IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Formulation And Evaluation Of Skeletal Muscle Relaxant Topical Gel

¹Poonam Kamate, ²Ghanshyam Potadar, ³Vinayak Ghunake,

⁴Dr.Pranjal Chougule, ⁵Dr. Nilesh Chougule

Ashokrao Mane Institute of Pharmacy, Ambap.

ABSTRACT

The formulation and evaluation of a skeletal muscle relaxant topical gel aim to provide localized relief from muscle spasms and pain while minimizing systemic side effects. This study focuses on the development of a gel containing a selected muscle relaxant, which is optimized for skin permeability and therapeutic efficacy. Various gelling agents, such as carbopol and hydroxypropyl methylcellulose (HPMC), were employed to achieve the desired viscosity and stability. The gel's physicochemical properties, including pH, viscosity, and spreadability, were systematically evaluated. In vitro drug release studies were conducted using Franz diffusion cells to assess the permeation of the active ingredient through synthetic membranes. Additionally, stability testing was performed under different storage conditions to ensure product integrity over time. The formulation demonstrated promising results in terms of drug release kinetics and skin compatibility. Efficacy was further validated through in vivo studies, showcasing significant muscle relaxation effects in animal models. This topical gel represents a novel approach to managing musculoskeletal discomfort, offering a targeted and effective alternative to traditional oral medications.

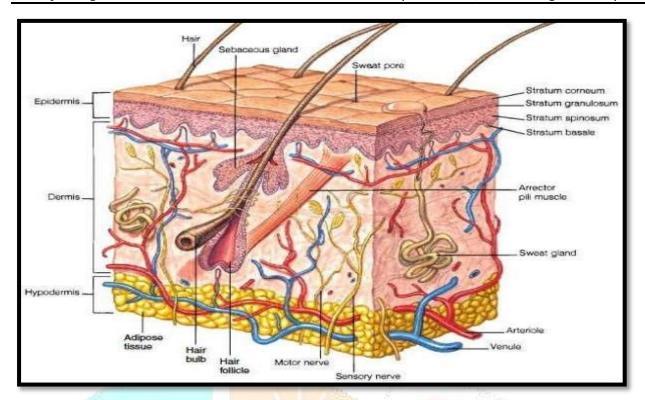
KEY WORDS: Topical, Drug, Gel, Properties

INTRODUCTION

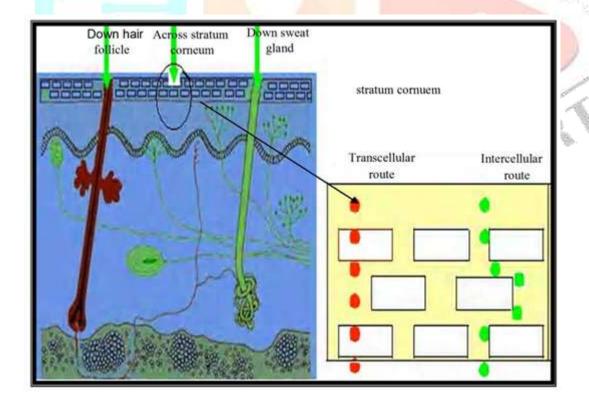
Topical drug delivery systems are gaining in popularity and several drugs have been successfully delivered by this route for both local and systemic action. Drug delivery through skin has been a promising concept for a long time because skin is easy to access, has a large surface area with vast exposure to the circulatory and lymphatic networks and route is non-invasive. Topical preparation avoids the GI-irritation, prevent the metabolism of drug in liver and increase the bioavailability of the drug. Topical preparations give its action directly at the site of action due to the first pass effect only 25-45% of the orally administered dose reaches the blood circulation. In order to avoid these problems the gel formulation have been designed for topical application.

Advantages

- 1. Minimizing the side effects associated with use oral therapy.
- 2. Enhanced penetration into the affected joints(s) or inflamed area(s).
- 3. Safe and effective as compared to oral and rectal routes.
- 4. Increase patient compliance.
- 5. Maintains constant blood levels for longer period of time.
- 6. Easy to discontinue in case of toxic effects.


