IJCRT.ORG ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Review On The Studies On Antimicrobial Activity Of Plant Essential Oils

M. Naga Parameswari and J. Naveena Lavanya Latha*

*Department of Biosciences and Biotechnology, Krishna University, Machilipatnam

Abstract

Rice (Oryza sativa L.) is one of the most important staple food crops of India and is a major source of calories for about 60 per cent of world population and influences the livelihoods and economies of several billion people especially concentrated in Asia. About 53% of the world's rice is grown under irrigated conditions that provide 75% of total global production. The excessive and indiscriminate usage of chemical fungicides and bactericides, to control plant diseases has led to severe environmental problems along with the problem of resistance developed among the pathogens. Presently, under the concept of integrated pest management (IPM), all possible plant pest and disease control methods are integrated to minimize the excessive use of synthetic chemicals and also the incidence of disease. The potential of various essential oils against Gram-positive and Gram-negative bacteria and fungi is being actively investigated in various laboratories across the world. However, studies on antimicrobial activity of essential oils against plant pathogens and their ability to control plant diseases are scanty. The objective of the present study is to check efficacy of new essential oil compounds and inhibitory effect of the growth of bacterial leaf blight pathogen under field condition.

Introduction

Rice is one of the most important crops in India. It suffers from huge yield losses due to blast and blight diseases. Several laboratories are working out strategies to control these diseases. Most of the labs are working on screening for resistance genes against these diseases and are trying to use transgenic approach to contain them. In addition to transgenic approach use of environmentally friendly natural products, which can act as biological control agents, as one of the disease controlling components appears to be a useful disease control strategy.

"Eat leeks in March and wild garlic in May, and all the year after the physicians may play." Traditional Welsh rhyme (230)

"An apple a day keeps the doctor away." Traditional American rhyme

"Eat leeks in March and wild garlic in May, and all the year after the physicians may play." Traditional Welsh rhyme (230)

"An apple a day keeps the doctor away." Traditional American rhyme

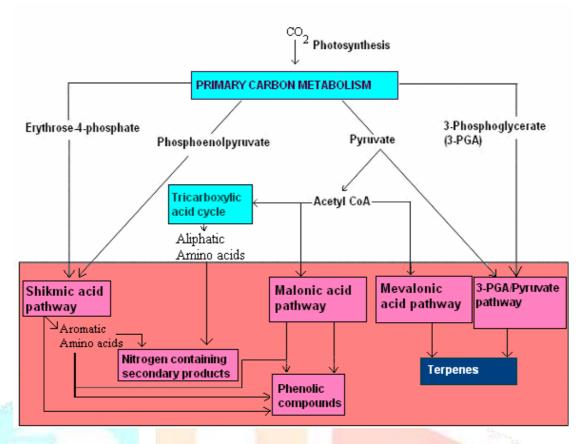
Finding healing powers in plants is an ancient idea. From prehistoric times, people on all continents have long applied poultices and imbibed infusions of one or several hundreds of indigenous plants. Plants have played a significant role in maintaining human health and improving the quality of human life for thousands of years. Many plants and their products have been attributed to possess antimicrobial, antioxidant, immunostimulant, abortifacient, antihelminthic, astringent, carminative and demulcent properties and have been part of folk medicine since time immemorial. According to the world health organization reports 80% of the earth's inhabitants rely on the traditional medicines for their primary health care needs.

The antiseptic qualities of aromatic and medicinal plants and their extracts have been recognized since antiquity. Attempts to characterize these properties in the laboratory started from the early 1900s (Petrovska BB, 2012). Many drugs that are presently used for their therapeutical properties have originated from plants. For example: artemisinin from *Artemisia annua* is used to treat malaria; reserpine, which is used to control blood pressure is obtained from *Rauwolfia serpentina*; similarly salicylic acid from *Salix albata* is used to relieve pain and fever; digitoxin, digoxin, or some other digilanides which are used in treatment of heart failure diseases are from *Digitalis* (foxglove); taxol, which is used as chemotherapeutic agent for treatment of various cancers is obtained from bark of *Taxus brevifolia*. Despite the establishment of healing properties of numerous plants and plant products, numerous other plants and plant products are yet to be identified and tested for their antibiotic and disease combating properties.

