IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Lafora Disease: A Review

¹Onkar Appasaheb Kharat, ²Shivprasad Subhash Gholap, ³Sumedh Balasaheb Vighe, ⁴Pendbhaje Snehal Santosh.

¹²³Student (Mrs.Saraswati Wani College of D. Pharmacy, Ganegaon).

⁴Lecturer (Mrs.Saraswati Wani College of D. Pharmacy, Ganegaon).

Abstract:

Lafora disease is a progressive myoclonus epilepsy due to mutations in Laforin and Malin genes, with no substantial genotype-phenotype differences. Founder effects and recurrent mutations are common, and mostly Isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key.

We performed an open label, prospective study of 4 patients aged between 20 and 35 years with mutation. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and symptoms.

Key words: Lafora disease, Progressive Disease, Myoclonic epilepsy.

Introduction:

Lafora disease is a rare autosomal recessive and severe form of progressive myoclonus epilepsy. After onset, which usually occurs during late childhood or early adolescence, Lafora disease is invariably fatal, typically within 10 years. The condition was first described by Lafora and Glück over 100 years ago. A postmortem study showed profuse accumulation of small inclusion bodies in many tissues, including the brain. These inclusions, subsequently termed Lafora bodies, became the hallmark of the disease. They were shown to be composed primarily of abnormal glycogen4 placing Lafora disease in the context of glycogen metabolism disorders. The second known case of the around a dozen progressive myoclonus epilepsies is Laforadisease. The first case was seen by Spanish neuropathologist Gonzalo Lafora in the later half of the first decade of the 20th century when he was working close to Washington, DC, at the Government Hospital for the Insane at the time. Lafora was a student of Cajal, Alzheimer. He provided such thorough descriptions of the neurological characteristics, recessive inheritance, and disease progression that they have never actually been considerably improved upon. However, Lafora did not have access to a camera. He looked over a several of the patients autopsy brains and was the first to be alarmed by the sight of several huge two-layered spherical formations that frequently took up the whole neuronal cell bodies. These brains were obviously distinct from those of the

individuals whose progressive myoclonus epilepsy had any visible neuropathological correlate and who were reported by Unverricht in the closing years of the previous century. The pathology community did not start referring to the illness as Lafora's bodies until more than fifty years later, while Lafora was still alive.

Lafora Disease:

Lafora Disease is also known as Progressive myoclonus epllepsy. It is a rare disease in world.

Background:

Report, which came before the illness could be genetically categorized, was constrained by a tiny study group size of only two patients. This research indicated that linguistic and intellectual processes were mostly preserved but praxis was primarily affected by nondominant parietal lobe function. Another prominent trait is myoclonus. Myoclonus that occurs suddenly Gonzalo Rodrguez-Lafora, who first reported the distinctive intracellular inclusions observed in the disorder in 1920, is the name-bearer of Lafora disease. Lafora was a Cajal pupil, and Nanduri et al. exhaustively researched his life story. Lafora recounted a family of 14 siblings in his first paper and in a subsequent one with Glueck in which one male adolescent died from an epileptic disorder. Lafora noted the appearance of amyloid bodies filling the cells and squeezing the nuclei, despite the fact that the disease had already been documented.

Clinical Manifestation:

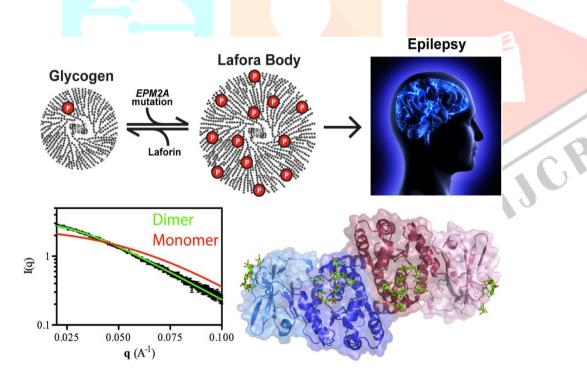
The disease often at around 15 years of age. There have been reports of early-onset cognitive impairment variations, which are detailed here. The illness is autosomal recessive in nature and is more prevalent in cultures where consanguinity is practiced, hence the incidence varies around the world myoclonus, and dementia were highlighted by Mouren and Roger. Generalized tonic-clonic An Italian study looked into the links between clinical traits and genetic phenotypes. The incidence of the many genetic variations of the disease will change in each population, as this work has shown. In the aforementioned example, the genetic variation that is less prevalent globally is the variation that is more prevalent in an Italian community. The most prevalent variety locally is also recorded less commonly worldwide in families described in Japan. It's possible that other descriptions in the literature date from before the disease was genetically classified and before we were aware of the many mutation kinds. Even in cases when founder effects have been thoroughly discussed, the clinical phenotype, particularly the age of onset, may vary greatly. The age of onset ranged by 4 years between the earliest and latest appearance of symptoms in a family of four siblings who all had the same genetic mutation. Delayed onset may start in the third decade or later. When the illness first manifests in early adulthood, the victims may live into their fifth decade.

The three main symptoms of Lafora disease seizures, myoclonus, and dementia were the index symptoms in a large group of 25 patients from 18 Indian families. Even though the individuals mentioned in the study belonged to various families, founder effects may prevent these symptoms from being universally typical. Non-convulsive status epilepticus is a rare early symptom of the illness in a previously healthy person. Other early symptoms could include headaches and academic difficulties. Lafora disease is characterized by dementia and cognitive impairment. The frontal lobes are primarily damaged, according to a combination of research comparing the neuropsychological profile and magnetic resonance spectroscopic indices. Lower levels of parietal engagement are present. Again, because a less prevalent genetic variant of Lafora illness was overrepresented. In this study, its generalizability may be constrained. Magnetic resonance spectroscopy investigations show abnormalities, including a decrease in N-acetylaspartate/creatinine ratios in the frontal lobes, the occipital lobes, the cerebellum, and the basal ganglia, as may be predicted of diseases with dementia and cerebellar dysfunction. Another earlier localization and spontaneously are both common. Variants like the induction of myoclonic characteristics by visual cues have been discussed. Visual impairment is one type of visual symptom.

There have also been reports of other visual manifestations, such as hallucinations, which are frequently attributed to ictal discharges. Antipsychotic drugs have been shown to work well against non-epileptic visual hallucinations, though. Rarely, nystagmus is documented in conjunction with late-onset optic atrophy; nevertheless, there was not clear histological evidence of Lafora disease in this group of patients with progressive myoclonic epilepsies. Given the typical situation of consanguinity, additional autosomal recessive concomitant disorder should be taken into consideration when uncommon clinical characteristics linked with Lafora disease, such as optic atrophy or macular degeneration, are documented.

Rarely, the disease may first emerge with extra-neurological symptoms such hepatic failure. Inadvertently observed abnormal liver functiontests have induced liver biopsy on their own. Heart involvement is uncommon, but it has been noted in two older people with heart failure who had no other evident causes, one of whom was a 8 year-old with very early-onset dementia and an associated cardiac conduction abnormality. There have been reports of a very delayed clinical course of Lafora illness in people with low levels of arylsulphatase A. The significance of this is unclear, however it is possible that the genetic mutation represented a slower variety of the disorder that was also coincidentally linked to pseudo-arylsulphatase deficiency. It is also possible for arylsulphatase deficiency, another genetic disorder, to coexist with Lafora disease. Intercurrent problems lead to mortality after prolonged neurological decline. Lafora illness is known to cause abrupt unexpected death in epilepsy, as is the case with all refractory epilepsies.

Even though magnetic resonance imaging scans typically do not indicate volume changes in the brain, necropsy performed after death may reveal hemispheres that have uniformly atrophied.


Pathophysiology:

The cases of Lafora illness that have been genetically verified are caused by mutations in two different genes. The aberrant production of laforin or malin, two different proteins, is what causes the disorder. Laforin has been shown to be a glycogen phosphatase that is formed in response the growth of polyglucosan. Then, Laforin controls a mechanism of negative feedback to suppress glycogen synthase.

