IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Understanding Benefits And Risks Of Agrochemicals

Dr. Vijay Kumar, Department of chemistry, magadh university, bodh-gaya

Abstract:

Agrochemicals are widely used in most areas of crop production to prevent crops from losing yield and lowering product quality by reducing pest infestations. As a result, they are crucial in ensuring farmers make a lot of money, supplying dependable supplies of agricultural produce at prices that are affordable to consumers, and raising the quality of the produce in terms of its cosmetic appeal, which is also important to buyers. Agrochemical use can benefit a wide range of people, not just farmers and consumers, but also the general public. At the same time, there is evidence that the use of these chemicals poses risks to humans and the environment, both directly and indirectly. Despite the fact that scientists and the general public have frequently discussed the actual, anticipated, and perceived dangers that agrochemicals pose to people and the environment, nobody will ever know for sure whether a agrochemical is safe. So, a big question that always comes up is whether or not we are willing to take the risks of using agrochemicals in order to reap the benefits. Concerns about agrochemicals and their use must be dispelled, awareness raised, support generated, and sound public policy implemented. Developing a diverse toolbox of pest control strategies that includes safe products and practices that integrate chemical approaches into an overall and ecologically based framework that will optimize sustainable production, environmental quality, and human health is the most promising opportunity for maximizing benefits and minimizing risks.

Key words: Agrochemicals, crop protection, pest control, human health, risk communication.

Introduction:

Insects, plant diseases, weeds, and a great number of other living organisms, including nematodes, arthropods other than insects, and vertebrates that pose a threat to our food supply, health, or comfort are all examples of destructive pests that are controlled by agrochemicals, both naturally occurring and man-made. Chemicals that are biologically active and disrupt the normal biological processes of living organisms considered to be pests—insects, mold or fungi, weeds, or noxious plants—are specifically referred to as agrochemicals. Agrochemicals are widely used in most areas of crop production to prevent crops from losing yield and lowering product quality by reducing pest infestations.

Agrochemicals have been around for a long time. In fact, the use of agrochemicals on purpose dates back thousands of years, when the Sumerians, Greeks, and Romans used sulphur, mercury, arsenic, copper, and plant extracts to kill pests. However, the crude chemistry and inadequate application methods frequently resulted in subpar results. After World War II, the introduction of DDT (dichlorodiphenyltrichloroethane), BHC (benzene hexachloride), aldrin, dieldrin, endrin, and 2,4-D (dichlorophenoxyacetic acid) sparked a flurry of agrochemical use. Because they were inexpensive, effective, and simple to use, these new chemicals became extremely popular. However, some pests developed genetic resistance to agrochemicals under constant chemical pressure, harm was done to non-target organisms, and agrochemical residues frequently appeared in unexpected places. The public's faith in the use of agrochemicals was shaken in 1962 when Carson's book "Silent Spring" came out. The book said that agrochemicals have bad effects on the environment, especially on birds.

Carson also said that public officials accepted the claims made by the chemical industry without question and that the chemical industry was spreading false information. Even though the report's quality had been severely criticized, that book was more explicit than ever about the dangers of agrochemicals. As a result, research has shifted toward cropping practices that use fewer agrochemicals and agrochemical-specific agrochemicals.

Researchers began developing an alternative approach to pest control known as integrated pest management (IPM) at the end of the 1960s as a result of a movement toward crop protection methods that were better for the environment. With natural predators and parasites, resistant varieties, cultural practices, biological controls, various physical techniques, and agrochemicals as a last resort, integrated pest management (IPM) is a pest control strategy that employs a variety of complementary methods to maintain economically insignificant levels of pests. Because the elimination of a pest may also result in the loss of the beneficial pre-dators or parasites that require the pest in order to survive, IPM assumes that low levels of pests are tolerable, so eradication is not always a goal or even desirable in some instances. Agrochemical use is rarely a substitute for IPM; rather, it is more frequently used to increase or decrease the overall amount of agrochemicals used. However, when an emergency pest outbreak occurs, agrochemicals are frequently the only viable option, even with IPM. Additionally, in some instances, any pest level is intolerable. For instance, the majority of consumers would not purchase fruit or vegetables with insect or plant disease blemishes, and the majority of people would find even the presence of one rat in their home intolerable. Farmers are forced to use agrochemicals because they cannot afford to produce food with even the tiniest signs of pest damage.

