IJCRT.ORG

ISSN: 2320-2882

a101

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Examining Respiratory System Responses In Safety Pharmacology: A Comprehensive Review

¹Janhavi G. Suke, ²Dr. Kishor V. Otari, ³Dr. Ajay Y. Kale ¹Student, ²Principal, ³Associate professor ¹Department Of Pharmacology, ¹Navsahyadri Institute Of Pharmacy, Pune, India

Abstract: Safety pharmacology is a fast-growing field that generates data to support risk/benefit analysis using the fundamentals of pharmacology in a regulatory-driven manner. The identification of an adverse effect liability, data projection for the safety margin computation, and clinical safety monitoring are the three main concerns for safety pharmacology. Man's breathing is impacted by many medicines. After they are administered, the respiratory system is either directly affected, or a central, metabolic, or vascular action results in alterations in respiratory function. These guidelines suggest that the first investigations be conducted on conscious, unrestrained animals, with a single dose of the medication being given in most cases. Plethysmography in guinea pigs or rats is the most effective method for studying the impact on respiratory function. It is possible to distinguish between medications that change lung mechanical properties and those that impact respiratory control by measuring the ventilatory parameters of resistance, inspiratory time, expiratory time, peak inspiratory flow, and peak exploratory flow. Studying how these medications affect pathogenic animals' respiratory systems is therefore highly beneficial.

Index Terms - Safety pharmacology, Drug safety, Respiratory functions

I. INTRODUCTION

The goal of the scientific field of pharmacology is to prevent drug-related adverse events by predicting whether a drug, in its broadest meaning, would be found to be safe when given to human or animal populations. Before 1990, pharmaceutical firms carried out toxicity analyses on lead compounds for use in preclinical drug development. But over the past few decades, it has become more and more obvious that medications could advance to the point where phase 3 clinical trials, which are meant for the intended patient population, prior to uncommon and maybe fatal negative consequences emerge. The diligent efforts of PMS (post-marketing surveillance) regulatory bodies have to verify the presence of an uncommon adverse occurrence happen after clearance for usage by humans.

Among the resources used by the US Food and Drug Administration/Center for Drug Evaluation and Research include drug experience reports, clinical trial data from medical literature, and data from other government agencies, including the Drug Enforcement Agency (DEA); National Institute on Drug Abuse (NIDA) and the Institute of Health (NIH) in collaboration with the branch of epidemiology and pharmacovigilance, which makes use of the spontaneous reporting system (SRS) to track unfavorable medication effect trends that might point to a public health worry (possible "signal"). Adverse medication reaction reports are sent to the SRS by hospitals and medical professionals. In rare cases, millions of prescriptions may be needed before a detrimental effect's existence is acknowledged.

As per the International Conference on Harmonization (ICH) S7A guidance1, studies on safety pharmacology are defined as those that examine the possible unfavorable effects of a chemical on physiological processes when exposed in the therapeutic spectrum and beyond. Put otherwise, they are a series of examinations aimed at perhaps negative effects of biological or pharmacological substances that

are not related to classical toxicology studies since they usually focus on a single physiological system or organ.

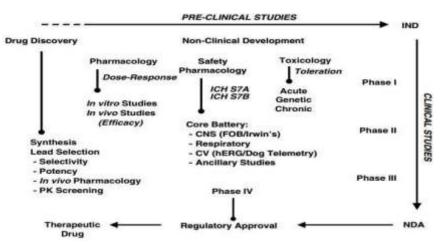


fig.1: safety profile of new drug entity

Li. General Considerations In Selection And Design Of Safety Pharmacology Studies

The particular characteristics of each test drug influence the pharmacological effects, thus the research should be chosen and planned appropriately. The following elements need to be taken into account:

- 1. Consequences associated with the medicinal category of the experimental drug, given its mode of action may indicate particular side effects (for example, proarrhythmia is frequently a symptom of antiarrhythmic agents)
- 2. Adverse reactions connected to substances in the medicinal or chemical class, nonetheless apart from the main pharmacodynamic effects (such as QT prolongation and anti-psychotics)
- 3. Data from enzyme assays or ligand binding that point to possible negative consequences.
- 4. Findings from toxicity studies, secondary pharmacodynamic studies, safety pharmacology studies, or human usage that call for additional research to Determine and describe how these findings relate to possible negative consequences on people. In the early stages of development, there may not always be enough data (such as comparative metabolism) to choose or plan the research in a way that makes sense given the points mentioned above. In these situations, a more broad approach in safety pharmacology investigations might be used.

