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ABSTRACT:-. In this study Nine independent variables are fed to artificial neural networks (ANNs) 

including support, nanoparticles concentration, concentration of organic phase trimesoyl chloride (TMC) in-

n-hexane (TMC in n-hexane), operation pressure, contact angle, thin layer thickness, location of the 

nanoparticles (NPs), post-treatment temperature and duration, and permeate flux and foulant rejection were 

derived as the outputs of the ANNs. The proposed method was evaluated on two datasets across training, 

validation and test datasets, and an unseen dataset. 2250 different initial weights and number of the neurons 

in the hidden layer for the proposed ANN models were considered and compared to find the optimized ANN 

models The trend in miniaturization and enhanced functional performance of integrated circuits and power 

electronics and photonics has amplified the generated thermal energy in these devices making thermal 

management a bottleneck for further advancement in these fields. A range of geometries of Sequence 

structures are developed and examined to address this challenge. However, the numerous form factors and 

dimension of hierarchical structures in addition to cost and time-consuming synthesis and test procedures 

make it unfeasible to explore bountiful variations of hierarchical geometries through experimental methods. 

Here, we introduce a general Artificial Intelligence (AI) platform to address this challenge and guide 

discovery of hierarchical structures for extreme thermal management of high-performance 2 

photonics/electronics. The ML platform is based on Random Forest (RF) algorithm, a robust AI method, and 

was trained using a large collected experimental data set corresponding to thin film evaporation in various 

forms of Sequence structures. Four geometrical dimensions of the hierarchical structures and two 

dimensionless numbers governing heat transfer and fluid dynamics in these structures were used as 

independent variables to predict heat flux in these structures. The trained model's performance was analyzed 

using statistical metrics and showed an excellent prediction 

of heat flux for all the structures with various working fluids. The 

performance of predictive AI platform was further validated 

by two independent studies of different research groups. 

 KEYWORDS. ML,Artificial neural networks, 

Evaporation, Sequence structures, AI. hypersonic aviation,  electric 

vehicles. 

  INTRODUCTION Thin-film nanocomposite (TFN) 

membranes are widely used in reverse osmosis (RO) and 

nanofiltration (NF) processes since they offer high flux and 

rejection along with mechanical stability. TFN membranes are mostly 

produced by forming a polyamide layer (PA) on a porous polymer substrate through interfacial 

polymerization (IP) process, during which polycondensation occurs between one monomer in aqueous 
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solution and another monomer in an organic solution 1. Nevertheless, the performance of TFN RO or NF 

membranes are limited to the trade-off relationship between the water permeability and membrane 

selectivity1. Thus, many attempts have been made to improve the performance of TFN membranes such as 

making modifications to the membrane support or the PA layer. Moreover, surface modifications using 

hydrophilic additives 2 and co-solvent addition3 have also been carried out4. Among these approaches, 

incorporation of nanoparticles (NPs) as nanofillers in the selective PA to produce so-called thin-film 

nanocomposite (TFN) membranes have seen increased research interests in the last decade5. Increased water 

permeability has been reported due to the formation of additional channels through the microporosity of 

nanoparticles6 while also maintaining or even increasing the rejection performance Advancements in high-

performance photonics/electronics devices have been exponential during the last few decades. 

Miniaturization along with consistent performance boost in transistors, chips, smartphone, vehicle electronics 

and server farms has led to high power density and introduced a high demand for advanced cooling 

techniques1.  