Over the past 60 years, chemical crop protection has made remarkable progress, not only in the development of novel active ingredients but also in the evaluation of these chemicals' environmental behavior, the presence of residues in crop plants, and their potential toxicity to humans and the environment (Muller, 2002). The process of looking for new agrochemicals has been completely rethought as a result of incredible advancements in molecular biology, chemistry, and biology. In addition, requirements regarding environmental and human safety have evolved. The challenge is greater than ever: creating new agrochemicals with novel modes of action, improved safety profiles, and adaptability to the shifting demands of the food and feed production chain. In spite of the emergence of novel biotechnological solutions, chemical crop protection appears to be a well-established technology that will likely continue to play an important role in agribusiness. It supports sustainable production of food, feed, and fiber. In 2001, global expenditures for agrochemicals totaled more than \$32.5 billion (Fishel, 2007), whereas the United States applies approximately 500 million kilograms of more than 600 distinct types of agrochemicals annually at a cost of \$10 billion (Pimentel and Greiner, 1997).

Understanding agrochemical benefits

Agrochemicals can provide a wide range of benefits, many of which go unnoticed by the general public. The economic benefits derived from protecting commodity yield and quality and reducing other costly inputs like fuel and labor for farmers are the most obvious and easiest to quantify. Pest-induced losses were more than 50% of attainable crop output in some regions, according to estimates of global losses from pests for eight crops (Oerke et al., 1994). Bugs caused annihilation of 15% of yields, illness microorganisms and weeds 13% each, and post-collect nuisance pervasions another 10%. Food prices would soar and production of food would decrease without agrochemicals. Farmers would be less competitive on major global commodity markets if production fell and prices rose. Using agrochemicals to stop or reduce pest losses in agriculture increases yields, which in turn ensures consistent supplies of agricultural goods at prices that are affordable to consumers. It also improves the quality of the produce in terms of its cosmetic appeal, which is also important to buyers.

Agrochemicals are also utilized extensively in numerous other contexts, some of which the majority of the general public is unaware of. When left unchecked, these organisms have a negative effect on human activities, infrastructure, and the materials used in everyday life, just as pests in agriculture and public health cause losses, spoilage, and damage. This negative effect can be avoided in large part, but agrochemicals are often not noticed. As a result, agrochemical benefits can accrue to a variety of recipients, including society as a whole and farmers and consumers. If left unchecked, for instance, the growth of trees and bushes beneath power lines would result in power outages. The use of herbicides gets rid of the problem and makes it easier to do maintenance and repairs. For the sake of safety, road crews use herbicides to control the vegetation along highways; clear the sides of roads to make it easier for drivers to see and for water to flow out of them more quickly in a rainstorm or flood. Invasive weeds can also be controlled with herbicides in parks, wetlands, and natural areas.

Maintaining aesthetic quality, safeguarding human health from disease-carrying organisms, eradicating nuisance pests, and safeguarding other organisms, including endangered species, from pests are additional benefits. We frequently take agrochemical use for granted in our homes and businesses. Plastics, paints, and caulks, for instance, may contain mold-preventing fungicides. Agrochemicals are frequently found in disinfectants and cleaners for toilet bowls.

In processing, manufacturing, and packaging facilities, the controlled application of insecticides safeguards raw goods and grocery products from insect contamination. In grocery stores, agrochemicals are used to control rodents and insects that are drawn to food and food waste. Davis and co. 1992), nearly all families (97.8%) used agrochemicals at least once a year, with two thirds using them more than five times a year. Agrochemical use by families was most common in the home, where 80% of families used them at least once a year. After that, 57% of families used herbicides to get rid of weeds in their yards, and 50% of families used insecticides to get rid of fleas and ticks on their pets. Agrochemicals were also used by a lot of families in the orchard or garden (33%). It goes without saying that using agrochemicals correctly improves quality of life, safeguards our property, and fosters a healthier environment.