Another procedure that similarly facilitates the elimination of glycogen synthase involves malin and laforin. When these processes go wrong, polyglucosan builds up and the distinctive inclusion bodies of Lafora disease emerge.

Amylolytic enzymes can break down glucose polymers called polyglucosans. Lafora bodies are comparable to corpora amylacea in this regard. Lafora bodies have been found to be most prevalent in layers III and V of the cortex during autopsies, and abnormalities in the pyramidal cells of these same layers have also been observed. The sensory and motor cortices in Lafora illness are hypoexcitable in response to afferent stimuli, according to EEG studies contrasting the condition with Unverricht-Lundborg disease, another form of progressive myoclonic epilepsy. Unknown factors cause the cortex's inhibitory control to be compromised, which leads to seizures. It is well known that these two disorders have quite different electrical characteristics. Unverricht-Lundborg disease exhibits early facilitation when looking at how afferent sensory inputs affect motor evoked potentials, whereas Lafora disease exhibits delayed and prolonged facilitation. According to positron emission tomography, Lafora illness is linked to decreased cerebral blood flow, cortical glucose metabolic rate, and oxygen metabolic rate.

Diagnostics:

An appropriate history and physical examination should provide indicators that Lafora illness may be present. It is highlighted how crucial it is to investigate the family history of consanguinity. In a review, Minassian discusses the clinical differential diagnosis. Consideration and suitable research should be given to juvenile myoclonic epilepsy. Other progressive myoclonic epilepsies, measles, subacutesclerosingpanencephalitics, neuronal ceriodlipofuscinoses, and secondary structural epilepsies as well. It is mandatory to undertake EEG and MRI, the two primary non- invasive investigations used to diagnose epilepsies, but as will be discussed below, they are not likely to provide a definitive answer. But the intricacies that were explained in both modalities might be useful.

Treatment:

Currently, AEDs are the only available treatments that control the severity and frequency of seizures and myoclonus to some degree in patients with Lafora disease. Medications include topiramate, ethosuximide, phenobarbital, zonisamide, felbamate and benzodiazepines. Most recently, perampanel, a new α -amino3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist AED, was shown to be effective in two single-case studies and a group of ten patients. The ketogenic diet was also tried in a group of patients with relatively advanced disease but was shown to be ineffective.

This finding was surprising given that the diet converts brain energy usage from glucose to fatty acids, thus presumably reducing the neuronal glucose availability for glycogen synthesis. Unpublished work from our laboratory did show the effectiveness of this diet in a Lafora disease mouse model, and the possibility remains that the failure in the clinical setting was attributable to the overly advanced disease in the treated patients rather than to actual ineffectiveness. have positive effects on neuronal survival and seizure termination. Studies in a mouse model of Lafora disease showed that metformin ameliorated neuropathological symptoms, reduced seizure susceptibility and slightly reduced the numbers of bodies. No clinical data are yet available regarding the efficacy of metformin as a treatment for Lafora disease. The dietary supplement sodium selenate has been shown to reduce neurodegeneration, gliosis, seizure susceptibility and memory loss in a mouse model of Lafora disease. However, a gradual decline in overall motor conditioning following an initial improvement in the treated mice raised doubts about the efficacy of the drug as a potential treatment for Lafora disease.

Aminoglycoside antibiotics, such as gentamicin, can suppress translation termination at premature termination codons and could be repositioned for potential use in patients with Lafora disease who have nonsense mutations and the use of aminoglycosides is also limited by adverse effects.

No preclinical data are available for the use of gentamic to treat Lafora disease. Lafora disease, zonisamide had an excellent effect in controlling generalized tonic-clonic seizures and myoclonus for 3 years before failing. The individual then required extremely high doses of phenobarbitone to avoid convulsive status epilepticus. Benzodiazepines often must be introduced as add-on therapy. In advanced Lafora disease, a subcutaneous midazolam infusion has been described with good effect. The dosage used in this instance ranged from 14 mg in 24 hours to 18 mg in 24 hours eventually being required.