CRITERIA FOR THE SELECTION OF DRUG TOPICAL DRUG DELIVERY SYSTEMS

Physiochemical properties:-


- 1. The drug should have a molecular weight less than approximately 1000 Daltons.
- 2. The drug should have affinity for both lipophilic and hydrophilic phases.
- 3. Extreme partitioning characteristics are not conductive to successful drug delivery via the skin.
- 4. The drug should have a low melting point.

Biological Properties:-

- 1. The drug should be potent with daily dose of the order of a few mg/day.
- 2. The half –life (t/1/2) of the drug should be short.
- 3. The drug must not include a cutaneous irritant or allergic response.
- 4. Drug which degrade in GI tract or are inactivated by hepatic first pass effect are suitable candidates for topical delivery.
- 5. Tolerance to the drug must not develop under the near zero order profile to topical delivery.
- 6. Drugs which have to be administered for a long period of time or which cause adverse effect to non-target tissues can also, be formulated for topical delivery.
- 7. Drug should not get extensively metabolized in skin

Structure of skin

Permeation Route: - Transcellular route, Intercellular route, Transappendageal

Gel:

A gel is a two-component, cross linked three-dimensional network consisting of structural materials interspaced by an adequate but proportionally large amount of liquid to form an infinite rigid network structure which immobilizes the liquid continuous phase within.

Properties of gel:

- Ideally, the gelling agent for pharmaceutical or cosmetic use should be inert safe and should not react with other formulation components
- The gelling agent include in the preparation should produce a reasonable solid-like nature during storage that can be easily broken when subjected to shear forces generated by shaking the bottle, squeezing the tube, or during topical application.
- It should possess the suitable anti-microbial to prevent from microbial attack.
- The topical gel should be non-tacky.

Gel are classified according to following ways:

1. According to source of gelling agent:

Natural gel

Synthetic gel

2. According to liquid medium entrapped

Hydrogel

Organogel

3. According to their cross-linkage:

Chemical gel

Physical gel

4. According to the chemical nature of the gelling agent:

Organic gels

Inorganic gels

Methods of Preparation of Gel:

- Dispersion Method
- Cold Method
- Chemical Reaction
- Temperature Effect
- Flocculation with Salts and Non-Solvents

Need For Study

- First pass metabolism.
- ➤ Shorter biological half –life 2.5 hours.
- Minimizing systemic side effects.

AIM :- Formulation and Evaluation of Skeletal Muscle Relaxant Topical Gel

OBJECTIVE OF THE STUDY

- To formulate the topical gel of Tizanidine hydrochloride by using Carbopol 934 as synthetic gelling agent and HPMC K100M as a semisynthetic agent separately and compare the effectiveness of them
- To study the effects of penetration enhancer conc. on drug release.
- To evaluate gel formulation with respect to various physiochemical parameters.
- To evaluate gel formulation for in-vitro release studies.
- To study ex-vivo permeation and skin irritation of gel formulation of optimized batches.
- To check the stability of gel formulation as per ICH guideline.

Plan of work

- Literature review
- Selection & procurement of drug & suitable excipients
- Pre-formulation study
- Formulation development
- Evaluation of formulation
- In-Vitro release study
- Ex-vivo, Skin irritation and
- Stability study of optimized batch
- Result and Discussion
- Summary & conclusion