Organ systems can be arranged in a hierarchy based on how important they are for maintaining life. Vital organs or systems are those whose operations are absolutely necessary for survival, such as the respiratory, cardiovascular, and central neurological systems. the most crucial ones to evaluate in safety pharmacology research. Additional organ systems, such the gastrointestinal or renal systems, whose operations may be momentarily interfered with by unfavorable Pharmacodynamic effects that do not result in irreparable damage are less urgently investigated safety pharmacology assessment of these other systems' impacts may be very concerning, significance when taking into account elements like the patient population or the likelihood of a clinical study.

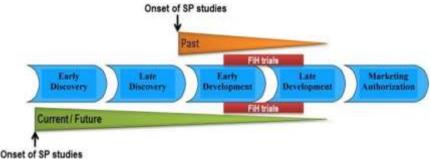


fig.2: safety pharmacology study approaches

I.ii. Safety pharmacology studies

International regulatory guidelines (ICH S7A/S7B) stipulate that an experimental pharmaceutical must undergo a core battery of safety pharmacology studies before the first human dosage is administered. This basic battery of exams includes testing for central nervous system, pulmonary, and cardiovascular health behavior of the neurological system. In certain cases, for reasons grounded in science, the basic set of supplemental safety pharmacology testing ought to be conducted.

ii.a. Safety Pharmacology Core Battery

The safety pharmacology core battery's goal is to look into how the test substance affects essential bodily processes. Accordingly, the core battery should primarily focus on studying the important organ systems of the heart, lungs, and central nervous system.

1. Central Nervous System

It is important to evaluate the test substance's effects on the central nervous system correctly. Evaluations should be done on body temperature, coordination, motor activity, behavioral alterations, and sensory/motor reflex reactions.

2. Cardiovascular System

It is important to evaluate the test substance's effects on the cardiovascular system correctly. It is necessary to assess the ECG, blood pressure, and heart rate. assessments conducted in vivo, in vitro, or ex vivo, including techniques for repolarization and anomalies in conductance, should also be taken into account.

3. Respiratory System

It is important to assess respiratory rate as well as additional indicators of respiratory health, such as hemoglobin oxygen saturation or tidal volume (6). In most cases, clinical animal observation is insufficient to evaluate respiratory function; hence, these settings suitably.

It is important to evaluate and quantify the test substance's effects on the respiratory system using the right techniques.

ii.b.Safety Pharmacology Study type

- 1. Cardiovascular system
 - ✓ The ECG, blood pressure, and heart rate should all be taken into account.
 - ✓ Repolarization techniques and conductance anomalies should also be taken into account.

2. Central Nervous System

Motor activity, behavioral changes, coordination, sensory/motor reflex responses, and body temperature.

3. Respiratory system

✓ Hemoglobin oxygen saturation and tidal volume, among other indicators of respiratory function, as well as respiratory rate.

Using surgically implanted animals, combining the cardiovascular and respiratory safety pharmacology studies in the chosen non-rodent species is also a suitable option. This combination enables research on impacts that change over time and provides insight into potential mechanisms of operation. Given that two of the three fundamental safety pharmacology evaluations are When combined, these methods can lower the quantity of animals utilized (3Rs), lower costs, and other sources.

