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ABSTRACT:-. In this study Nine independent variables are fed to artificial neural networks (ANNS)
including support, nanoparticles concentration, concentration of organic phase trimesoyl chloride (TMC) in-
n-hexane (TMC in n-hexane), operation pressure, contact angle, thin layer thickness, location of the
nanoparticles (NPs), post-treatment temperature and duration, and permeate flux and foulant rejection were
derived as the outputs of the ANNs. The proposed method was evaluated on two datasets across training,
validation and test datasets, and an unseen dataset. 2250 different initial weights and number of the neurons
in the hidden layer for the proposed ANN models were considered and compared to find the optimized ANN
models The trend in miniaturization and enhanced functional performance of integrated circuits and power
electronics and photonics has amplified the generated thermal energy in these devices making thermal
management a bottleneck for further advancement in these fields. A range of geometries of Sequence
structures are developed and examined to address this challenge. However, the. numerous form factors and
dimension of hierarchical structures in addition to cost and time-consuming synthesis and test procedures
make it unfeasible to explore bountiful variations of hierarchical geometries through experimental methods.
Here, we introduce a general Artificial Intelligence (Al) platform to address this challenge and guide
discovery of hierarchical structures for extreme thermal management of high-performance 2
photonics/electronics. The ML platform is based on Random Forest (RF) algorithm, a robust Al method, and
was trained using a large collected experimental data set corresponding to thin film evaporation in various
forms of Sequence structures. Four geometrical dimensions of the hierarchical structures and two
dimensionless numbers governing heat transfer and fluid dynamics in these structures were used as
independent variables to predict heat flux in these structures. The trained model's performance was analyzed
using statistical metrics and showed an excellent prediction
of heat flux for all the structures with various working —] fluids. The
performance of predictive Al platform was further ViR D —. validated
by two independent studies of different research groups. —— !
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INTRODUCTION Thin-film nanocomposite (TFN) *
membranes are widely used in reverse osmosis (RO) and | Conme Tipus
nanofiltration (NF) processes since they offer high flux A ;'.',':1.".'...'.'. peerpornted - aNQ
rejection along with mechanical stability. TFN membranes Desslinated Water it ot e are mostly

produced by forming a polyamide layer (PA) on a porous polymer substrate through interfacial
polymerization (IP) process, during which polycondensation occurs between one monomer in agueous
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solution and another monomer in an organic solution 1. Nevertheless, the performance of TFN RO or NF
membranes are limited to the trade-off relationship between the water permeability and membrane
selectivity®” Thus, many attempts have been made to improve the performance of TFN membranes such as
making modifications to the membrane support or the PA layer. Moreover, surface modifications using
hydrophilic additives 2 and co-solvent addition® have also been carried out®. Among these approaches,
incorporation of nanoparticles (NPs) as nanofillers in the selective PA to produce so-called thin-film
nanocomposite (TFN) membranes have seen increased research interests in the last decade®. Increased water
permeability has been reported due to the formation of additional channels through the microporosity of
nanoparticles® while also maintaining or even increasing the rejection performance Advancements in high-
performance photonics/electronics devices have been exponential during the last few decades.
Miniaturization along with consistent performance boost in transistors, chips, smartphone, vehicle electronics
and server farms has led to high power density and introduced a high demand for advanced cooling
techniquesl.

A range of methods has been studied to address the thermal management challenge, including
microchannels®®, sprays*, and jet impingement> . However, thin film evaporation have received
Figure 1

special interests owing to the potential to dissipate high heat fluxes. Over the last two decades, extensive
experimental studies have been conducted on thin film evaporation in hierarchical structures including
micro and nano pillar arrays, nano-membranes, copper micro-posts, multi-artery, and sintered wick
micro/nanostructures. Despite a large body of experimental works, the path for a three accurate and robust
model that predicts heat flux corresponding to thin film evaporation in various form factor of hierarchical
structures remains elusive. Fabrication of hierarchical structures and experimental measurements of thin film
evaporation performance are costly and time-consuming. In addition, variations in the form factor and
dimension of hierarchical structures is so broad making it unfeasible to explore these variations through
experimental efforts. A credible alternative to minimize and complement the fabrication and experimental
challenges is to capture an unsolved relationship between heat flux vs geometrical and physical variables
via data science. Recently, the field of nanoscience and engineering has been exploring Machine Learning
ML to avoid high-cost and time consuming experimental works. Here, we present an integrated ML-enabled
predictive model for thin film evaporation in hierarchical structures. We take advantage of physics of thin
film evaporation, data extracted from literature and use Random Forest (RF), a robust Al method, to train