 A range of methods has been studied to address the thermal management challenge, including 

microchannels2,3, sprays4, and jet impingement5 . However, thin film evaporation have received                                  

Figure 1 

special interests owing to the potential to dissipate high heat fluxes. Over the last two decades, extensive 
experimental studies have been conducted on thin film evaporation in hierarchical structures including 

micro and nano pillar arrays, nano-membranes, copper micro-posts, multi-artery, and sintered wick 

micro/nanostructures. Despite a large body of experimental works, the path for a three accurate and robust 

model that predicts heat flux corresponding to thin film evaporation in various form factor of hierarchical 

structures remains elusive.  Fabrication of hierarchical structures and experimental measurements of thin film 

evaporation performance are costly and time-consuming. In addition, variations in the form factor and 

dimension of hierarchical structures is so broad making it unfeasible to explore these variations through 

experimental efforts. A credible alternative to minimize and complement    the fabrication and experimental 

challenges is to capture an unsolved   relationship between heat flux vs   geometrical and physical variables 

via data science. Recently, the field of nanoscience and engineering has been exploring Machine Learning 

ML to avoid high-cost and time consuming experimental works. Here, we present an integrated ML-enabled 

predictive model for thin film evaporation in hierarchical structures. We take advantage of physics of thin 

film evaporation, data extracted from literature and use Random Forest (RF), a robust AI method, to train 

and validate a general ML model. The developed model 

predicts heat flux in hierarchical structures for various 

working fluids as a function of geometrical dimensions 

and two dimensionless numbers. The first 

dimensionless number (Ja: Jacob number) 

governsheat transfer in the  structure and the second 

dimensionless number (Ca.Eu0.5, Ca denotes Capillary 

number and Eu is Euler number) governs 

hydrodynamics of liquid in these  structures. Using the trained 

model for the testing dataset indicates an excellent performance of the AI model in prediction of heat flux as 

a function of independent variables. Furthermore, the ML-model is assessed for two cases of experimental 
data of two independent research group and showed a high prediction accuracy.                            

STATISTICAL PARAMETERS AND DATASET  Thin film evaporation in hierarchical structures in 

three geometrical forms is shown in Fig. 2. represents a nanomembrane assembled on top of a micro-pillared 

structures; In the hierarchical structures, under steady-state condition, the working fluid is supplied to the 

structure to compensate for the liquid loss via evaporation. When the hydrodynamic pressure loss in the 

structure exceeds the fluid driving forces, the heated structure dries out due to liquid starvation. In design of 

hierarchical structures, to minimize the pressure losses, the fluid flow regime is divided   into two length 

scales; 

 (1) A long length of fluid flow occurs in sections with small hydraulic resistance and                                                                                                   

(2) A short length of fluid flow occurs in sections with high hydraulic resistance.                                                                                 
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That is, the geometry of these structures could be characterized with four length scales as shown in Fig. 1. D1 

and L1 represent hydraulic diameter and length of fluid flow in regime 1, respectively and D2 and L2 

represent hydraulic diameter and length of fluid flow in regime 2, respectively. Note that for structures with                                             

Figure 2                      

several degree of branching, the same principle applies. The heat flux in the hierarchical structures is a 

function of saturation temperature of the working fluid 

(Ts), heat capacity of the working fluid (Cp) enthalpy 

of phase change (ℎfg) and temperature of the 

hierarchical structure (Tw). These thermodynamic 

properties could be summarized in dimensionless 

Jacob number (Ja) as written below. The driving force 

for liquid flow in these structures could be capillary 

force or/and an external pumping force, while the 

opposing force for fluid flow is the viscous forces. 

Momentum conservation by these forces governs fluid 

velocity in these structures and may be denoted by 

dimensionless number of Ca.Eu0.5 as defined  

                                                                Ja = 
Cp(Tw−Tsat)

hfg
-                                                             (1) 

                                                                Ca = 
μU

γ
                                                                           (2)  

                                                                 Eu =  
∆p

ρU2                                                                         (3)  

Where μ [Pa.s] is the viscosity of the working fluid, U [ms-1 ] is  

 the mean velocity of the flow, γ [Nm-1] is the surface tension of the fluid, ∆p [Pa] is the driving force in the 

hierarchical structure, which is the summation of capillary pressure and external pressure and ρ [kgm-3 ] is 

the density of the fluid. Through a comprehensive study of literature on thin film evaporation, 2500 

experimental data were collected of heat flux in various hierarchical structures for different working fluids. 