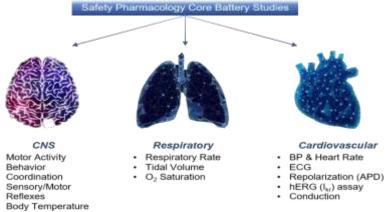


fig.3: safety pharmacology core battery studies

II. RESPIRATORY SYSTEM

By facilitating the exchange of gasesoxygen and carbon dioxidebetween the atmosphere, blood, and tissue cells, the respiratory system helps maintain homeostasis. It also aids in regulating bodily fluid pH. Studies on respiratory safety pharmacology are conducted to assess the possibility that medications could have harmful or secondary pharmacologic effects that affect breathing. Changes in the mechanical characteristics of the pumping apparatus or in the respiratory system itself might lungs. Thus, the assessment of respiratory function can be concluded by assessing both vital parts, such as the lungs and pumping mechanism. These studies' drug-induced modifications changes ventilatory patterns of conscious intact animals, assessed initially, then affects mechanical characteristics of the lungs in animals that are paralyzed or sedated. These investigations offer insight whether these modifications pertain to therespiratory system as a whole or are caused by extrapulmonary or pulmonary causes. Flow-volume and pressure-volume maneuvers can be used in animal models to assess the impact on the mechanical characteristics of the lungs. Peak expiratory flow and forced expiratory flow are parameters for detecting airway obstructions at For lung restriction, use a timed forced expiratory volume and 25 and 75% of forced vital capacity, the measures for detection include functional residual capacity, inspiratory capacity, and total lung capacity, capability as well as adherence.

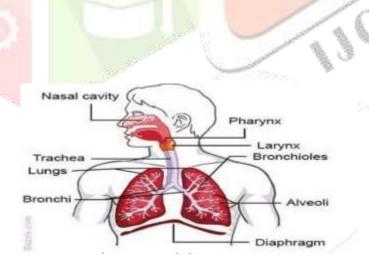


fig.4: respiratory system

II.i. Respiratory functional units

table 1:respiratory functional units

Pumping Apparatus	Gas Exchange Unit
Function: Regulate gas exchange between environment and airways	Function: Regulate gas exchange between airways and blood
Components: Respiratory muscles, CNS, Chemoreceptors	Components: Airways, alveoli, fibrous network
Measurements: Tidal volume, respiratory rate, inspiratory rate, expiratory rate	Measurements: Airway resistance, lung compliance

II.ii. Assessment of Respiratory function

Dogs and rats are among the animals used in the standard testing.

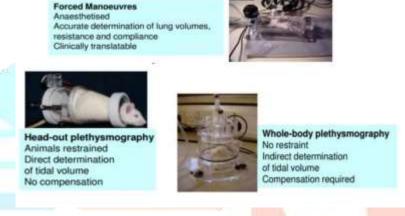


fig.5: respiratory assessment

III. WHOLE BODY PLETHYSMOGRAPHY

One method for analyzing respiratory function is whole-body plethysmography (WBP). Since the mouse is free-range and awake, this accurate, non-invasive method does not require anaesthetic. Consequently, the respiratory characteristics measured in mice using WBP represent baseline physiological values since anaesthetic and/or artificial restraints are not applied. Notably, the application of WBP in longitudinal studies depends on these experimental parameters. research. Furthermore, WBP in mice is a tried-and-true method used in the investigation. Covers numerous basic facets of respiratory function, offering fresh perspectives on neural network governing breathing rhythm respiratory issues linked to sleep, or the function of inflammation in the respiratorysystem.

III.i. Materials and Reagents

- ✓ Silica Gel Orange Indicator 2-4 mm.
- ✓ Laboratory tissue paper, e.g., Wiping Paper Plus.
- ✓ C57BL/6J background mice.
- ✓ Ethanol 70%, e.g., Ethanol absolute for analysis.

III.ii. Equipment

- ✓ Unrestrained Whole Body Plethysmograph (90 mm in diameter) with Pulmonary Flow Transducer for Mice (EMMS, catalog number: TPF100).
- ✓ Single channel adaptive amplifier with strain gauge type.
- ✓ A sizable drying column with a 0.5 kg silica desiccant that can be used for regeneration filled with tubing and fittings, including a plastic tube that connects the 1 ml Lock syringe.
- ✓ Bias Flow Generator with 2 Channels.
- ✓ Unit of Acquisition.