Feature Molecules:

Currently, managing the intensity and frequency of seizures and myoclonus is the cornerstone of treatment for LD patients. The only therapy available are antiepileptic medications [15, 70]. Patients still lack targeted or curative therapy for the illness, despite modest progress in understanding the disease mechanism. Gene therapy has significantly advanced the development of medicines for hereditary diseases and gives great promise for those suffering from crippling genetic conditions. Since only two genes (EPM2A and EPM2B) are implicated in LD, gene replacement therapy is a promising treatment option for the condition. To make up for the deficit, the functioning copy of the mutant gene might be given. Apart from gene replacement therapies, other therapeutic strategies being explored for LD include degrading LBs and down regulating glycogen synthesis by focusing on GS at the DNA,

RNA, or protein level. Furthermore, in addition to these more focused methods, other dietary adjustments that are already available could be employed. Israelian et al. have demonstrated in a mouse model of LD that the ketogenic diet can lessen aberrant glycogen buildup. They recommended starting the diet as soon as LD is diagnosed, ideally through a globally coordinated clinical trial to elucidate the specific function of the diet in patients.

Prevention:

cDNA can be used in LD to replace the missing proteins. Numerous delivery systems, such as viruses, virallike particles, gold particles, nanoparticles, exosomes, and liposomes, can accomplish this. As of right now, CNS-directed gene replacement therapies' most effective and secure gene delivery methods are AdenoAssociated Viruses. This is largely due to the non-pathogenic nature of AAVs, transduction efficiency, and long-term transgene expression, with low-frequency transgene incorporation into the host genome. Packaging capacity is a limitation for many diseases, and EPM2A cDNAs are less than the size limit of EPM2B. However, despite the many benefits, there are two major challenges to treating CNS disorders using AAVs. First, the blood- brain barrier (BBB) restricts the number of circulating AAV particles that transduce brain parenchyma when administered intravenously.

One approach to circumventing the BBB is by injecting virus directly into CSF. Different routes of intraCSF injections, such as intrathecal administration are currently being studied in clinical gene therapy studies. IntraCSF injections may have some advantages over systemic injections. For example, delivery via the CSF may avoid the loss of virus due to pre-existing neutralizing antibodies and avoid the accumulation of offtarget viruses in tissues such as the liver or kidney. In addition, the amount of virus required for intraCSF injections may be lower than that of systemic injections, resulting in fewer systemic side effects. The second field of research is the development of novel viral capsids, which can cross the BBB more effectively and distribute more widely in the brain. While novel capsids are in development one naturally occurring AAV serotype.

Conclusion:

LD is an orphan disease whose fundamental mechanism is largely unclear. Because of this, the illness offers fundamental scientists a rare chance to investigate a variety of molecular processes, including as glycogen biology, protein ubiquitination, neuro inflammation, neurodegeneration, and epilepsy. These investigations will reveal significant, as yet unidentified brain and extracellular systems. For instance, research on LD has revealed that malin plays a part in small cell lung cancer. Ultimately, there are a plethora of potential treatment methods

for LD, including disease gene replacement and intervention in the biochemical illness pathway that has already been identified. Developments in this and other uncommon illnesses also pave the way for the development of treatments for more prevalent and complicated brain disorders.

REFERENCE:

- 1.Delgado-Escueta, A. V., Ganesh, S. & Yamakawa, K. Advances in the genetics of progressive myoclonus epilepsy. Am. J. Med. Genet. 106, 129-138 (2001).
- 2. Girard, J. M., Turnbull, J., Ramachandran, N. & Minassian, B. A. Progressive myoclonus epilepsy. Handb. Clin. Neurol. 113, 1731–1736 (2013).
- 3. Lafora GR, Glueck B. Beitragzur Histopathologie der
- myoklonischen Epilepsie. Zeitschriftfür die gesamte Neurologie and Psychiatrie 1911;6(Suppl 1):1–14
- 4. Unverricht H. Die Myoclonie. Leipzig, Vienna: Franz Deuticke; 1891
- 5. Nanduri AS, Kaushal N, Clusmann H, et al. The maestro don Gonzalo Rodriguez-Lafora. Epilepsia 2008 Jun; 49 (6): 943-7
- 6. Lafora G, Glueck B. Beitragzurhistopathologie de myoklonischenepelepsie. Varea O, Duran J, Aguilera M, Prats N, Guinovart JJ. Suppression of glycogen synthesis as a treatment for Lafora disease: establishing the window of opportunity. Neurobiol Dis 2021;147:105173.

