IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Qualitative Phytochemistry Of Siddha Formulation Vatharoga Chooranam

¹Dr.T.Sathya Nandini, ²Dr.M.Anitha, ³Dr. U.Chitra MD(S)

^{1&2}Pg scholar, Pg Pothu Maruthuvam, Government Siddha Medical College, Chennai-106.

³Lecturer-Pg Pothu Maruthuvam, Government Siddha Medical College, Chennai-106.

Abstract:Introduction: The Siddha system, one of the oldest documented medical traditions originating from the Indian subcontinent, has a rich history rooted in ancient times. Its founders, the Siddhars, have recorded numerous remedies throughout the ages. Vatharoga Chooranam (VC), a herbo-mineral formulation, is traditionally recommended for treating various vatha diseases, according to classical Siddha texts. Among the 80 vatha diseases, Cervical Spondylosis is one condition that may potentially benefit from VC. In today's globalized world, ensuring the authenticity of such formulations through drug standardization and proper dissemination is crucial. VC was standardized following PLIM guidelines, marking an important step toward its acceptance in Western practices. Materials and Methods: VC was produced in strict compliance with Good Manufacturing Practices (GMP). The standardization process involved phytochemical analysis, testing for pesticide residues, sterility testing using the pour plate method, an aflatoxin assay, and heavy metal analysis. This study was conducted at Noble Research Solution's facility, following the rigorous PLIM standards. The phytochemical analysis took place at Tamil Nadu Dr. M.G.R. Medical University, Guindy, Chennai. Results: The research revealed the presence of carbohydrates, saponins, phenols, phytosterols, diterpenes, flavonoids, tannins, quinones, glycosides, gum, and mucilage in the phytochemical analysis. No microbial colonies or growth were observed. Conclusion: The published findings can serve as a valuable foundation for future clinical research and further standardization efforts. Key words: Vatharoga Chooranam (VC), Cervical Spondylosis, Degenerative disorders, phytochemistry, Dr.M.G.R Medical university, Chennai, heavy metal analysis, pesticide residue, sterility test.

Index Terms – Vatharoga Chooranam (VC), Cervical Spondylosis, Heavy metal analysis, Aflotoxins, PLIM.

1.INTRODUCTION

Vatharoga Chooranam (VC), a traditional medicine rooted in the Siddha system, has been historically prescribed for the treatment of various "vatha" disorders, including cervical spondylosis. As traditional remedies gain increasing interest in modern healthcare, there is a growing need to ensure the safety, quality, and efficacy of such formulations. This study aims to evaluate VC for its phytochemical composition, the presence of potential contaminants, and microbial burden to ensure its safety for broader use. The safety profile of VC was assessed through rigorous testing for heavy metals, pesticides, and microbial contamination. Advanced techniques like Atomic Absorption Spectroscopy (AAS) and sterility testing were employed to determine the levels of these substances. The results were compared against established AYUSH and WHO guidelines, ensuring that VC meets the safety standards required for its application in modern healthcare. This assessment contributes significantly to the standardization of VC, paving the way for its wider acceptance and integration into contemporary medicinal practices.

2.MATERIAL AND METHODS

The polyherbal formulation was identified in the Siddha Classical Literature

"SARABENDIRAR V<mark>AITHI</mark>YA MU<mark>RAIGAL</mark> SI<mark>ROROGA SIGIT</mark>CHAI , PAGE

NO:[119]¹". The ingredients for this formulation are included in Table-1[1-6].