and validate a general ML model. The developed | ™= e model
predicts heat flux in hierarchical structures for ! o=- various
working fluids as a function of geometrical & | = dimensions

and two dimensionless numbers. The first ' i
dimensionless number (Ja: Jacob number) ...
governsheat transfer in the structure and the second - LA | ]
dimensionless number (Ca.Eu®®, Ca denotes ’ Capillary
number and Eu is Euler number) governs ,

hydrodynamics of liquid in these structures. Using the trained
model for the testing dataset indicates an excellent performance of the Al model in prediction of heat flux as
a function of independent variables. Furthermore, the ML-model is assessed for two cases of experimental
data of two independent research group and showed a high prediction accuracy.

STATISTICAL PARAMETERS AND DATASET Thin film evaporation in hierarchical structures in
three geometrical forms is shown in Fig. 2. represents a nanomembrane assembled on top of a micro-pillared
structures; In the hierarchical structures, under steady-state condition, the working fluid is supplied to the
structure to compensate for the liquid loss via evaporation. When the hydrodynamic pressure loss in the
structure exceeds the fluid driving forces, the heated structure dries out due to liquid starvation. In design of
hierarchical structures, to minimize the pressure losses, the fluid flow regime is divided into two length
scales;

(1) A long length of fluid flow occurs in sections with small hydraulic resistance and

(2) A short length of fluid flow occurs in sections with high hydraulic resistance.
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That is, the geometry of these structures could be characterized with four length scales as shown in Fig. 1. D1
and L represent hydraulic diameter and length of fluid flow in regime 1, respectively and D, and L»
represent hydraulic diameter and length of fluid flow in regime 2, respectively. Note that for structures with
Figure 2

several degree of branching, the same principle applies. The heat flux in the hierarchical structures is a
function of saturation temperature of the working fluid ; )

(Ts), heat capacity of the working fluid (Cp) enthalpy )it Hydrothermalreacion ¥~ Vacwum flron

NayMo0, ¢ N—( > MoS,

of phase change (hfg) and temperature of the \—n 180°C S“‘(.Wﬁf
hierarchical structure (Tw). These thermodynamic =
P|\| ide film
\ - Voluge = ||| " MoSySWCNT

properties could be summarized in dimensionless
Jacob number (Ja) as written below. The driving force
for liquid flow in these structures could be capillary
force or/and an external pumping force, while the
opposing force for fluid flow is the viscous forces.

voltage (m\)

Output

Momentum conservation by these forces governs fluid @ T e N\ v
velocity in these structures and may be denoted by Ovp ot o \ll\erpam detector
dimensionless number of Ca.Eu®® as defined
Ja= Cp(T\l/lvf;Tsat)_ (1)
Ca= % @)
_ Ap
Eu = E (3)

Where p [Pa.s] is the viscosity of the working fluid, U [ms™? ] is

the mean velocity of the flow, y [Nm™] is the surface tension of the fluid, Ap [Pa] is the driving force in the
hierarchical structure, which is the summation of capillary pressure and external pressure and p [kgm=] is
the density of the fluid. Through a comprehensive study of literature on thin film evaporation, 2500
experimental data were collected of heat flux in various hierarchical structures for different working fluids.
The collected data set is included in Supplementary Information, S1.Geometrical features is determined of
these hierarchal structures (D1, L1, D2, L2) and governing dimensionless numbers. Note that the data set
includes various types of working fluids (i.e. water, isopropanol, pentane, methanol, ethanol, R245fa and FC-
72). It should be added that in thin film evaporation, density of contact line (a), which is defined as a fraction
of wetted perimeter in the hierarchal Figure 3

structure over the total area is another governing factor. However, due to sparse distribution and

large scattering of data in the literature on this variable, we did not include this feature in the Al platform as
it leads to a decrease in the accuracy of the prediction. Table 1 shows the range of all of the extracted
variables determining heat flux with their distribution for the training of the Al-model. The details of all
experimental data sets used for the proposed Al model are summarized in Supplementary Information S1 and
Table S1. 6 Table 1.