The collected data set is included in Supplementary Information, S1.Geometrical features is determined of 

these hierarchal structures (D1, L1, D2, L2) and governing dimensionless numbers. Note that the data set 

includes various types of working fluids (i.e. water, isopropanol, pentane, methanol, ethanol, R245fa and FC-

72). It should be added that in thin film evaporation, density of contact line (α), which is defined as a fraction 

of wetted perimeter in the hierarchal                     Figure 3 

 structure over the total area is another governing factor. However, due to sparse distribution and                             

 large scattering of data in the literature on this variable, we did not include this feature in the AI platform as 

it leads to a decrease in the accuracy of the prediction. Table 1 shows the range of all of the extracted 

variables determining heat flux with their distribution for the training of the AI-model. The details of all 

experimental data sets used for the proposed AI model are summarized in Supplementary Information S1 and 

Table S1. 6 Table 1. 

Table 1. Input parameters and their ranges in the collected dataset. 

 D1 (µm) L1 (µm) D2 (µm) 

Range 0-7042 0-20000 0.056-662.000 

 

 L2 (µm) Ja Ca.Eu0.5 

Range 0.2-900. 0.00031-0.89900 0.0021-3.030 
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METHODOLOGY FLOWCHART A flowchart illustrating the analysis sequence of data set and AI 

training and testing is shown in Fig. 4. As reported in the previous 

part, six governing variables (D1, L1, D2, L2, Ja,  Ca.Eu0.5) were 

chosen as input parameters to develop the AI model. The data set 

contains 2500 experimental samples, covering a wide range of heat 

flux values and collected from various reports in the literature. 

Among this data set, 85% of the total data (2000 samples) were 

randomly used for training, and the remaining 15% of the data (550 

samples) were used for the testing. Before training, the input and 

output parameters were normalized into a range between zero and 

one to improve the accuracy and convergence speed of the developed 

AI. For the data regression, we employed the RF algorithm 

implemented in scikitlearn, a reliable, flexible, and fast algorithm 

that requires minimal hyperparameter tuning. The RF algorithm is an 

ensemble learning method that operates by constructing several randomized decision trees at training time 

and outputting the trees' average                                   Figure 4 

predictions. The Out Of Bag (OOB) error which measures the prediction error of                  

 a random forest model, converged to its minimum value when we set the number of trees equal to 1000 

hence, in this work, the number of trees in the forest was set 1000. After training the train set with the RF 

model, several statistical metrics are used to assess the accuracy and performance of the model on the test set, 

which include the correlation coefficient (R2), mean absolute percentage of error (MAPE) and root mean 

squared error 7 (RMSE). The definition of these statistical metrics is given in the Supplementary 

Information, S2. Once validated, we assessed                                                 

 performance of the AI model by  

 predicting heat flux of two forms of                                                                            

Figure 5 

 hierarchical structures reported by independent 

research groups, and there is excellent 

agreement between AI model predictions and 

reported experimental data.  

RESULTS AND DISCUSSION The proper 

selection of independent variables in the AI 

model plays an important role in accuracy of 

the model. Figure 6 shows the importance of 

each input parameter on prediction of the heat flux. To measure importance of each input parameter in a RF 

model after training, the values of that specific 

input are rearranged among the training data, and 

prediction error is again computed on this 

perturbed dataset. The importance score of that 

specific input parameter is calculated by 

averaging the difference in prediction errors before 

and after the rearrangement. In the end, the score is 

normalized by the standard deviation of these 

differences. Features that produce large values 

for this score are more important than features 

that have small values. As discussed earlier, we 

classified all six independent variables into three 

separate categories; geometry, heat transfer and hydrodynamics. As indicated in Fig. 6, Ja plays the most 

important role in predictions of AI model and Ca.Eu0.5 comes in the second place. This is an expected 
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outcome as there is a direct correlation between heat flux and                      Ja number in most of the reported 