Of the various useful qualities possessed by plants and their products, antimicrobial activity has gained considerable attention due to various reasons. Currently, of the one- quarter to one-half of all pharmaceuticals derived from higher plants, very few find use as antimicrobials since we have relied on bacterial and fungal sources for these activities. Since the advent of antibiotics and synthetic chemicals in the 1950s, little use has been made of plant derivatives as antimicrobials. However, with continued use of antibiotics and other drugs, drug resistance has become widespread. Although strategies have been evolved to combat this menace by using combinations of antibiotics and by the development of second, third and fourth generation antibiotics of different kinds, there has been an increasing awareness that perhaps plant products of therapeutic value are the best bet as safer drugs. Coupled with this trend, a second look at medical folklore and traditional plant based therapies is giving an impetus to plant based antimicrobial preparations. It was reported that in United States of America, in 1996, sales of botanical medicines increased 37% over 1995 (Bent S, 2008). Another very important driving factor for the renewed interest in plant antimicrobials, in the past 20 years, has been the rapid rate of extinction of plant species. There is a feeling among natural product-chemists and microbiologists alike that the multitude of potentially useful phytochemical structures that could be synthesized chemically is at risk of being lost irretrievably. This provided the impetus for the screening of antimicrobial properties of various plant products. Hence, it is worthwhile to identify natural plant products with antimicrobial properties.

India, with a variety of climatic and physiographical conditions has been bestowed with floral diversity. Rich traditional medicine knowledge in the form of ayurvedic literature is available. About 45,000

different plant species are found, of which 2000 are frequently used to cure various ailments. These plants and their products, which are known to possess various biological properties, need to be tested at laboratory levels before using them as therapeutic agents (Cowan MM, 1999).


Phytochemicals

The biological properties of various plants and their products are imparted by various secondary metabolites (phytochemicals) produced by them. Plants produce a large and diverse array of organic compounds that, generally speaking, appear to have no direct function in growth and development, and these are named as secondary metabolites. They also differ from primary metabolites of plants such as chlorophyll, amino acids, nucleotides, simple carbohydrates etc. in having a restricted distribution in the plant kingdom. Plant secondary metabolites can be divided mainly into three chemically distinct groups:

- 1. Terpenes: These are the largest class of secondary products synthesized from acetyl CoA or from basic intermediates of glycolysis.
- 2. Phenolic compounds: Aromatic substances formed via the shikimic acid pathway or the malonic acid pathway.
- 3. Nitrogen-containing secondary products, such as alkaloids, which are primarily biosynthesized from amino acids.

The biological properties displayed by plants have been attributed to their ability to synthesize such compounds. The ability of these compounds to form complexes with certain enzymes or directly inhibit enzymes, toxic effects on membrane structure and integrity, quenching of free radicals, stimulation of natural killer cells in the humans, modulation of steroid concentrations etc. could be among important mechanisms underlying their biological activity. However, quite often, exact mechanisms in particular cases remain to be clarified.

Fig Diagrammatic representation showing synthesis of Terpenes in plants

Plant Essential Oils

Of the many plant products, a wide variety of plant essential oils are known to possess a variety of biological properties (Sharifi-Rad J et al., 2017). Essential oils occur in plants and in general give the plants their characteristic odours, flavors, or other such properties. The essential oils seem to be the byproducts of plant metabolism and their function is not clearly understood. But some of them are known as attractants of pollinating agents like insects, and others as defense providing agents against parasites, hostile insects, browsing animals etc. In addition their role is also seen as allelopathic chemicals. They are frequently found in glandular hairs that project outward from the epidermis of the plant serving to 'advertise' the toxicity of the plant, thus repelling potential herbivores even before they take a trial bite (Glas JJ, 2012). Most of the known essential oils belong to 87 angiospermic families; notably among them are Asteraceae, Geraniaceae, Poaceae, Myrtaceae, Lamiaceae, Rutaceae, and Apiaceae. The essential oils are distilled from plant parts and represent very complex mixtures of organic compounds. They are found to contain a variety of compounds, with monoterpenes (C₁₀) and sesquiterpenes (C₁₅) being the most Other compounds like diterpenes (C20), a variety of low molecular weight aliphatic abundant. hydrocarbons (linear, ramified, saturated and unsaturated), acids, alcohols, acyclic esters or lactones, and exceptionally nitrogen and sulphur containing compounds may also be present in these oils (Seema A. Kulkarni, 2021). Although in some plant species one main constituent of the oil may predominate, but in many spp. no single compound predominates and instead, there is a balance of various components (Sharifi-Rad M et al., 2017).