Table 1. Input parameters and their ranges in the collected dataset.
D1 (um) L1 (um) D2 (um)
Range 0-7042 0-20000 0.056-662.000
Lo (um) Ja Ca.Eu®®
Range 0.2-900. 0.00031-0.89900 0.0021-3.030
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METHODOLOGY FLOWCHART A flowchart illustrating the analysis sequence of data set and Al
training and testing is shown in Fig. 4. As reported in the previous
part, six governing variables (D1, L1, D2, L2, Ja, Ca.Eu®®) were
chosen as input parameters to develop the Al model. The data set AR
contains 2500 experimental samples, covering a wide range of heat t %ﬁ?g;;{f’
*55s

flux values and collected from various reports in the literature. ;}',f‘igw' v,,
Among this data set, 85% of the total data (2000 samples) were ¢ e o
randomly used for training, and the remaining 15% of the data (550
samples) were used for the testing. Before training, the input and IS
output parameters were normalized into a range between zero and e i L '
one to improve the accuracy and convergence speed of the developed
Al. For the data regression, we employed the RF algorithm
implemented in scikitlearn, a reliable, flexible, and fast algorithm
that requires minimal hyperparameter tuning. The RF algorithm is an
ensemble learning method that operates by constructing several randomized decision trees at training time
and outputting the trees' average Figure 4

Coat Spheres ~f T Expose to UV -
Cont Spheres g, EosctoLV

predictions. The Out Of Bag (OOB) error which measures the prediction error of
a random forest model, converged to its minimum value when we set the number of trees equal to 1000

hence, in this work, the number of trees in the forest was set 1000. After training the train set with the RF
model, several statistical metrics are used to assess the accuracy and performance of the model on the test set,
which include the correlation coefficient (R?), mean absolute percentage of error (MAPE) and root mean
squared error 7 (RMSE). The definition of these statistical metrics is given in the Supplementary
Information, S2. Once validated, we assessed

performance of the Al model by (@) (b) S —
predicting heat flux of two forms of T .:j’—.._’_jl
Figure 5 o I
hierarchical structures reported by independent () (d)
research groups, and there is excellent o - 3 4 BOK - 160K o 25
agreement between Al model predictions and B R TR v
reported experimental data. . 3 L g i
1‘; 09) & 100 A '(‘"
RESULTS AND DISCUSSION The proper " os ".'"4
selection of independent variables in the Al [ e ¥ ” éé‘;"@d_;;:;'?:
model plays an important role in accuracy of R ity A

the model. Figure 6 shows the importance of
each input parameter on prediction of the heat flux. To measure importance of each input parameter in a RF
model after training, the values of that TEN-SN membranes specific

input are rearranged among the training data, and
prediction error is again computed on this

perturbed dataset. The importance score of o] that
specific input parameter is calculated by e

averaging the difference in prediction errors — ‘— ad before
and after the rearrangement. In the end, the S e e score s
normalized by the standard deviation of .~ these
differences. Features that produce large = A \ Trainedmodel - Results valusion values
for this score are more important than - . s e features
that have small values. As discussed earlier, » »+ <« - ** Cross validation  Hypér-parsmetes sdjustment  VVE
classified all six independent variables into ' three

separate categories; geometry, heat transfer and hydrodynamics. As indicated in Fig. 6, Ja plays the most
important role in predictions of Al model and Ca.Eu0.5 comes in the second place. This is an expected
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outcome as there is a direct correlation between heat flux and Ja number in most of the reported
studies. The second important category is hydrodynamics (i.e. Ca.Eu®®), where the driving force, viscous
losses and hydrodynamic properties of the
working liquid affect heat flux. The last (a)
category is geometry of the hierarchical
structures. In this category, Lo, the length of
fluid flow in predefined regime 2, plays the
dominant role

(b)

Intensity (a. u.)

Intensity (a. u.)
Intensity (2. u.)

predictions of Al model with the train set as - o & \
shown in Fig. 7a. After, we compared the * 1080

predictions with the test set (i.e. 20% of the -~

Figure 6
: ‘o z T)g.eu (.)‘o = o ; 2 Theta (%)

in predicting heat flux values. That is, the 0] “T@ — 03

H H 20 POAMCF —Zn-PDA-MCF
length of 8 fluid flow in smaller length scale ~ _ (=20 ——— "l -
(i.e. nanoscale) is the critical factor to tune g_’:&/——»—- Zu)
heat flux in the hierarchical structures. Once é o coc g
developed, in the first step, we compared & " z

$i0
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Wavenumber (cm™) Temperature {°C)
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data) as shown in

Fig. 7b. As shown, there is a good agreement between the predicted values by Al model and both data sets.
In order to investigate linearity between the train or test sets and experimental measurements, we also
calculated Pearson correlation. A Pearson correlation coefficient value close to 1, means the relationship
between the train or test sets and experimental measurements is exactly linear. We calculated the Person
values of 0.9912 and 0.9901 for training and test sets respectively. We should add that the experimental
measurements of heat flux have inherent error in metrologies that could vary between various groups. This
error Figure 7

could contribute to some degree of error in Al predictions.