studies. The second important category is hydrodynamics (i.e. Ca.Eu0.5), where the driving force, viscous 

losses and hydrodynamic properties of the 

working liquid affect heat flux. The last 

category is geometry of the hierarchical 

structures. In this category, L2, the length of 

fluid flow in predefined regime 2, plays the 

dominant role                                       

Figure 6 

 in predicting heat flux values. That is, the 

length of 8 fluid flow in smaller length scale 

(i.e. nanoscale) is the critical factor to tune 

heat flux in the hierarchical structures. Once 

developed, in the first step, we compared 

predictions of AI model with the train set as 

shown in Fig. 7a. After, we compared the 

predictions with the test set (i.e. 20% of the 

data) as shown in   

Fig. 7b. As shown, there is a good agreement between the predicted values by AI model and both data sets. 

In order to investigate linearity between the train or test sets and experimental measurements, we also 

calculated Pearson correlation. A Pearson correlation coefficient value close to 1, means the relationship 

between the train or test sets and experimental measurements is exactly linear. We calculated the Person 

values of 0.9912 and 0.9901 for training and test sets respectively. We should add that the experimental 

measurements of heat flux have inherent error in metrologies that could vary between various groups. This 

error                       Figure 7 

 could contribute to some degree of error in AI predictions. 

 The relative error in the AI prediction of heat flux were demonstrated against experimental data to further 

validate the performance of the model for the training and testing phases in Supplementary Information S3 

and Fig. S1. To further assess the performance of the developed AI model various statistical metrics were 

thoroughly implemented. These statistical criteria for comparing the AI model's training and testing phases 

are summarized in Table 2. 

Table 2 Performance of the AI predictive model for the training and testing sets using various 

statistical criteria 

 R2 RMSE MAPE 

Train set 0.978 26.3 16.7% 

Train set 0.978 28.5 17.4% 

      AI models usually include a predetermined degree of randomness in their training methods and this 

comes with a detrimental effect on the generalization and stability of the model83. In the 9 training process, 

the model is updated using a randomized procedure that will result in model’s final predictions every time 

the training code is executed. The only way to ensure that the results of different trained models are 

reproducible is to set a quantity known as the random seed, which controls how random procedures are 

generated.84 This number is a starting point for the sequence, and the guarantee is that if you start from the 

same seed number, the trained model will predict completely similar values. To examine stability and 

generalization of our AI algorithm, we executed the training code with three random initial conditions and   

compared predictions of the AI models on                               thin film evaporation in a nanomembrane. 
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Figure 8 
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 The three different initial conditions are induced by defining different seed numbers of 10, 20, and 30. The 

schematic of the examined structure for thin film evaporation is 

shown in Fig. 8. Water, chosen as the working fluid, was driven by 

capillary pressure across an anodic aluminum oxide (AAO) 

membrane    with a nominal pore size of 50 nm and thickness of 100 

µm. The evaporation occurs on the membrane's heated surface, and 

the resulting vapor molecules carry the heat from the solid surface to 

the vapor space. In this experiment, the input parameters are D1 = 4.6 

mm, L1 = 1.6 cm, D2 = 50 nm, L2 = 100 µm, Ca.Eu0.5D.F = 0.053 and 

the Ja number varies between the wide range of 0 to 0.135. The 

predicted values of heat flux by the AI model as a function indicates, 

for all different random initial conditions, the AI models display 

completely similar output patterns, which is a proof for the stability 

and generalization of the RF algorithm used on the training data set. 