Essentials oils have many uses in day-to-day life and in industry. They are widely used as flavoring agents in foods and confectionaries, and as spices. They are also used in the perfume and cosmetic industry for

fragrance. They are also used in some of the modern skin care products because of the complexity of their active compounds, strong fragrant properties and better marketing value. They are also proposed as natural conservation agents for cosmetic preparations because of their antimicrobial activities (Sharmeen JB, 2021).

Antimicrobial Properties Of Plant Essential Oils

One of the important biological properties of these essential oils is their antimicrobial nature, and in many cases this activity was found to be due to the presence of active monoterpene constituents (Chouhan S *et al.*, 2017). This antimicrobial activity of plant essential oils and extracts has formed the basis of many applications, including raw and processed food preservation, pharmaceuticals, alternative medicine and natural therapies (K. A. Hammer, 1996).

In fact the antimicrobial properties of essential oils derived from plants have been empirically recognized for centuries, but scientifically being confirmed only from recently (Mallappa Kumara Swamy., 2016). Another property of the plant products that is generating considerable interest is their ability to control plant diseases. Till now chemical control remains the main measure to reduce the incidence of plant diseases. Two serious problems hamper against the effective use of the chemical fungicides and bactericides in controlling plant pathogenic microbes. One, as already discussed, is the development of resistance by plant pathogenic fungi and bacteria, and the other problem is the presence of high level toxic residues in agricultural products due to the application of higher concentrations of chemicals in an attempt to overcome the problem of resistant plant pathogenic microbes. Hence the exploitation of natural substances such as essential oils, safer to consumers and the environment, for the control of plant diseases is presently looked upon. Letessier *et al.*, in 2001 showed that the application of 0.05% hyssops oil can reduce the rust infection of broad bean caused by *Uromyces viciae-fabae*, while application of 0.05% hyssops oil, post inoculation, reduced the infection of powdery mildew of barley seedlings caused by *Blumeria graminis* f. sp. *Hordei*.

Many plant essential oils were tested for their antimicrobial activities. Origanum essential oil, which is used as a food flavoring, has been shown to possess a broad spectrum of antimicrobial activity due to high content of phenolic derivatives such as carvacrol and thymol present in it. It was found to inhibit various food spoiling organisms, which include the species of *Aspergillus*, *Hansenula*, and human pathogenic fungi such as *Trichophyton rubrum*, *Candida albicans* (Goyal S *et al.*, 2018). The essential oils of *Artemisia afra*, *Pteronia incana* and *Rosmarinus officinalis* were found to display antimicrobial activity against 41 microbial strains, which includes food spoilage and common human/plant pathogenic bacterial and yeast strains. Among these three essential oils, the essential oils of *A. afra* and *R. officinalis* were found to show higher antimicrobial activity than *P. incana* (Mangalagiri N, 2021). The essential oil of hyssop was found to inhibit plant pathogenic fungi like *Pyrenophora avenae* and *Pyricularia oryzae*, in *in vitro* conditions. Further it was found to inhibit the germination of conidia and uredospores of *Botrytis fabae* and *Uromyces viciae-fabae* respectively (Letessier *et al.*, 2001). The essential oil of *Melaleuca alternifolia* (Tea tree oil), which is well characterized and found to contain approximately a hundred terpenes and their related