The relative error in the Al prediction of heat flux were demonstrated against experimental data to further
validate the performance of the model for the training and testing phases in.Supplementary Information S3
and Fig. S1. To further assess the performance of the developed Al model various statistical metrics were
thoroughly implemented. These statistical criteria for comparing the Al model's training and testing phases
are summarized in Table 2.

Table 2 Performance of the Al predictive model for the training and testing sets using various

statistical criteria

R?2 RMSE MAPE
Train set 0.978 26.3 16.7%
Train set 0.978 28.5 17.4%

Al models usually include a predetermined degree of randomness in their training methods and this
comes with a detrimental effect on the generalization and stability of the model83. In the 9 training process,
the model is updated using a randomized procedure that will result in model’s final predictions every time
the training code is executed. The only way to ensure that the results of different trained models are
reproducible is to set a quantity known as the random seed, which controls how random procedures are
generated.84 This number is a starting point for the sequence, and the guarantee is that if you start from the
same seed number, the trained model will predict completely similar values. To examine stability and
generalization of our Al algorithm, we executed the training code with three random initial conditions and
compared predictions of the Al models on thin film evaporation in a nanomembrane.
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The three different initial conditions are induced by defining different seed numbers of 10, 20, and 30. The
schematic of the examined structure for thin film evaporation is ;

shown in Fig. 8. Water, chosen as the working fluid, was driven by
capillary pressure across an anodic aluminum oxide (AAO)
membrane  with a nominal pore size of 50 nm and thickness of 100
um. The evaporation occurs on the membrane's heated surface, and
the resulting vapor molecules carry the heat from the solid surface to . iyl
the vapor space. In this experiment, the input parameters are D1 = 4.6 /=% - 1
mm, L1 = 1.6 cm, D2 =50 nm, L, = 100 pm, Ca.Eu®°D.F=0.053 and =
the Ja number varies between the wide range of 0 to 0.135. The
predicted values of heat flux by the Al model as a function indicates,
for all different random initial conditions, the Al models display
completely similar output patterns, which is a proof for the stability
and generalization of the RF algorithm used on the training data set.
This analysis reveals that the Al model predictions are independent of the random initial conditions in the
training process. In the next step and to further assess the Al model, we examined the model’s predictions
with two independent studies on thin film evaporation in hierarchical structures conducted by 10 different
research groups. The different metrological instrumentation by independent groups leads to some degree of
error in the reported values. Figure 9 represents the schematic of the  hierarchical structure examined by
Hanks et al.58. The membrane (shown in grey) was bonded to a high permeability
silicon micro-channel array (shown in red) to create a hierarchical structure, to achieves high capillary
driving force with enhanced permeability. The working fluid (Pentane) wicks into the liquid supply channels
(shown in red) before flowing through the membrane pores and evaporating at the membrane surface. The
backside of this hierarchical structure is attached to a heater to induce the heat flux and resistive temperature
sensors to measure the structure's temperature. The nanoporous membrane 600 nm thick with 110 nm pores
is suspended over a liquid supply network of microchannels that are 200 um of different Ja number is plotted
in Fig. 9 for three independent initial conditions. As this figure indicates, for all different random initial
conditions, the Al models display completely similar output patterns, which is a proof for the stability and
generalization of the RF algorithm used on the training data set. This analysis reveals that the Al model
predictions are independent of the random initial conditions in the training process. In the next step and to
further assess the Al model we examined the model’s predictions with two independent studies on thin film
evaporation in hierarchical structures conducted by 10 different research-groups. The different metrological
instrumentation by independent groups leads to some degree of error in the reported values. The nanoporous
membrane 600 nm thick with 110 nm pores is suspended over aliquid supply network of microchannels that
are 200 um long, 2um wide, and 2 um high. As we defined earlier, in all the hierarchical structures, the fluid
flow is divided into two regimes, (1) a long length of fluid flow occurs in sections with small hydraulic
resistance, which is microchannels in this case, and (2) a short length of fluid flow occurs in sections with
high hydraulic resistance, which is the nanoporous membrane in this study. Hence, for this study, the
geometrical input parameters are: D1 = 2 um (i.e. hydraulic diameter of microchannels), L1 = 100 um (i.e. the
average distance that liquid pass to reach the membrane which is equal to half of the microchannels’ length),
D, =110 nm (i.e. pores’ diameter) and L, = 600 n(i.e. membrane’s thickness). The Ca.Eu®°D.F number is
calculated as 0.4686 for this study based on the capillary driving force and the hydrodynamic properties of
the working fluid. We deliberately excluded this work’s data from the data sets. Having all the input
parameters for this study, we compared prediction of Al model with the measured values as a function of Ja
number . The dashed lines envelop the uncertainty associated with the measurements. As shown, there is a
good agreement between the measured experimental values and the predicted ones by the Al 11 model. This
suggests that the Al model could be used for prediction of heat flux in hierarchical structure minimizing the
cost and time challenges of experimental counterpart. For the second independent case study, we chose the
experimental study conducted by Bigham et al.55. As depicted in Fig. 7a, this experimental study is
conducted on a microchannel that is 8 mm long, 300 pum wide, and 175 pm tall. Along the flow direction, the
bottom wall of the microchannel has pillars with diameter of 10 um (i.e. Dpjjjar = 10 um), a height of 20 pm
(i.e. L = 20 um), and an edge-to-edge spacing of 30 um (i.e. P = 30 um). There is an embedded heater inside
this structure to generate the required heat flux during the experiments. The evaporation occurs between the
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pillars, and the resulting vapor molecules carry the heat from the structure to the vapor space. The predefined
regime 1 occurs in the microchannel for this case, and the predefined regime 2 occurs in the void space
between pillars. Hence, for this study the geometrical input parameters are : D1 = 24 pm (i.e. hydraulic
diameter along the flow direction inside the microchannel, calculated by equation (4), L' = 4 mm (i.e.
average distance that liquid pass to reach the evaporative interface which is equal to half of the
microchannels’ length.) , D2 =40.2 um (i.e. hydraulic diameter along the pillars, calculated by equation (5),
L2 =20 um (i.e. pillars’ length). The Ca.Eu®°D.F number is calculated for this study, and it has a value of
0.0143.