This analysis reveals that the AI model predictions are independent of the random initial conditions in the 

training process. In the next step and to further assess the AI model, we examined the model’s predictions 

with two  independent studies on thin film evaporation in hierarchical structures conducted by 10 different 

research groups. The different metrological instrumentation by independent groups leads to some degree of 

error in the reported values. Figure 9 represents the schematic of the     hierarchical structure examined by 

Hanks et al.58. The                                     membrane (shown in grey) was bonded to a high permeability 

silicon micro-channel array (shown in red) to create a hierarchical structure, to achieves high capillary 

driving force with enhanced permeability. The working fluid (Pentane) wicks into the liquid supply channels 

(shown in red) before flowing through the membrane pores and evaporating at the membrane surface. The 

backside of this hierarchical structure is attached to a heater to induce the heat flux and resistive temperature 

sensors to measure the structure's temperature. The nanoporous membrane 600 nm thick with 110 nm pores 

is suspended over a liquid supply network of microchannels that are 200 µm of different Ja number is plotted 

in Fig. 9 for three independent initial conditions. As this figure indicates, for all different random initial 

conditions, the AI models display completely similar output patterns, which is a proof for the stability and 

generalization of the RF algorithm used on the training data set. This analysis reveals that the AI model 

predictions are independent of the random initial conditions in the training process. In the next step and to 

further assess the AI model we examined the model’s predictions with two independent studies on thin film 

evaporation in hierarchical structures conducted by 10 different research groups. The different metrological 

instrumentation by independent groups leads to some degree of error in the reported values. The nanoporous 

membrane 600 nm thick with 110 nm pores is suspended over a liquid supply network of microchannels that 

are 200 µm long, 2µm wide, and 2 µm high. As we defined earlier, in all the hierarchical structures, the fluid 

flow is divided into two regimes, (1) a long length of fluid flow occurs in sections with small hydraulic 

resistance, which is microchannels in this case, and (2) a short length of fluid flow occurs in sections with 

high hydraulic resistance, which is the nanoporous membrane in this study. Hence, for this study, the    

geometrical input parameters are: D1 = 2 µm (i.e. hydraulic diameter of microchannels), L1 = 100 µm (i.e. the 

average distance that liquid pass to reach the membrane which is equal to half of the microchannels’ length), 

D2 =110 nm (i.e. pores’ diameter) and L2 = 600 n(i.e. membrane’s thickness). The Ca.Eu0.5D.F number is 

calculated as 0.4686 for this study based on the capillary driving force and the hydrodynamic properties of 

the working fluid. We deliberately excluded this work’s data from the data sets. Having all the input 

parameters for this study, we compared prediction of AI model with the measured values  as a function of Ja 

number . The dashed lines envelop the    uncertainty associated with the measurements. As shown, there is a 

good agreement between the measured experimental values and the predicted ones by the AI 11 model. This 

suggests that the AI model could be used for prediction of heat flux in hierarchical structure minimizing the 

cost and time challenges of experimental counterpart. For the second independent case study, we chose the 

experimental study conducted by Bigham et al.55. As depicted in Fig. 7a, this experimental study is 

conducted on a microchannel that is 8 mm long, 300 µm wide, and 175 µm tall. Along the flow direction, the 

bottom wall of the microchannel has pillars with diameter of 10 µm (i.e. Dpillar = 10 µm), a height of 20 µm 

(i.e. L2 = 20 µm), and an edge-to-edge spacing of 30 µm (i.e. P = 30 µm). There is an embedded heater inside 

this structure to generate the required heat flux during the experiments. The evaporation occurs between the 
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pillars, and the resulting vapor molecules carry the heat from the structure to the vapor space. The predefined 

regime 1 occurs in the microchannel for this case, and the predefined regime 2 occurs in the void space 

between pillars. Hence, for this study the geometrical input parameters are : D1 = 24 µm (i.e. hydraulic 

diameter along the flow direction inside the microchannel, calculated by equation (4), L1 = 4 mm (i.e. 

average distance that liquid pass to reach the evaporative interface which is equal to half of the 

microchannels’ length.) , D2 = 40.2 µm (i.e. hydraulic diameter along the pillars, calculated by equation (5), 

L2 = 20 µm (i.e. pillars’ length). The Ca.Eu0.5D.F number is calculated for this study, and it has a value of 

0.0143.   