alcohols was found to possess antibacterial, antifungal, antiviral and anti-inflammatory properties in vitro (Carson et al., 2002). The essential oils of thyme, dictamnus, rosemary, sage, marjoram, and pennyroyal were found to inhibit plant pathogenic fungi such as Botrytis cinerea, Fusarium sp., and a bacterium Clavibacter michiganensis. Thyme, dictamnus and marjoram oils were found to be rich in carvacrol, while rosemary and sage oils were rich in eucalyptol (Anastasiou, T. I. et al., 2019). The essential oils of black pepper, geranium, clove and nutmeg were found to exhibit considerable inhibitory effects against twenty five bacteria, of which nine are Gram-positive and sixteen are Gram-negative (Huan Yuchen et al., 2020). In a comparative study of some essential oils against various microorganisms by Man, Adrian et al., (2019), the essential oils of lemon grass, oregano and bay were found to inhibit Acinetobacter baumanii, Aeromonas veronii, Candida albicans, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica, Serratia marcescens and Staphylococcus aureus. In the same study the essential oils of rosewood, coriander, palm rosa, tea tree, niaouli, peppermint, spearmint, sage and marjoram were found to inhibit all the above mentioned microorganisms except P. aeruginosa. Further in this study it was found that essential oils of pumpkin, macadamia, evening primrose, apricot kernel, sweet almond and clary sage failed to inhibit any of the above mentioned microorganisms. The essential oil of *Backhousia citriodora*, which contain a very high percentage of citral, was found to inhibit various bacteria and fungi (Piotr Szweda & Barbara Kot, 2018). Basil essential oils, including basil sweet linalool and basil methyl chavicol were found to show antimicrobial activity against various Gram-positive and Gram-negative bacteria, yeasts and moulds. Basil methyl chavicol at 1% (v/v) when used as washing material for fresh lettuce (which is an important step in production of MPF salads) reduced viable count of microbial flora on fresh lettuce comparable to that of using 125 ppm chlorine. Chlorine washing systems which are employed might produce harmful by products such as chloramines and trihalomethanes. Because of this, now there is a great interest in using basil or other plant essential oils as natural alternatives for the washing of selected fresh salad to replace or reduce the concentration of chlorine (Xylia P et al., 2021).

However, to the best of our knowledge no comprehensive studies of these essential oils on various drug resistant bacteria, their ability to cure plasmids carrying drug resistant genes, the possible mode of action of these essential oils, and the ability of these essential oils to protect plants against plant pathogenic bacteria and fungi were done.

REFERENCES

Petrovska BB. Historical review of medicinal plants' usage. Pharmacogn Rev. 2012 Jan; 6(11):1-5. doi: 10.4103/0973-7847.95849. PMID: 22654398; PMCID: PMC3358962.

Bent S. Herbal medicine in the United States: review of efficacy, safety, and regulation: grand rounds at University of California, San Francisco Medical Center. J Gen Intern Med. 2008 Jun; 23 (6):854-9. doi: 10.1007/s11606-008-0632-y. Epub 2008 Apr 16. PMID: 18415652; PMCID: PMC2517879.

Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999 Oct;12(4):564-82. doi: 10.1128/CMR.12.4.564. PMID: 10515903; PMCID: PMC88925.

Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M, Tundis R, Sharifi-Rad M, Loizzo MR, Ademiluyi AO, Sharifi-Rad R, Ayatollahi SA, Iriti M. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules. 2017 Jan 1;22(1):70. doi: 10.3390/molecules22010070. PMID: 28045446; PMCID: PMC6155610.

Glas JJ, Schimmel BC, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci. 2012 Dec 12;13(12):17077-103. doi: 10.3390/ijms131217077. PMID: 23235331; PMCID: PMC3546740.

Seema A. Kulkarni, Periyar Selvam Sellamuthu, Santhosh Kumar Nagarajan, Thirumurthy Madhavan, Emmanuel Rotimi Sadiku, Antifungal activity of wild bergamot (Monarda fistulosa) essential oil against postharvest fungal pathogens of banana fruits, South African Journal of Botany, 10.1016/j.sajb.2021.08.019, 144, (166-174), (2022).

Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, Kobarfard F, Ibrahim SA, Mnayer D, Zakaria ZA, Sharifi-Rad M, Yousaf Z, Iriti M, Basile A, Rigano D. Plants of the Genus *Zingiber* as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. *Molecules*. 2017; 22(12):2145. https://doi.org/10.3390/molecules22122145

Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules. 2021 Jan 27;26(3):666. doi: 10.3390/molecules26030666. PMID: 33514008; PMCID: PMC7865210.

Chouhan S, Sharma K, Guleria S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines (Basel). 2017 Aug 8;4(3):58. doi: 10.3390/medicines4030058. PMID: 28930272; PMCID: PMC5622393.