TABLE-1 INGREDIENTS OF VATHAROGA CHOORANAM

S.NO	INGREDIENTS	BOTANICAL NAME	QUANTITY
1	² Kadukurogini	Picrorhiza Scrophulariflora	3 Palam
2	³ Karkadagasingi	Rhus succedanea	3 Palam
3	⁴ Kandankathiri ver	Solanam Burattense	1 Palam
4	⁵ Jatamanjil	Nardostachys grandiflora	1 Palam
5	⁶ Siruthekku	Clerodendrum serratum	1 Palam
6	Indhuppu	Sodium Chloride impura	1 Palam

3.COLLECTION, IDENTIFICATION AND AUTHENTICATION OF THE DRUG

All necessary plant materials were procured from a raw drug shop located at Parry's Corner in Chennai, Tamil Nadu. These materials were subsequently verified and confirmed by botanical and pharmacological experts at the Government Siddha Medical College Hospital in Arumbakkam, Chennai – 106.

3.1PURIFICATION OF THE DRUGS

All the drugs were purified according to Siddha Literature.

3.2PREPARATION OF THE DRUG

PROCEDURE:

All the purified ingredients listed in Table 1 (1-6) were taken in above mentioned quantity, mildly roasted, pounded and finely powdered. The obtained powder was sieved well using sieving cloth. Then Vatharoga Chooranam was stored in an air tight container.

4. STANDARDIZATION OF THE DRUG

I. PRELIMINARY PHYTOCHEMICAL SCREENING OF VATHAROGA CHOORANAM The preliminary phytochemical screening test was carried out for each aqueous extract of VATHAROGA CHOORANAM as per the standard procedure mentioned here under

1. Detection of alkaloids:

Extracts were dissolved individually in dilute Hydrochloric acid and filtered.

Mayer's Test: Filtrates were treated with Mayer's reagent (Potassium Mercuric Iodide). Formation of a yellow colour precipitate indicates the presence of alkaloids.

a) Wagner's Test: Filtrates were treated with Wagner's reagent (Iodine in PotassiumIodide). Formation of brown/reddish precipitate indicates the presence of alkaloids.

2. Detection of carbohydrates:

Extracts were dissolved individually in 5 ml distilled water and filtered. The filtrates were used to test for the presence of carbohydrates.

Molisch's Test: To 2 ml of plant sample extract, two drops of alcoholic solution of α - naphthol are added. The mixture is shaken well and few drops of concentrated sulphuric acidis added slowly along the sides of test tube. A violet ring indicates the presence of carbohydrates.

a) Benedict's Test: Filtrates were treated with Benedict's reagent and heated gently. Orange red precipitate indicates the presence of reducing sugars.

3. Detection of saponins

Foam Test: 0.5 gm of extract was shaken with 2 ml of water. If foam produced persists for ten minutes it indicates the presence of Saponins.

4. Detection of phytosterols:

Salkowski's test

Extracts was treated with chloroform and filtered; the filtrates were treated with few drops of conc. Sulphuric acid, shaken and allowed to stand for few minutes. Golden yellow color indicates the presence of Triterpenes

5. Detection of phenols Ferric Chloride Test:

Extracts were treated with 3-4 drops of ferric chloride solution. Formation of bluish black colorindicates the presence of phenols.

6. Detection of tannins Gelatin Test:

The extract is dissolved in 5 ml of distilled water and 2 ml of 1% solution of Gelatin containing 10% NaCl is added to it. White precipitate indicates the presence of phenolic compounds.

7. Detection of Flavonoids

Lead acetate Test: Extracts were treated with few drops of lead acetate solution. Formation of yellow color precipitate indicates the presence of flavonoids. NOR

8. <u>Detection of diterpenes:</u>

Copper Acetate Test:

Extracts were dissolved in water and treated with 3-4 drops of copper acetate solution. Formation of emerald green color indicates the presence of diterpenes.

9.Gum and Mucilage:

To 1ml of extract add 2.5ml of absolute alcohol and stirring constantly. Then the precipitate was dried in air and examine for its swelling properties. Swelling was observed that will indicate presence of gum and mucilage.

10.Test for glycosides

Liebermann's test

2ml of extract was treated with 2ml chloroform and 2ml of acetic acid, violet color change into blue and green indicates the presence of glycosides.

11.Test for Ouinones:

Extract was treated with sodium hydroxide blue or red precipitate indicates the presence of Quinones.