III.iii. Software

- ✓ Only the USB Data Acquisition (eDacq) Single Subject Version 1.9.0 (Site) version (EMMS, catalog number: ESS101A) has a flow-derived parameters analyzer.
- ✓ Excel 2016 for Microsoft Office or an equivalent.
- ✓ Software for statistics (such as GraphPad Prism 6.0)


III.iv. Procedure

The repeatability and WBP results may be significantly influenced by a number of factors. They could therefore be taken into account while designing the experiment. These include standardizing the habituation, tracking mouse behavior, and the time of day (taking into account the mouse circadian cycle)all of it. The primary research question will determine whether strain-specific variations in pulmonary Physiology could be assessed. Crucially, the criteria outlined in the section that follows may be modified and verified taking into account each mouse's basal/control breathing activity tension.

In addition, the surroundings need to remain unchanged for the duration of the process. Here, we kept the temperature steady at 22 °C and the relative humidity at 55%.

A. Setting up the equipment

- 1. Set up the PC to use USB Data Acquisition (eDacq).
- 2. Attach the adaptive amplifier to the acquisition unit using the USB connector.
- 3. Connect the Adaptive Amplifier's transducer entrance to the pulmonary flowtransducer.
- 4. Attach the Plethysmograph device to the Pulmonary Flow Transducer.
- 5. Configure the Bias Flow Generator's Flow 1 and Flow 2 levels to operate at 1cc/min.
- 6. Connect Port 1 of the Bias Flow Generator to Large Capacity Drying Column Entrance 1. and Port 2 to the Plethysmograph chamber's upper input. Next, attach Entrance 2 of drying column to the Plethysmograph device's lowest input.

A. Plethysmograph chamber. 1: Top input (incoming airflow), 2: Pulmonary Flow Transducer, 3: Lower input (air exit), 4: Alternative lower input). B. Plethysmograph apparatus attached to the 1 ml Lock syringe by the alternative lower input (4). C. Bias Flow generator and drying column containing silica beads. 5: Port 1 (flow1), 6: Entrance 1, 7: Port 2 (flow2, incoming air), 8: Entrance 2 (air extraction). D. Adaptive amplifier connected to the chamber through transducer entrance (9). Fresh air is continuously administrated into the chamber trough the Port2 and released from the chamber trough the lower input (3). Then, the air passes through the drying column and it is extracted from the Bias Flow generator (air dehumidification is required to preserve bias flow generator).

fig.6: plethysmograph equipment

B. Setting up the protocol

- 1. Launch the eDacq software.
- 2. From the left side, select Protocol. There will be a pop-up window.
- 3. Select Site 1 and click Edit.
- 4. Modify and add the various protocol stages as needed:
 - i. Keep track on all websites.
 - ii. Await user advancement.
 - iii. Stop at 00:03:00 (the moment to vacate the area or workstation).
 - iv. Document the control period for the habituation time of 00:45:00.
 - v. The recording period for the time slot of 00:15:00
 - vi. List every site.

- 5. From the left panel, choose Site 1. For recording, include the following flow derived parameters (FDP) properties:
 - i. Select 20 ms of smoothing in the Input group under the General tab. The output group chose a 5-second time interval.
 - ii. In the Breath Detection group of the Breath Analysis tab, add 0.5. Row. Threshold is expressed as ml/s, and start of Breath Extrapolation as 20% TV.
 - iii. Don't choose to Enable Breath Rejection for the Breath Rejection group.
 - iv. Avoid choosing Enable-Pass Filter and Enable Mains on the Filtering tab.
- 6. Implement every modification.
- 7. Conserve the configuration.

C. Chamber calibration

- 1. Fifteen minutes before beginning calibration, turn on the Adaptive Amplifier and the Bias Flow Generator (a white light will flash on standby).
- 2. Shut the plethysmography chamber tightly.
- 3. Launch the program eDacq.
- 4. Enter the password that was assigned (choose ok).
- 5. State the name of the study (push close).
- 6. Exit the window displaying the version of the configuration file.
- 7. Select the calibration option (which is always advised).
- 8. To calibrate, turn on DC mode (AC mode is automatically selected when recording).
- 9. Enter -10 ml/s as the high flow amount.
- 10. To modify basal settings, press the F8 (zero) button.
- 11. To change the low calibration volume, press F9 (Low).
- 12. Attach a 1 ml lock syringe to the plethysmography chamber's alternate bottom stopcock input. (A-B of Figure 1).
- 13. To modify the high calibration volume, gently inject 1 ml of air volume into the chamber using the attached syringe and 1.5 seconds after pressing F11 (Record volume). The range for proper calibration should be between -35 and +35 ml/s; if not, repeat the procedure.
- 14. Take the syringe out and replace its cap.
- 15. Press the Finish button to start recording your respiration.
- 16. The adaptive amplifier device should blink a white light when it is ready.