                                                       D1 = 4L2(P − Dpillar)/(2(P − Dpillar + L2)                                         (4) 

                                                       D2 = 4P2 − πDpillar
2

 
/(πDpillar + 4(P − Dpiller)                                      (5)              

Having all the input parameters for this study, we ran the AI model to predict heat flux in this structure as a 

function of Ja number. Figure 7 depicts the comparison between the predicted heat flux curve as a function of 

Ja number with the measured ones. The area between dashed lines illustrates the errors in the measurements. 

Although, in this experimental set, the minimum 12 reported value of Ja was 0.003, we included the 

predictions for lower Ja numbers. As shown, there is a decent agreement between the measured experimental 

values and the predicted values. This is remarkable as the trained model explains all the experimental 

findings from another independent group with high accuracy.                                                                            

CONCLUSIONS In summary, we cast a methodology and a predictive AI platform for thin film evaporation 

in hierarchical                       Figure 9 

structures. Through physics of thin film evaporation, we determined six independent variables that govern 

heat flux in hierarchical structures. Four of these variables are function of geometry of the hierarchical 

structure, one governs heat transfer in the structure and the last one determines the hydrodynamics of flow in 

these structures. A complete data set on thin film evaporation in hierarchical structures was collected from 

various independent research groups. The AI model was developed based on the random forest algorithm, a 

reliable algorithm with minimal hyperparameter tuning. The developed AI model shows a good agreement 

with both the train and test sets with statistical metrics of (R2 = 0.99, RMSE=29.6, MAPE= 18.1%) for the 

test set. Based on the analysis of the AI model, the length scale of the smaller length scale of the hierarchical 

structure (i.e. nanoscale) is the most ruling dimension for design of hierarchical structures for maximum heat 

dissipation. The stability and generalization of AI model predictions is shown on an AAO membrane for 

three independent initial conditions. The AI model was further assessed through prediction of heat flux as a 

function of Ja for two independent studies from different research groups. The good agreement between AI 

predictions and measurements further confirm the accuracy of the developed methodology and AI model. We 

should emphasize that the develop general AI model could be implemented for various form of working 

fluids. This work provides a foundation and rational methodology to use data science 13 to guide future 

development of hierarchical structures for thermal management of a wide spectrum of system including 

photonics/electronics, hypersonic aviation and energy/water systems. In this study, we presented a ML 

approach to estimate permeate flux and foulant rejection for nanocomposite filtration membranes based on a 

range of input variables: support, particles concentration, concentration of organic phase (TMC in n-hexane), 

operation pressure, contact angle, thin layer thickness, location of the NPs, post treatment temperature and 

post treatment duration.  

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                             © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882 

IJCRT2408805 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h240 
 

REFERENCES  

 

(1) Brown, K. A.; Brittman, S.; Maccaferri, N.; Jariwala, D.; Celano, U. Machine Learning in Nanoscience: 

Big Data at Small Scales. Nano Lett. 2020, 20 (1), 2–10. 

 (2) Bassman, L.; Rajak, P.; Kalia, R. K.; Nakano, A.; Sha, F.; Sun, J.; Singh, D. J.; Aykol, M.; Huck, P.; 

Persson, K.; et al. Active Learning for Accelerated Design of Layered Materials. npj Comput. Mater. 2018, 4 

(1), 1–9.  

(3) Lazarovits, J.; Sindhwani, S.; Tavares, A. J.; Zhang, Y.; Song, F.; Audet, J.; Krieger, J. R.; Syed, A. M.; 

Stordy, B.; Chan, W. C. W. Supervised Learning and Mass Spectrometry 17 Predicts the in Vivo Fate of 

Nanomaterials. ACS Nano 2019, 13 (7), 8023–8034. 

 (4) Ma, W.; Cheng, F.; Liu, Y. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. ACS 

Nano 2018, 12 (6), 6326–6334.  