The Preliminary phytochemical studies of aqueous extract of **VATHAROGA CHOORANAM** were done using standard procedures. The results were presented in tables. The present study reveals that the bioactive compounds were present in all the extracts of **VATHAROGA CHOORANAM**.

S.No.	S.No. Phytochemicals Test Name		H ₂ O Extract	
1	Alkaloids	Mayer's Test	-ve	
		Wagner Test	-ve	
2	Carbohydrates	Molisch's Test	+ve	
politic little		Benedict Test	+ve	
3	Saponin	Foam Test	-ve	
4	Phytosterols	Salkowski's	+ve	
5	Phenols	Ferric Chloride Test	+ve	
6	Tannins	Gelatin Test	+ve	
7	Flavonoids	Lead acetate	+ve	
8	Diterpenes	Copper Acetate Test	+ve	
9	Gum & Mucilage	Test for Gum & Mucilage	+ve	
10	Glycosides	Liebermann's test	-ve	
11	Quinones	Test for Quinones	+ve	

+ve/-ve present or absent if component tested

Certified that the above stated are the phytochemical properties for the given sample.

II.HEAVY METAL ANALYSIS BY AAS

Standard: Hg, As, Pb and Cd - Sigma

a.Methodology

Atomic Absorption Spectrometry (AAS) is a very common and reliable technique for detecting metals and metalloids in environmental samples. The total heavy metal content of the sample was performed by Atomic Absorption Spectrometry (AAS) Model AA 240 Series. In order to determination the heavy metals such as mercury, arsenic, lead and cadmium concentrations in the test item.

b.Sample digestion

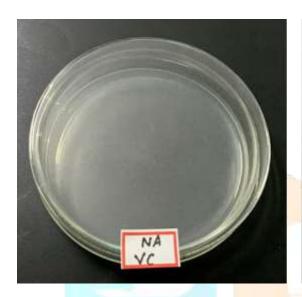
Test sample was digested with 1mol/L HCl for determination of arsenic and mercury. Similarly, for the determination of lead and cadmium the sample were digested with 1mol/L of HNO3. c.Standard reparation

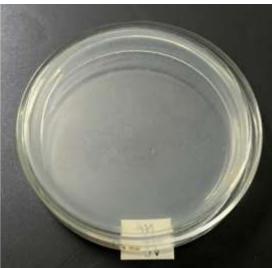
As & Hg- 100 ppm sample in 1mol/L HCl Cd & Pb- 100 ppm sample in 1mol/L HNO3.

BDL- Below Detection Limit

Report and Inference

Results of the present investigation have clearly shows that the sample has no traces of heavy metal such as Arsenic and Cadmium were as the sample evident the presence of Lead and Mercury at 7.174 and 0.358 ppm.


III.STERILITY TEST BY POUR PLATE METOD


Objective

The pour plate techniques were adopted to determine the sterility of the product. Contaminated / un sterile sample (formulation) when come in contact with the nutrition rich medium it promotes the growth of the organism and after stipulated period of incubation the growth of the organism was identified by characteristic pattern of colonies. The colonies are referred to as Colony Forming Units (CFUs).

Methodology

Test sample was inoculated in sterile petri dish to which about 15 mL of molten agar 45°C were added. Agar and sample were mixed thoroughly by tilting and swirling the dish. Agar was allowed to completely gel without disturbing it. (about 10 minutes). Plates were then inverted and incubated at 37° C for 24-48 hours and further extended for 72 hrs for fungal growth observation. Grown colonies of organism was then counted and calculated for CFU.

Observation

No growth was observed after incubation period reveals the absence of specific pathogen

Result

No growth / colonies was observed in any of the plates inoculates with the test sample.