D. Breathing recording

- 1. Prior to recording, weigh the mouse.
- 2. After opening the plethysmography apparatus, insert the animal.
- 3. Tightly shut the chamber and ensure the animal has unrestricted movement.
- 4. Choose Protocol from the menu, followed by Site 1 (opening the previously specified protocol).
- 5. Start the protocol over again.
- 6. Explain mouse identification, weight, and any additional noteworthy remarks. Following an evaluation At this point, the recording will begin (a green flashing window may show on the screen).
- 7. Proceed with the routine to the third minute of waiting. Following this time frame, the protocol will automatically move on to the subsequent actions.
- 8. Place the animal back in its cage after taking a recording. Utilize 70% to wipe and clean the apparatus. ethanol. Automatic recording storage will take place in the designated project folder.
- 9. Press the restart button to record the next animal (starting from Step D1), or go straight to the data analysis.
- 10. Turn off every piece of machinery.

IV. DATA ANALYSIS

The waveforms from the transducers are shown in real time by the eDacq program. Finally, data is saved to a disk file for analysis and replay after the experiment. Crucially, it's important to leave enough time for recording in order to prevent background noise, particularly from mouse movement. habituation period. As a result, only the animal's breathing patterns are captured for one hour. Data from the last fifteen minutes are

examined. Crucially, since there are no breath rejection parameters applied, it is imperative to guarantee that the data aligns with the resting periods.

Export data to an Excel file

- 1. Open a blank worksheet in Excel.
- 2. Select From Text under the Get External Data group on the Data tab.
- 3. Look through your *.csv file (eDacq creates two files; select the one without the period word), then Select Import.
- 4. The wizard for text import will show up.
 - a. Choose the Delimited menu.
 - b. Use a comma as the separator.
 - c. Choose General under Column data format and click Finish.
- 5. The workbook will display data with column titles in the upper row.
- 6. Use the mouse weight (g) to get the correct tidal volume values (ml).
- 7. The final 15-minute values of the average repose respiratory data, referred to as Period in the generated Excel file. Determine the respiratory frequency (breaths/min)and tidal volume (μ l/g).
- 8. Conduct appropriate statistical testing based on your experimental setup.
- 9. Values that are reported once the eDacq software exports them as an Excel file are received.

✓ (Optional) Represent breathing recording

- 1. Launch the eDacq initiative.
- 2. Click the toolbar's Experiment option.
- 3. Select "Data source."
- 4. From the list of options, choose Recorded data file.
- 5. Select the relevant file.
- 6. Press the Play button on the toolbar to begin recording.
- 7. Press the Pause button to halt at the desired frame rate.
- 8. .Right-click with the mouse on the window recording at Site 1.
- 9. Choose Properties and adjust them at will.

10. Choose Save Chart from the mouse's right-click menu to save the file as a.jpg.

fig.7: representative breathing waveforms in a healthy resting animal (top panel: male, 62 days, 27 g) and in a resting experimental mouse presenting breathing alterations (bottom panel: male, 63 days, 12 g)

V. CONCLUSION

The fields of safety pharmacology and safety margin are concerned with novel drug safety (i.e., dose-limiting adverse event type, therapeutic indication, target patient population), reversible toxicity, biomarker-based toxicity, and mode of action. To improve the capacity of investigations on respiratory safety pharmacology to identify and describe effects of drugs on respiratory function, it is advised that future respiratory safety pharmacology directions must to:

- ✓ Incorporate sensitive techniques for identifying changes in lung malfunction.
- ✓ As necessary, take into account the deployment of additional investigative measurement endpoints to contribute to the better characterization and/or mechanistic understanding of drug-induced respiratory problems.