D; = 4L,(P — Dpillar)/(z(P - Dpillar + L) (4)
D, = 4p? — T[DIZJillar /(T[Dpillar + 4(P - Dpiller) (5)

Having all the input parameters for this study, we ran the Al model to predict heat flux in this structure as a
function of Ja number. Figure 7 depicts the comparison between the predicted heat flux curve as a function of
Ja number with the measured ones. The area between dashed lines illustrates the errors in the measurements.
Although, in this experimental set, the minimum 12 reported value of Ja was 0.003, we included the
predictions for lower Ja numbers. As shown, there is a decent agreement between the measured experimental
values and the predicted values. This is remarkable as the trained model explains all the experimental
findings from another independent group with high accuracy.

CONCLUSIONS In summary, we cast a methodology and a predictive Al platform for thin film evaporation
in hierarchical Figure 9

structures. Through physics of thin film evaporation, we determined six independent variables that govern
heat flux in hierarchical structures. Four of these variables are function of geometry of the hierarchical
structure, one governs heat transfer in the structure and the last one determines the hydrodynamics of flow in
these structures. A complete data set on thin film evaporation in hierarchical structures was collected from
various independent research groups. The Al model was developed based on the random forest algorithm, a
reliable algorithm with minimal hyperparameter tuning. The developed Al model shows a good agreement
with both the train and test sets with statistical metrics of (R? = 0.99, RMSE=29.6, MAPE= 18.1%) for the
test set. Based on the analysis of the Al model, the length scale of the smaller length scale of the hierarchical
structure (i.e. nanoscale) is the most ruling dimension for design of hierarchical structures for maximum heat
dissipation. The stability and generalization of Al model predictions is shown on an AAO membrane for
three independent initial conditions. The Al model was further assessed through prediction of heat flux as a
function of Ja for two independent studies from different research groups. The good agreement between Al
predictions and measurements further confirm the accuracy of the developed methodology and Al model. We
should emphasize that the develop general Al model could be implemented for various form of working
fluids. This work provides a foundation and rational methodology to use data science 13 to guide future
development of hierarchical structures for thermal management of a wide spectrum of system including
photonics/electronics, hypersonic aviation and energy/water systems. In this study, we presented a ML
approach to estimate permeate flux and foulant rejection for nanocomposite filtration membranes based on a
range of input variables: support, particles concentration, concentration of organic phase (TMC in n-hexane),
operation pressure, contact angle, thin layer thickness, location of the NPs, post treatment temperature and
post treatment duration.
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