Calculating these non-monetary benefits of using agrochemicals is difficult. Putting dollar-based values on things like aesthetic quality, the survival of certain endangered species, and peace of mind has been a problem for policymakers for a long time. In reality, policymakers rarely place as much importance on benefits that cannot be measured in the market as they do on market-based benefits, so they tend to ignore them. The creation of a profile of agrochemical use typically serves as the foundation for the benefit estimation for each agrochemical. However, data are frequently difficult to obtain, and in some instances, particularly for minor crops and uses that are not related to agriculture, they do not exist. A major obstacle to accurately estimating the impact of changes in agrochemical availability is the absence of a agrochemical use database. The absence of market data and economic models for non-agricultural agrochemicals and minor crops impedes the development of realistic economic analyses. For a lot of commodities for which there are huge surpluses, even the potential economic benefits of higher crop yields are hazy. In addition, it is challenging to evaluate the overall benefits of a agrochemical when they are unevenly distributed among a variety of impacted groups, including agrochemical users, non-users (such as organic growers), other market participants (such as shippers and retailers), residents of the areas where the agrochemicals will be applied, consumers of products treated with agrochemicals, formulators, marketers, and applicators. Obviously, the risks and benefits for these various groups will differ greatly, but they should all be taken into account.

Understanding agrochemical risks

There is no human endeavor that is risk-free in every way. There is risk in some form in every facet of our day-to-day lives. It can be risky to do nothing at all. We must weigh each activity's benefits against its risks in every situation. This holds true for the safe and efficient use of agrochemicals as well. Agrochemicalrelated risks to people and the environment have been the subject of debate among scientists and the general public for decades. It goes without saying that agrochemical use in modern agriculture has long been accepted as a part of the business. At the same time, there is evidence that using these chemicals poses risks, both directly and indirectly (Metcalf, 1987; Woodruff and other, 1994; 1996, Koh and Jeyaratnam; 1996, Van der Werf; 2005 Pimentel). This is probably due to the fact that while widespread use of agrochemicals provides immediate benefits primarily to the agricultural industry, society as a whole faces long-term risks. It appears that people have become increasingly concerned about the use of agrochemicals and other agrichemicals over the past few years, despite ongoing disagreements regarding the degree of risk posed by agrochemicals (Dunlap and Beus, 1992). This rise in concern coincides with the emergence of a more widespread concern regarding the quality of the environment, the emergence of a growing health consciousness among the general public, and frequently the mistrust of regulations enacted by authorities to safeguard human health and the environment. The degree to which modern life is perceived as "risky" appears to have increased as a result of these interacting trends.

Agrochemicals, as was mentioned earlier, are beneficial, but they also come with risks. However, what are the risks associated with each specific agrochemical? How many and what kinds of organisms are in danger? Are we willing to take the risks in order to reap the rewards? These concerns must be addressed, and authorities must ultimately determine what constitutes acceptable risk. The question is not only whether agrochemicals pose a threat, but also to what extent and to whom they pose a threat. Sadly, evaluating the safety of any substance, including agrochemicals, is difficult because of unknowns. When determining whether a agrochemical can be used in a way that is both beneficial and within the acceptable risk limits, scientific data, policy guidelines, and professional judgment all need to be taken into consideration. From a scientific standpoint, a product is presumed safe if the risks associated with it are minimal. However, in

order to support that assumption, the four points listed below must prevail: Conditions can't change so much that the assumptions and methods used in the supportive risk assessment can't be used anymore. The user has to follow the directions on the product's label, the product has to work as expected when it's released into the environment, and using the product can't cause problems that lab and field test data didn't show before. In reality, we will never know for sure whether a agrochemical is safe or not: In real life, the line between safe and dangerous is never as clear as it is in science. Agrochemicals are designed to work with minimal risk and reasonable certainty. However, they live in a world of "what ifs" that go beyond the scope of scientific evidence; Additionally, it is frequently the "what ifs" that inform policymakers of data gaps. Scientists are able to declare openly that there are no significant issues with a agrochemical based on an evaluation of the best data available at the time. In reality, however, there are a lot of reasons why we may never know for sure if it is safe at all times or how it will perform in hypothetical or future situations. The tools and techniques available to scientists are constrained, and new developments constantly reshape our capabilities.

Agrochemical products typically need to have a lot of scientific data to get registered. However, the more data we have, the more questions we have, and science frequently fails to provide definitive solutions. Issues can traverse many disciplines for example medication, science, and science, which make arrangements hesitant. In a similar vein, the scientific understanding of agrochemical exposure and the potential health effects of residential agrochemical use is a highly complex area of research that relies on data and knowledge from a variety of different fields, such as toxicology and epidemiology. For establishing reference doses and comprehending the potential health effects of agrochemical exposure, toxicological studies provide an essential foundation. However, it has been argued that they are unable to accurately predict the nature and magnitude of the health effects of our environmental exposures in the real world. Agrochemical safety in its purest sense will never be established. Safety may never be defined or demonstrated by science. However, the "what ifs" will continue to be the driving force behind regulatory agencies, manufacturing, marketing, public interest groups, the application industries, judicial procedures, and science. There is an interesting and unintended side effect despite the abundance of scientific data. A public mindset of distrust and disbelief is cultivated by the fact that scientific, government, and industrial interests frequently disagree with many data analyses. The general public is taught to rely on experts, but we warn them that experts disagree. So, on the one hand, we praise science's power; However, we warn that science cannot always respond to "what ifs."