VI. REFERENCES

- [1] ICH Harmonized Tripartite Guideline (M3) "Timing of Non-clinical Safety Studies for the Conduct of Human Clinical Trials for Pharmaceuticals" (1997)
- [2] ICH Harmonized Tripartite Guideline (S6) "Preclinical Safety Evaluation of Biotechnology-derived Pharmaceuticals" (1997)
- [3] Mattsson, J. L., Spencer, P. J. and Albee, R. R.: A performance standard for clinical and Functional Observational Battery examinations of rats. J. Am. Coll. Toxicol. 15, 239 (1996).
- [4] Irwin, S.: Comprehensive observational assessment: 1a. A systematic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharmacologia (Berl.) 13, 222-257(1968).
- [5] Haggerty, G.C.: Strategies for and experience with neurotoxicity testing of new pharmaceuticals. J. Am. Coll. Toxicol. 10:677-687 (1991).
- [6] Murphy, D.J.: Safety Pharmacology of the Respiratory System: Techniques and Study Design. Drug Dev. Res. 32: 237-246 (1994).
- [7] Bass A; et al. (2004). "Origins, practices and future of safety pharmacology". Journal of Pharmacological and Toxicological Methods. 49 (3): 145–151.
- [8] International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH)
- [9] MK, Pugsley; et al. (2008). "Principles of Safety Pharmacology" Br JPharmacol. 154 (7): 1382–1399.
- [10] Sterner W, Korn WD (1980). "ZurPharmakologie und Toxikologie von Etofyllinclofibrate". Arzneimittel-Forschung. 30 (11b): 2023–31.
- [11] Redfern WS, Wakefield, ID (2006) Safety Pharmacology. In Toxicological Testing Handbook: Principles, Applications and Data Interpretation, 2nd edn., pp. 33-78. K Keller & D Jacobson-Kram (eds.), Taylor & Francis Ltd.
- [12] EMA ICH S7A Safety Pharmacology Studies for Human Pharmaceuticals. ICH Step 5: Note for Guidance on Safety Pharmacology Studies for Human Pharmaceuticals. CPMP/ICH/539/00.
- [13] Adler A., Cieslewicz G. and Irvin C. G.(2004). Unrestrained plethysmography is an unreliable measure of airway responsiveness in BALB/c and C57BL/6 mice. J ApplPhysiol(1985) 97(1): 286-292.
- [14] Bastianini S., Alvente S., Berteotti C., Lo Martire V., Silvani A., Swoap S. J., Valli A., Zoccoli G. and Cohen G.(2017). Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography. Sci Rep 7: 41698.
- [15] Bates J. H. T.(2017). CORP: Measurement of lung function in small animals. J ApplPhysiol(1985) 123(5): 1039-1046.
- [16] Bolea I., Gella A., Sanz E., Prada-Dacasa P., Menardy F., Bard A. M., Machuca-Marquez P., Eraso-Pichot A., Modol-Caballero G., Navarro X., Kalume F. and Quintana A.(2019). Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome. Elife 8: e47163.
- [17] Buynitsky T. and Mostofsky D. I.(2009). Restraint stress in biobehavioral research: Recent developments. NeurosciBiobehav Rev 33(7): 1089-1098
- [18] Cramer N. P., Xu X., Christensen C., Bierman A., Tankersley C. G. and GaldzickiZ.(2015). Strain variation in the adaptation of C57Bl6 and BALBc mice to chronic hypobaric hypoxia. PhysiolBehav 143: 158-165.
- [19] Criée C. P., Sorichter S., Smith H. J., Kardos P., Merget R., Heise D., Berdel D., Köhler D., Magnussen H., Marek W., Mitfessel H., Rasche K., Rolke M., Worth H., Jörres R. A., P. Working Group for Body Plethysmography of the German Society for and Respiratory C.(2011). Body plethysmography--its principles and clinical use. Respir Med 105(7): 959-971
- [20] Crone S. A., Viemari J. C., Droho S., Mrejeru A., Ramirez J. M. and Sharma K.(2012). Irregular Breathing in Mice following Genetic Ablation of V2a Neurons. J Neurosci 32(23): 7895-7906.