(5) Frey, N. C.; Wang, J.; Vega Bellido, G. I.; Anasori, B.; Gogotsi, Y.; Shenoy, V. B. Prediction of 

Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled 

Machine Learning. ACS Nano 2019, 13 (3), 3031–3041.  

(6)-Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-

performance reverse osmosis desalination 

Sep. Purif. Technol.(2020) 

(7)-Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-

phenylenediamine J. Membr. Sci.(2008) 

 (8)-Co-solvent-mediated synthesis of thin polyamide membranesJ. Membr. Sci.(2011) 

 (9)-A bioinspired fouling-resistant surface modification for water purification membranesJ. Membr. Sci. 

(2012) 

(10)-Challenges in forming successful mixed matrix membranes with rigid 

 (11) Zhang, T. J.; Peles, Y.; Wen, J. T.; Tong, T.; Chang, J. Y.; Prasher, R.; Jensen, M. K. Analysis and 

Active Control of Pressure-Drop Flow Instabilities in Boiling Microchannel Systems. Int. J. Heat Mass 

Transf. 2010, 53 (11–12), 2347–2360. 

 (12) Gao, Q.; Li, H.; Zhang, J.; Xie, Z.; Zhang, J.; Wang, L. Microchannel Structural Design For a Room-

Temperature Liquid Metal Based Super-Stretchable Sensor. Sci. Rep. 2019, 9 (1), 1–8. 

  (13) Koukoravas, T. P.; Ghosh, A.; Mahapatra, P. S.; Ganguly, R.; Megaridis, C. M. SpatiallySelective 

Cooling by Liquid Jet Impinging Orthogonally on a Wettability-Patterned Surface. Int. J. Heat Mass Transf. 

2016, 95 (2016), 142–152.  

(14) Wayner, P. C.; Kao, Y. K.; LaCroix, L. V. The Interline Heat-Transfer Coefficient of an Evaporating 

Wetting Film. Int. J. Heat Mass Transf. 1976, 19 (5), 487–492. 

 (15) Wang, H.; Garimella, S. V.; Murthy, J. Y. An Analytical Solution for the Total Heat Transfer in the 

Thin-Film Region of an Evaporating Meniscus. Int. J. Heat Mass Transf. 2008, 51 (25–26), 6317–6322. 

 (16) Plawsky, J. L.; Fedorov, A. G.; Garimella, S. V.; Ma, H. B.; Maroo, S. C.; Chen, L.; Nam, Y. Nano-and 

Microstructures for Thin-Film Evaporation-A Review. Nanoscale Microscale Thermophys. Eng. 2014, 18 

(3), 251–269. 15  

(17) Ma, H. B.; Cheng, P.; Borgmeyer, B.; Wang, Y. X. Fluid Flow and Heat Transfer in the Evaporating 

Thin Film Region. Microfluid. Nanofluidics 2008, 4 (3), 237–243. 

(18) Wang, X.; Li, Y.; Malen, J. A.; McGaughey, A. J. H. Assessing the Impact of Disjoining Pressure on 

Thin-Film Evaporation with Atomistic Simulation and Kinetic Theory. Appl. Phys. Lett. 2020, 116 (21), 

213701. 

 (19) Liu, R.; Liu, Z. Study of Boiling Heat Transfer on Concave Hemispherical Nanostructure Surface with 

MD Simulation. Int. J. Heat Mass Transf. 2019, 143, 118534.  

http://www.ijcrt.org/
https://www.sciencedirect.com/science/article/pii/S1383586619334501
https://www.sciencedirect.com/science/article/pii/S1383586619334501
https://www.sciencedirect.com/science/article/pii/S0376738808001087
https://www.sciencedirect.com/science/article/pii/S0376738808001087
https://www.sciencedirect.com/science/article/pii/S0376738811006442
https://www.sciencedirect.com/science/article/pii/S0376738812003213
https://www.sciencedirect.com/science/article/pii/S0376738807001251


www.ijcrt.org                                                             © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882 

IJCRT2408805 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h241 
 

(20) Xiao, R.; Enright, R.; Wang, E. N. Prediction and Optimization of Liquid Propagation in Micropillar 

Arrays. Langmuir 2010, 26 (19), 15070–15075. 