- 7. Nitschke S, Chown EE, Zhao X, Gabrielian S, Petkovic S, Guisso DR, et al. An inducible glycogen synthase-1 knockout halts but does not reverse Lafora disease progression in mice. J BiolChem 2020.
- 8.He S. The first human trial of CRISPR-based cell therapy clears safety concerns as new treatment for latestage lung cancer. Signal Transduct Target Ther 2020;5(1):168.
- 9.Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington's disease mouse model. MolTher Nucleic Acids 2019;17:829-39.
- 10. Gyorgy B, Loov C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, et al. CRISPR/Cas9- mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer's disease. MolTher Nucleic Acids 2018;11:429-40.
- 11. Gumusgoz E, Guisso DR, Kasiri S, Wu J, Dear M, Verhalen B, et al. Targeting Gys1 with AAV- SaCas9 decreases pathogenic polyglucosan bodies and neuroinflammation in adult polyglucosan body and Lafora disease mouse models. Neurotherapeutics 2021.
- 12. http://dx.doi.org/ 10.1007/s13311-021-01040-7.
- 13. Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. MolTher 2020.
- 14.Ou L, Przybilla MJ, Tabaran AF, Overn P, O'Sullivan MG, Jiang X, et al. A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases. Gene Ther 2020;27(5):226–36.
- 15. Arnaoutova I, Zhang L, Chen HD, Mansfield BC, Chou JY. Correction of metabolic abnormalities in a mouse model of glycogen storage disease type Ia by CRISPR/Cas9-based gene editing. MolTher 2020.
- 16.O'Callaghan B, Hofstra B, Handler HP, Kordasiewicz HB, Cole T, Duvick L, et al. Antisense oligonucleotide therapeutic approach for suppression of Ataxin-lexpression: a safety assessment. MolTher Nucleic Acids 2020;21:1006-16.
- 17. Albrechtsen SS, Born AP, Boesen MS. Nusinersen treatment of spinal muscular atrophy a systematic review. Dan Med J 2020;67(9):A02200100.
- 18. Scharner J, Aznarez I. Clinical applications of singlestranded oligonucleotides: current landscape of approved and in-development therapeutics. MolTher 2020.
- 19.Gheibi-Hayat SM, Jamialahmadi K. Antisense oligonucleotide (AS-ODN) technology: principle, mechanism and challenges. BiotechnolApplBiochem 2020.
- 20. Ahonen S, Nitschke S, Grossman TR, Kordasiewicz H, Wang P, Zhao X, et al. Gys1 antisense therapy neuropathological Lafora disease. rescues bases of murine Brain 2021. http://dx.doi.org/10.1093/brain/awab194.
- 21. Alterman JF, Godinho B, Hassler MR, Ferguson CM, Echeverria D, Sapp E, et al. A divalent-siRNA chemical scaffold for potent and sustained modulation of geneexpression throughout the central nervous system. Nat Biotechnol 2019;37(8):884-94.
- 22. Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, et al. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020;143(2):407–29.
- 23. Caron NS, Southwell AL, Brouwers CC, Cengio LD, Xie Y, Black HF, et al. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res 2020;48(1):36-54.

24.Martier R, Liefhebber JM, Garcia-Osta A, Miniarikova J, Cuadrado-Tejedor M, Espelosin M, et al. Targeting RNA mediated toxicity in C9orf72 ALS and/or FTD by RNAibased gene therapy. MolTher Nucleic Acids 2019;16:26–37.

25.Shi N, Pardridge WM; Noninvasive gene targeting to the brain. Proc Natl Acad Sci U S A 2000, 97:7567-7572.