Test	Result	Specification	As per AYUSH/WHO	
Total Bacterial Count	Absent	NMT 10 ⁵ CFU/g	As per AYUSH	
Total Fungal Count	Absent	NMT 10 ³ CFU/g	specification	

III.AFLATOXINS

Standard

Aflatoxin B1

Aflatoxin B2

Aflatoxin G1

Aflatoxin G2

Solvent

Standard samples was dissolved in a mixture of chloroform and acetonitrile (9.8 : 0.2) to obtain a solution having concentrations of 0.5 μ g per ml each of aflatoxin B1 and aflatoxin G1 and 0.1 μ g per ml each of aflatoxin B2 and aflatoxin G2

Procedure

Standard aflatoxin was applied on to the surface to pre coated TLC plate in the volume of $2.5 \mu L$, $5 \mu L$, $7.5 \mu L$ and $10 \mu L$. Similarly, the test sample was placed and Allow the spots to dry and develop the chromatogram in an unsaturated chamber containing a solvent system consisting of a mixture of chloroform, acetone and isopropyl alcohol (85: 10: 5) until the solvent front has moved not less than 15 cm from the origin. Remove the plate from the developing chamber, mark the solvent from and allow the plate to air-dry. Locate the spots on the plate by examination under UV light at $365 \mu L$.

Aflatoxin	Sample VC	AYUSH Specification Limit
B1	Not Detected - Absent	0.5 ppm (0.5mg/kg)
B2	Not Detected - Absent	0.1 ppm (0.1mg/kg)
G1	Not Detected - Absent	0.5 ppm (0.5mg/kg)
G2	Not Detected - Absent	0.1 ppm (0.1mg/kg)

Result: The results shown that there were no spots were being identified in the test sample loaded on TLC plates when compare to the standard which indicates that the sample were free from Aflatoxin B1, Aflatoxin B2, Aflatoxin G1 and Aflatoxin G2.

IV.PESTICIDE RESIDUE

a.Extraction

Test sample were extracted with acetone and followed by homogenization for brief period. Further filtration was allowed and subsequent addition of acetone to the test mixture. Heating of test sample wasperformed using a rotary evaporator at a temperature not exceeding 40°C until the solvent has almost completely evaporated. To the residue add a few milliliters of toluene and heat again until the acetone iscompletely removed. Resultant residue will be dissolved using toluene and filtered through membrane filter.

Test Result Analysis of the Sample VC

Pesticide Residue			
I.Organo Chlorine Pesticides	Sample VC	AYUSH Limit (mg/kg)	
Alpha BHC	BQL	0.1mg/kg	
Beta BHC	BQL	0.1mg/kg	
Gamma BHC	BQL	0.1mg/kg	
Delta BHC	BQL	0.1mg/kg	
DDT	BQL	1mg/kg	
Endosulphan	BQL	3mg/kg	
II.Organo Phosphorus Pesticides	Section 2000	50	
Malathion	BQL	1mg/kg	
Chlorpyriphos	BQL	0.2 mg/kg	
Dichlorovos	BQL	1mg/kg	
III. Organo carbamates			
Carbofuran	BQL	0.1mg/kg	
III.Pyrethroid	-11		
Cypermethrin	BQL	1mg/kg	

BQL- Below Quantification Limit

Result: The results showed that there were no traces of pesticides residues such as Organo chlorine, Organo phosphorus, Organo carbamates and pyrethroids in the sample provided for analysis.

5. DISCUSSION

The present study investigated the physicochemical properties, heavy metal content, sterility, aflatoxin content, and pesticide residue of Vatharoga Chooranam (VC), a polyherbal formulation.

Phytochemical Screening: The aqueous extract of VC revealed the presence of various bioactive compounds, including carbohydrates, saponins, phytosterols, phenols, tannins, flavonoids, diterpenes, and quinones. The absence of alkaloids and glycosides (as indicated by Liebermann's test) suggests specific characteristics of the formulation.

Heavy Metals: The analysis showed the presence of Lead and Mercury at 7.174 and 0.358 ppm in the

sample. While these levels were reported, their safety within the context of Ayurvedic or WHO standards is not mentioned. Further investigation is required to determine if these levels pose any health concerns.

