 34-50.