Conclusion

Regardless of the subject, understanding produces perspective; and weighing the risks requires an understanding of the advantages of agrochemicals. Understanding how risk is determined, which factors (such as the characteristics of the exposed population) control the potential for risk, what experience has shown about the risk, and what can be done to minimize the risk are necessary for determining potential risks associated with agrochemical use. The results must then be weighed against the advantages of using agrochemicals, taking into account any available alternatives and their advantages and disadvantages.

Agrochemical use has always been and will always be controversial in our society. People are concerned about the very real and significant trade-offs involved. It is challenging to persuade people to comprehend and accept risk. It is also challenging to persuade people to acknowledge and respect risk. Our individual beliefs are based on what we know; Furthermore, our knowledge is heavily influenced by the information we obtain from various sources. The basis for a person's position on the issue is their personal values and knowledge of agrochemicals.

There are many different points of view about the dangers of agrochemicals, but most people tend to focus on ideas that go along with their own agenda, or ideas that confirm what they already think. Technical information on its own probably won't be able to effectively address public concerns or necessarily lessen regulatory restrictions. Keeping up with scientific developments, presenting concepts that are understandable, non-threatening, and clear to the audience, and comprehending public concerns are all necessary for effective risk communication. Equity must be applied to questions, responses, discussions, and what may appear to be unreasonable concerns (or a lack of concern). The primary objective is to steer sound public policy, raise awareness, cultivate support, and reduce unreasonable fears.

Pest control can be achieved without the use of agrochemicals, according to those who oppose their use. Although this may be the case in a few isolated instances, the majority of pest management programs on farms, in homes, parks, natural areas, and so forth frequently rely on a combination of chemical and nonchemical methods to control pests. Developing a diverse toolbox of pest control strategies that includes safe products and practices that integrate chemical approaches into an overall and ecologically based framework

that will optimize sustainable production, environmental quality, and human health is the most promising opportunity for maximizing benefits and minimizing risks.

REFERENCES

- 1. Davis JR, Brownson RC, Garcia R (1992). Family agrochemical use in the home, garden, orchard, and yard. Arch. Environ. Contam. Toxicol.22: 260-266.
- 2. Dunlap RE, Beus CE (1992). Understanding public concerns about pesti-cides: an empirical examination. J. Consum. Aff. 26: 418-438.
- 3. Fishel FM (2007). Agrochemical use trends in the U.S.: global comparison. Florida Cooperative Extension Service, University of Florida. PI-143.
- 4. Koh D, Jeyaratnam J (1996). Agrochemicals hazards in developing countries. Sci. Total Environ. 188: S78-S85 (Suppl.).
 - 5. Metcalf RL (1987). Benefit/risk considerations in the use of agrochemicals. Agric. Human Values 4: 15-25.
 - 6. Muller U (2002). Chemical crop protection research: methods and challenges. Pure Appl. Chem. 74: 2241-2246.
 - 7. Oerke EC, Dehne HW, Schonbeck F, Weber A (1994). Crop production and protection: estimated losses in major food and cash crops. Elsevier Science Ltd, Amsterdam, Netherlands. P. 808.
 - 8. Pimentel D (2005). Environmental and economic costs of the application of agrochemicals primarily in the United States. Environ. Dev. Sustain. 7: 229-252.
 - 9. Pimentel D, Greiner A (1997). Environmental and socio-economic costs of agrochemical use. In: Techniques for reducing agrochemical use: Environ- mental and Economic Benefits. Pimentel D (ed). John Wiley and Sons, Chichester, UK. pp 51-78
 - 10. Van der Werf HMG (1996). Assessing the impact of agrochemicals on the environment. Agric. Ecosyst. Environ. 60: 81-96.
 - 11. Woodruff TJ, Kyle AD, Bois FY (1994). Evaluating health risks from occupational exposure to agrochemicals and the regulatory response. Environ. Health Perspect. 102: 1088-1096.