Sterility and Aflatoxin Content: The sterility test indicated no bacterial or fungal growth, signifying that the product meets sterility standards (as per AYUSH/WHO) for safe consumption. Additionally, no aflatoxins (B1, B2, G1, or G2) were detected, ensuring the absence of these harmful toxins.

Pesticide Residue: The results indicated that no pesticide residues, including organochlorines, organophosphates, carbamates, or pyrethroids, were detected in the sample analyzed.

This exploratory study delves into the fundamental phytochemical characteristics of VatharogaChooranam (VC). The findings presented here in serve as a preliminary framework for future investigations into this Herbo-Mineral formulation. By building upon the insights gleaned from this study, subsequent research can delve deeper into the intricate properties and potential therapeutic applications of VC.

Conclusion:

This study offers initial insights into the physicochemical properties and quality of Vatharoga Chooranam. The presence of various bioactive compounds indicates its potential for therapeutic use. However, the detection of heavy metals (lead and mercury) requires further investigation to ensure safety. The absence of bacterial and fungal contamination, aflatoxins, and most pesticide residues reflects good quality standards, with no pesticide residues detected in the sample. Overall, this research provides a basis for further studies to assess the efficacy and safety of Vatharoga Chooranam.

Acknowledgement:

I would like to express my deepest gratitude to the esteemed faculty members of the PG Pothu Maruthuvam department at Government Siddha Medical College, Chennai, for their invaluable mentorship and insightful feedback, which have been crucial to the success of this research project. I am also sincerely thankful to Dr. K. Kanakavalli, Principal of Government Siddha Medical College, Chennai, and The Tamil Nadu Dr. M.G.R. Medical University for their continuous support. Additionally, I extend my heartfelt thanks to my colleagues and friends for their constant guidance and encouragement throughout this journey.

REFERENCE:

- [1] "Sarabendirar Vaithiya Muraigal Siroroga Sigitchai, Saraswathi Mahal Library ,Thanjavur Tamil University,Pg 119.
- [2] K.S. Murugesa Mudhaliyar, Gunapadam- Mooligai Vaguppu, Indian Medicine and Homeopathy, Third edition 2018,Page no:310
- [3] K.S. Murugesa Mudhaliyar, Gunapadam- Mooligai Vaguppu, Indian Medicine and Homeopathy, Third Edition 2018, Page no:372

- [4] K.S. Murugesa Mudhaliyar, Gunapadam- Mooligai Vaguppu, Indian Medicine and Homeopathy, Third Edition 2018, Page no:331
- [5] K.S. Murugesa Mudhaliyar, Gunapadam- Mooligai Vaguppu, Indian Medicine and Homeopathy, Third Edition 2018, Page no:628
- [6] K.S. Murugesa Mudhaliyar, Gunapadam- Mooligai Vaguppu, Indian Medicine and Homeopathy, Third Edition 2018, Page no:33
- [7]R.Thiyagarajan ,Gunapadam-Thathu,Jeeva Vaguppu, Indian Medicine and Homeopathy, Eighth Edition 2013, Page no:369
- [8]Indian Pharmacopeia Volume I, Government of India, Ministry of Health and Family welfare, Indian Pharmacopoeia commission, 2014
- [9]Pharmacopeial Laboratory for Indian Medicine (PLIM) Guideline for standardization and evaluation of Indian medicine which include drugs of Ayurveda, Unani and Siddha systems. Department AYUSH. Ministry of Health & Family Welfare, Govt. of India
- [10]Don Jacob. (9 May 2012) Citing Websites. Tablet weight variation and uniformity of weight of single dose preparations pharmacopeial requirements IP/BP/USP. Retrieved date. 21st December 2013
- [11]Protocol for Testing of Ayurvedic Siddha and Unani medicines, Ghaziabad: Department of AYUSH, pharmacopeial Laboratory for Indian Medicines; 2008. P. 49-50.