Hammer, K.A., Carson, C.F., Riley, T.V. 1996 Susceptibility of transient and commensal skin flora to the essential oil of *Melaleuca alternifolia* (tea tree oil). *American Journal of Infection Control*, 24, 186 189.

Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid Based Complement Alternat Med. 2016;2016:3012462. doi: 10.1155/2016/3012462. Epub 2016 Dec 20. PMID: 28090211; PMCID: PMC5206475.

Letessier, & Svoboda, & Walters, Dale. (2001). Antifungal Activity of the Essential Oil of Hyssop (Hyssopus officinalis). Journal of Phytopathology. 149. 621-624. 10.1046/j.1439-0434.2001.00692.x.

Goyal S, Castrillón-Betancur JC, Klaile E, Slevogt H. The Interaction of Human Pathogenic Fungi with C-Type Lectin Receptors. Front Immunol. 2018 Jun 4;9:1261. doi: 10.3389/fimmu.2018.01261. PMID: 29915598; PMCID: PMC5994417.

Mangalagiri NP, Panditi SK, Jeevigunta NLL. Antimicrobial activity of essential plant oils and their major components. Heliyon. 2021 Apr 24;7(4):e06835. doi: 10.1016/j.heliyon.2021.e06835. PMID: 33997385; PMCID: PMC8099760.

Verica Aleksic, Petar Knezevic. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L., Microbiological Research, Volume 169, Issue 4, 2014, Pages 240-254. https://doi.org/10.1016/j.micres.2013.10.003.

Anastasiou, T. I., Mandalakis, M., Krigas, N., Vézignol, T., Lazari, D., Katharios, P., Dailianis, T., & Antonopoulou, E. (2019). Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens. *Molecules (Basel, Switzerland)*, 25(1), 148. https://doi.org/10.3390/molecules25010148

Huan Yuchen, Kong Qing, Mou Haijin, Yi Huax. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology., 11,2020 https://www.frontiersin.org/article/10.3389/fmicb.2020.582779

Man, Adrian & Santacroce, Luigi & Jacob, Romeo & Mare, Anca & Man, Lidia. (2019). Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens. 8. 15. 10.3390/pathogens8010015.

Piotr Szweda, Barbara Kot. Bee Products and Essential Oils as Alternative Agents for Treatment of Infections Caused by S. Aureus/Book Chapter in Frontiers in Staphylococcus aureus. (2018), pp. 203-224

Xylia P, Chrysargyris A, Tzortzakis N. The Combined and Single Effect of Marjoram Essential Oil, Ascorbic Acid, and Chitosan on Fresh-Cut Lettuce Preservation. *Foods.* 2021; 10(3):575. https://doi.org/10.3390/foods10030575

Si Saida Z.B., Hayate Haddadi-Guemghara H., Boulekbache-Makhloufa L., Rigoub P., Reminia H., Adjaouda A., Khoudjaa N.K., Madani K. Essential oils composition, antibacterial and antioxidant activities of hydro distillated extract of Eucalyptus globulus fruits. *Ind. Crops Prod.* 2016;89:167–175. doi: 10.1016/j.indcrop.2016.05.018.

Verma S.K., Goswami P., Verma R.S., Padali R.C., Chauhan A., Singh V.R., Darokar M.P. Chemical composition and antimicrobial activity of bergamot-mint (*Menthacitrate* Ehrh.) essential oils isolated from the herbage and aqueous distillate using different methods. *Ind. Crops Prod.* 2016;91:152–160. doi: 10.1016/j.indcrop.2016.07.005.

Kalemba, D. and Kunicka, A. 2003. Antibacterial andantifungal properties of essential oils. *Current Medicinal Chemistry*. 10, 813-829.

Deans, S.G., Noble, R.C., Hiltunen, R., Wuryani, W. and Penzes, L.G. (1995) Antimicrobial and antioxidant properties of Syzyg ium aromaticum (L.) Merr. & Perry: impact upon bacteria, fungi and fatty acid levels in ageing mice. Flavour and Fragrance Journal 10, 323–328.

Smith-Palmer A, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol. 1998 Feb;26(2):118-22. doi: 10.1046/j.1472-765x.1998.00303.x. PMID: 9569693.

Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., & Solecka, J. (2018). Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties. *Polish journal of microbiology*, 67(3), 259–272. https://doi.org/10.21307/pjm-2018-048

Heslop, K. A., Milesi, V., & Maldonado, E. N. (2021). VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges. *Frontiers in physiology*, *12*, 742839. https://doi.org/10.3389/fphys.2021.742839

Dorman, H.J. and Deans, S.G. (2000) Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. Journal of Applied Microbiology, 88, 308-316. http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x

Southwell I. *Backhousia citriodora* F. Muell. (Lemon Myrtle), an Unrivalled Source of Citral. Foods. 2021 Jul 9;10(7):1596. doi: 10.3390/foods10071596. PMID: 34359465; PMCID: PMC8305781

Grace O. Onawunmi (1989) Evaluation of the Antifungal Activity of Lemon Grass Oil, International Journal of Crude Drug Research, 27:2, 121-126, DOI: 10.3109/13880208909053950

Zaika, L.L. (1988) Spices and Herbs: Their Antimicrobial Activity and Its Determination. Journal of Food Safety, 9, 97-118.

Onawunmi, Grace & Ogunlana, E.. (2008). A Study of the Antibacterial Activity of the Essential Oil of Lemon Grass (Cymbopogon citratus (DC.) Stapf). Pharmaceutical Biology. 24. 64-68. 10.3109/13880208609083308.

Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. *Molecules (Basel, Switzerland)*, 25(6), 1340. https://doi.org/10.3390/molecules25061340

Wiederhold N. P. (2017). Antifungal resistance: current trends and future strategies to combat. *Infection and drug resistance*, 10, 249–259. https://doi.org/10.2147/IDR.S124918

Wei A, Shibamoto T. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J Agric Food Chem. 2010 Jun 23;58(12):7218-25. doi: 10.1021/jf101077s. PMID: 20499917.

McKee, M. D., Hoac, B., Addison, W. N., Barros, N. M., Millán, J. L., & Chaussain, C. (2013). Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. *Periodontology* 2000, 63(1), 102–122. https://doi.org/10.1111/prd.12029

Edelman A. Cytoskeleton and CFTR. Int J Biochem Cell Biol. 2014 Jul;52:68-72. doi: 10.1016/j.biocel.2014.03.018. Epub 2014 Mar 28. PMID: 24685681.

Dorman, H.J. and Deans, S.G. (2000) Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. Journal of Applied Microbiology, 88, 308-316. http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x

Datta P., Gupta V. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. *Indian J. Med. Res.* 2019;149:97–106. doi: 10.4103/ijmr.IJMR_755_18. [PMC free article] [PubMed]

Mimica-Dukic, Neda & Orčić, Dejan & Lesjak, Marija & Šibul, Filip. (2016). Essential Oils as Powerful Antioxidants: Misconception or Scientific Fact?. 10.1021/bk-2016-1218.ch012.

Bridges AA, Fei C, Bassler BL. Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling *Vibrio cholerae* biofilm dispersal. Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32639-32647. doi: 10.1073/pnas.2021166117. Epub 2020 Dec 7. PMID: 33288715; PMCID: PMC7768729.

Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. *Military Medical Research*, 8(1), 48. https://doi.org/10.1186/s40779-021-00343-2

Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, Huang XM. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol. 2016 Oct;100(20):8865-75. doi: 10.1007/s00253-016-7692-4. Epub 2016 Jul 7. Erratum in: Appl Microbiol Biotechnol. 2017 Mar;101(5):2201. PMID: 27388769.

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. *International journal of nanomedicine*, *12*, 1227–1249. https://doi.org/10.2147/IJN.S121956

Miller, M. A., & Zachary, J. F. (2017). Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. *Pathologic Basis of Veterinary Disease*, 2–43.e19. https://doi.org/10.1016/B978-0-323-35775-3.00001-1

Swings, Jean & MOOTER, M. & Vauterin, Luc & Hoste, Bart & GILLIS, M. & Mew, T.. (1990). Reclassification of the Causal Agents of Bacterial Blight (Xanthomonas campestris pv. oryzae) and Bacterial Leaf Streak (Xanthomonas campestris pv. oryzicola) of Rice as Pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic Bacteriology. 40. 10.1099/00207713-40-3-309.