 (21) Farokhnia, N.; Sajadi, S. M.; Irajizad, P.; Ghasemi, H. Decoupled Hierarchical Structures for 

Suppression of Leidenfrost Phenomenon. Langmuir 2017, 33 (10), 2541–2550. 

 (22) Gu, Z.; Kothary, P.; Sun, C. H.; Gari, A.; Zhang, Y.; Taylor, C.; Jiang, P. EvaporationInduced 

Hierarchical Assembly of Rigid Silicon Nanopillars Fabricated by a Scalable Two-Level Colloidal 

Lithography Approach. ACS Appl. Mater. Interfaces 2019, 11 (43), 16 40461–40469. 

 (23) Sharratt, S.; Cha, G. Characterization and Modeling of the Heat Transfer Performance of 

Nanostructured Cu Micropost Wicks. J. Heat Transfer 2011, 133 (10).  

(24) Min, D. H.; Hwang, G. S.; Kaviany, M. Multi-Artery , Heat Pipe Spreader. Int. J. Heat Mass Transf. 

2009, 52 (3–4), 629–635.  

(25) Weibel, J. A.; Garimella, S. V; North, M. T. Characterization of Evaporation and Boiling from Sintered 

Powder Wicks Fed by Capillary Action. Int. J. Heat Mass Transf. 2010, 53 (19–20), 4204–4215.  

 (26) Brown, K. A.; Brittman, S.; Maccaferri, N.; Jariwala, D.; Celano, U. Machine Learning in Nanoscience: 

Big Data at Small Scales. Nano Lett. 2020, 20 (1), 2–10. 

 (27) Bassman, L.; Rajak, P.; Kalia, R. K.; Nakano, A.; Sha, F.; Sun, J.; Singh, D. J.; Aykol, M.; Huck, P.; 

Persson, K.; et al. Active Learning for Accelerated Design of Layered Materials. npj Comput. Mater. 2018, 4 

(1), 1–9.  

(28) Lazarovits, J.; Sindhwani, S.; Tavares, A. J.; Zhang, Y.; Song, F.; Audet, J.; Krieger, J. R.; Syed, A. M.; 

Stordy, B.; Chan, W. C. W. Supervised Learning and Mass Spectrometry 17 Predicts the in Vivo Fate of 

Nanomaterials. ACS Nano 2019, 13 (7), 8023–8034. 

 (29) Ma, W.; Cheng, F.; Liu, Y. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. ACS 

Nano 2018, 12 (6), 6326–6334.  

(30) Frey, N. C.; Wang, J.; Vega Bellido, G. I.; Anasori, B.; Gogotsi, Y.; Shenoy, V. B. Prediction of 

Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled 

Machine Learning. ACS Nano 2019, 13 (3), 3031–3041.  

(31)-Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for 

high-performance reverse osmosis desalination 

Sep. Purif. Technol.(2020) 

(32)-Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-

phenylenediamineJ. Membr. Sci.(2008) 

33-Co-solvent-mediated synthesis of thin polyamide membranesJ. Membr. Sci.(2011) 

34-A bioinspired fouling-resistant surface modification for water purification membranesJ. Membr. Sci. 

(2012) 

35-Challenges in forming successful mixed matrix membranes with rigid 

 

http://www.ijcrt.org/
https://www.sciencedirect.com/science/article/pii/S1383586619334501
https://www.sciencedirect.com/science/article/pii/S1383586619334501
https://www.sciencedirect.com/science/article/pii/S0376738808001087
https://www.sciencedirect.com/science/article/pii/S0376738808001087
https://www.sciencedirect.com/science/article/pii/S0376738811006442
https://www.sciencedirect.com/science/article/pii/S0376738812003213
https://www.sciencedirect.com/science/article/pii/S0376738807001251