Srinivasan P, Sprinson D. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J Biol Chem. 1959 Apr;234(4):716-22. PMID: 13654249

Podishetty, Natraj Kumar. (2014). Bacterial Leaf Blight resistance gene, Xa33 in Rice: Identification and genetic characterization of new Bacertial Leaf Blight (BLB) resistance gene in Rice.

Lo KL, Chen YN, Chiang MY, Chen MC, Panibe JP, Chiu CC, Liu LW, Chen LJ, Chen CW, Li WH, Wang CS. Two genomic regions of a sodium azide induced rice mutant confer broad-spectrum and durable resistance to blast disease. Rice (N Y). 2022 Jan 10;15(1):2. doi: 10.1186/s12284-021-00547-z. PMID: 35006368; PMCID: PMC8748607.

Singh AK, Rao SS. Evaluation of coriander germplasm for yield and powdery mildew resistance. J Spices and Aromatic Crops. 2016; 25(1):70-72

Ncube, A., & Tawodzera, M. (2019). Communities' perceptions of health hazards induced by climate change in Mount Darwin district, Zimbabwe. *Jamba (Potchefstroom, South Africa)*, 11(1), 748. https://doi.org/10.4102/jamba.v11i1.748

Séré, Y. & Sy, A.A. & Sié, Moussa & Amos, Prof. Onasanya & Akator, S.K. & Kabore, B. & Conde, C.K. & Traore, M. & Kiepe, Paul. (2011). . Importance of Varietal Improvement for Blast Disease Control in Africa.. JIRCAS Working Report. 70.

Babujee, Lavanya & Gnanamanickam, S.. (2000). Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular-assisted breeding for disease resistance. Current Science. 78

M., Plant defense Fürstenberg-Hägg, J., Zagrobelny, & Bak, S. (2013).against insect herbivores. International sciences, 14(5), 10242-10297. journal of molecular https://doi.org/10.3390/ijms140510242

Pai Li, Yi-Ju Lu, Huan Chen, Brad Day. (2020) The Lifecycle of the Plant Immune System. *Critical Reviews in Plant Sciences* 39:1, pages 72-100.

Nadine Brisson, Philippe Gate, David Gouache, Gilles Charmet, François-Xavier Oury, Frédéric Huard. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research. Volume 119, Issue 1,2010,Pages 201-212. ISSN 0378-4290,https://doi.org/10.1016/j.fcr.2010.07.012.

Mittler, Ron, et al. "Inhibition of Programmed Cell Death in Tobacco Plants during a Pathogen-Induced Hypersensitive Response at Low Oxygen Pressure." *The Plant Cell*, vol. 8, no. 11, American Society of Plant Biologists (ASPB), 1996, pp. 1991–2001, https://doi.org/10.2307/3870407.

Conrath U. (2006). Systemic acquired resistance. *Plant signaling & behavior*, 1(4), 179–184. https://doi.org/10.4161/psb.1.4.3221

Nazarov, P. A., Baleev, D. N., Ivanova, M. I., Sokolova, L. M., & Karakozova, M. V. (2020). Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. *Acta naturae*, *12*(3), 46–59. https://doi.org/10.32607/actanaturae.11026

Ádám, A. L., Nagy, Z. Á., Kátay, G., Mergenthaler, E., & Viczián, O. (2018). Signals of Systemic Immunity in Plants: Progress and Open Questions. *International journal of molecular sciences*, 19(4), 1146. https://doi.org/10.3390/ijms19041146

Parent, Jean-Guy & Asselin, Alain. (2011). Detection of pathogenesis-related proteins (PR or b) and of other proteins in the intercellular fluid of hypersensitive plants infected with tobacco mosaic virus. Canadian Journal of Botany. 62. 564-569. 10.1139/b84-084.

Sharma, Aditi & Sharma, Ashutosh & Kumar, Rahul & Sharma, Indu & Vats, Akshay. (2021). PR Proteins: Key Genes for Engineering Disease Resistance in Plants. 10.1201/9781003099079-7.

Singh, Gursharan & Bhalla, Aditya & Bhatti, Jasvinder & Chandel, Sanjeev & Rajput, Ashima & Abdullah, Aftab & Andrabi, Syedwaseem & Kaur, Paramjit. (2013). Potential of Chitinases as a Biopesticide against Agriculturally Harmful Fungi and Insects. Research and Reviews: Journal of Microbiology and Biotechnology.3. 27-32.

Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial Peptides from Plants. *Pharmaceuticals (Basel)*. 2015;8(4):711-757. Published 2015 Nov 16. doi:10.3390/ph8040711

Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. *Nat Rev Immunol*. 2008;8(11):889-895. doi:10.1038/nri2432

Wu CT, Bradford KJ. Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. *Plant Physiol.* 2003;133(1):263-273. doi:10.1104/pp.103.024687

Yilmaz Atay H. Antibacterial Activity of Chitosan-Based Systems. *Functional Chitosan*. 2020; 457-489. Published 2020 Mar 6. doi:10.1007/978-981-15-0263-7_15

Heil M, Bostock RM. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. *Ann Bot*. 2002;89(5):503-512. doi:10.1093/aob/mcf076

Conrath U. Systemic acquired resistance. *Plant Signal Behav*. 2006;1(4):179-184. doi:10.4161/psb.1.4.3221

Seyfferth C, Tsuda K. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. *Front Plant Sci.* 2014;5:697. Published 2014 Dec 9. doi:10.3389/fpls.2014.00697

Hyodo H, Kuroda H, Yang SF. Induction of phenylalanine ammonia-lyase and increase in phenolics in lettuce leaves in relation to the development of russet spotting caused by ethylene. *Plant Physiol*. 1978;62(1):31-35. doi:10.1104/pp.62.1.31

Dudnik A, Bigler L, Dudler R. Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16. *Appl Environ Microbiol*. 2014;80(12):3741-3748. doi:10.1128/AEM.00395-14

Aktar MW, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. *Interdiscip Toxicol*. 2009;2(1):1-12. doi:10.2478/v10102-009-0001-7

Wang X, Ryu D, Houtkooper RH, Auwerx J. Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. *Bioessays*. 2015; 37(10):1045-1053. doi:10.1002/bies.201500071

Cheng, XJ., He, B., Chen, L. *et al.* Transcriptome analysis confers a complex disease resistance network in wild rice *Oryza meyeriana* against *Xanthomonas oryzae* pv. *oryzae*. *Sci Rep* 6, 38215 (2016). https://doi.org/10.1038/srep38215

Jamaloddin M. et al. (2021) Molecular Approaches for Disease Resistance in Rice. In: Ali J., Wani S.H. (eds) Rice Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-66530-2_10

Koga J, Kubota H, Gomi S, Umemura K, Ohnishi M, Kono T. Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. *Plant Physiol.* 2006;140(4):1475-1483. doi:10.1104/pp.105.070334

Yasmin S, Hafeez FY, Mirza MS, et al. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric *Pseudomonas aeruginosa* BRp3. *Front Microbiol*. 2017; 8:1895. doi:10.3389/fmicb.2017.01895

Silva Cde B, Guterres SS, Weisheimer V, Schapoval EE. Antifungal activity of the lemongrass oil and citral against Candida spp. Braz J Infect Dis. 2008 Feb;12(1):63-6. doi: 10.1590/s1413-86702008000100014. PMID: 18553017.

Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol. 2019 Aug;20(8):1163-1178. doi: 10.1111/mpp.12821. Epub 2019 Jul 15. PMID: 31305008; PMCID: PMC6640183.

Kini, K.R., Vasanthi, N. & Shetty, H.S. Induction of β -1,3-glucanase in Seedlings of Pearl Millet in Response to Infection by *Sclerospora graminicola*. *European Journal of Plant Pathology* 106, 267–274 (2000). https://doi.org/10.1023/A:1008771124782

Weigel RR, Pfitzner UM, Gatz C. Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell. 2005 Apr;17(4):1279-91. doi: 10.1105/tpc.104.027441. Epub 2005 Mar 4. PMID: 15749762; PMCID: PMC1088002.

Sajad Ali, Bashir Ahmad Ganai, Azra N Kamili, Ajaz Ali Bhat, Zahoor Ahmad Mir, Javaid Akhter Bhat, Anshika Tyagi, Sheikh Tajamul Islam, Muntazir Mushtaq, Prashant Yadav, Sandhya Rawat, Anita Grover. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213, 2018, 29-37.