List of Materials

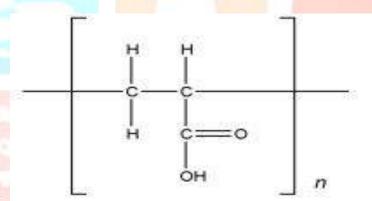
• R	esult and Discussion	
• S1	ummary & conclusion	CAR
List of M	aterials	
Sr No	Name of Material	Manufacture
1.	Tizanidine HCL IP	Aarati Pvt. Ltd., Mumbai.
2.	Carbopol 934	Corel Pharma
3.	HPMC K 100M	Research Lab, Mumbai
4.	Methyl Paraben	Allay Pharma, Mumbai
5.	Propyl Paraben	Research Lab Fine Chemie Industries, Mumbai
6.	DMSO	Research Lab, Mumbai
7.	Propylene Glycol	Loba chemical Pvt. Ltd., Mumbai

List of Instruments

Instruments	Manufacturer	Model No	
Digital Electronic Balance	Schimadzu corporation Japan	AUX 220	
FTIR	Jasco, Japan	FTIR 410	
Lab Stirrer	Remi	RA-121-D	
Digital pH meter	Equiptronics	CL 180	
UV spectrophotometer	Jasco	V-550	
Stability Chamber	Remi instruments	CNM 10 S	
Franze Diffusion Cell	Logan Instruments Ltd.	SFDC- 6	
Homogenizer	Remi Instruments	RQ- 127 A	
Cooling Centrifuge	Remi Instruments	C-24BL	
Bath Sonicator	Lab-Hosp Corporation	LHC- 670	
Melting point apparatus	LABINDIA	MEPA	

DRUG PROFILE

Name-Tizanidine Hydrochloride


Chemical name: 5-choro-N-(4, 5-dihydro-1H-imidazole 2-yl)-2, 1, 3-benzothiadazol-4-amine

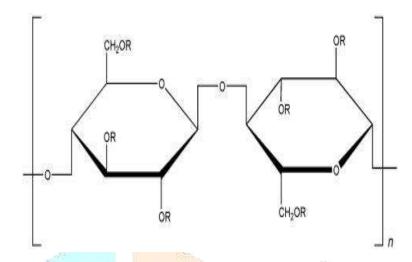
Physicochemical Properties	Parameters			
Molecular formula	C ₉ H ₉ ClN ₅ S			
Molecular weight	253.711dalton			
Category	Skeletal muscle relaxant			
Melting point	285-289 ⁰ C			
Half life	about 2 - 2.5 h.			
Solubility	slightly soluble in water and methanol also freely soluble in DMSO			

Carbapol 934

Synonym: Acrylic acid

Functional Category: Viscosity increasing agent.

Acrylic acid monomer unit in carbomer resins.

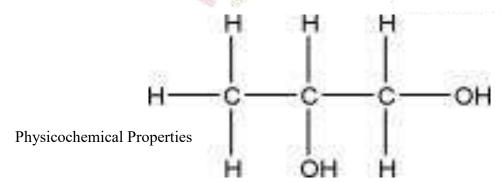

Physicochemical Properties

Properties	Parameters
Description	White or similar to white fiber or granular powder
Chemical name	carbomer 934.
Viscosity	4000 mPa
Solubility	Soluble in water, ethanol (95%), glycerin

Hydroxypropylmethylcellulose K100M

Synonym: Methocel K100M

Functional Category: Viscosity increasing agent

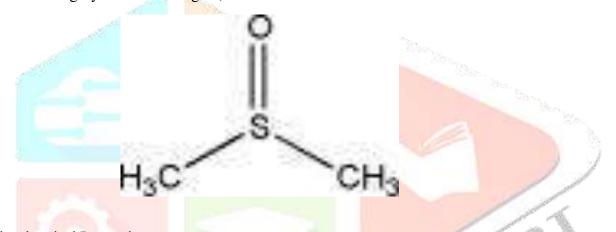

Physicochemical Properties

Properties	Parameters
Description	White or creamy white fibrous or granular powder.
Chemical name	Cellulose 2-Hydroxypropyl methyl ether
Viscosity	10,000 mPa
Solubility	Soluble in cold water, ethanol

Propylene Glycol

1, 2- Dihydroxypropane Synonyms:

Functional Category: Penetration agent; solvent



Properties	Parameters			
Description	Clear, colourless, viscous, practically odourless liquid with a sweet, slightly acrid taste resembling that of glycerin.			
Chemical name	Sulfinylbismethane			
Viscosity	58.1mPas (58.1cP) at 20 ⁰ C.			
Solubility	Miscible with acetone, chloroform, ethanol (95%), glycerin, and water			

Dimethyl sulphoxide

Synonym: Methylsuifoxide

Functional Category: Penetration agent; solvent

Physicochemical Properties

Properties	Parameters
Description	colourless, viscous liquid
Chemical name	Methylsuifoxide
Viscosity	1mPa s (1.1cP) at 27 ⁰ C
Solubility	Miscible with ethanol (95%), ether and organic solvents. Practically insoluble in acetone, chloroform, ethanol (95%) and ether.

EXPERIMENTAL WORK

1. Melting point

It was determined by using melting point apparatus.

2. IR spectroscopy

The spectra were scanned over wavelength region of 4000 to 400 cm⁻¹at resolution of 4 cm⁻¹.

3. UV Spectroscopy

The spectra of Tizanidine hydrochloride in DMSO was examined between 200-400nm, the solution shows maxima at 320nm.

Polymer Authentication

IR spectroscopy: The spectra were scanned over wavelength region of 4000 to 400 cm⁻¹at resolution of 4 cm⁻¹

Preparation of Trial Batches

In this two polymers i.e. Carbopol 934 and HPMC K100M are used with four different concentrations as gelling agent

Carbapol 934 (0.25%, 0.50%, 0.75%, 1%)

HPMC K 100 M (0.50%, 0.75%, 1%, 1.5%)

After preparation of trial batches, concentration of Carbopol 934 and HPMCK100M was finalized.

Preparation of Trial Batches of Gel

Drug	Carbop-	HPMCK	Propyl	Methyl	Ethan	Propyl-ene	TEA	Purified
(mg)	ol934	100M	paraben	paraben	ol	glycol		water upto
	(g)	(g)	(g)	(g)	(ml)	(ml)		(ml)
50	0.25	<u> </u>	0.03	0.01	5	Strange Control		100
50	0.50	1	0.03	0.01	5	5	Sec.	100
50	0.75	- 1	0.03	0.01	5	5	0 to . S	100
50	1	-	0.03	0.01	5	5	Adjus	100
50	-	0.50	0.03	0.01	5	5	t	100
50	-	0.75	0.03	0.01	5	5	pH6-	100
50	- ,	1	0.03	0.01	5	5	6.5	100
50	+/13	1.5	0.03	0.01	5	5		100

Optimization:

It is desirable to develop an expectable pharmaceutical formulation in the shortest period of time using minimum number of man-power and raw materials. In addition to the art of formulation, factorial design is an efficient method of indicating the relative significance of a number of variables and their interaction.

Factorial Design:

A 2² full factorial design with two independent variables at one levels were employed for study. 2² factorial design was used for study between DMSO conc. and Propylene glycol conc.

Independent Variables:

X₁ -Concentration of propylene glycol

X₂ - Concentration of DMSO.

Dependent variables:

Y₁ - Cumulative % of drug release at 6 hours

e488

Level for optimization

Coded values	Actual Values		
	$X_1(\%V/W)$	$X_2(\%V/W)$	
-1	5	7	
+1	10	12	

Scheme for 2² Factorial Design

Batches	Concentration of propylene glycol(%)	Concentration of DMSO (%)
C_1	10	7
C_2	5	7
C_3	10	12
C_4	5	12

Composition of Carbopol934 based batches

Ingredients	Formulation Batches			
	C_1	C ₂	C ₃	C ₄
Tizanidine hydrochloride (mg)	50	50	50	50
Carbopol934 (g)	0.5	0.5	0.5	0.5
1 (0)				
Propylene glycol (ml)	10	5	10	5
DMSO (ml)	7	7	12	12
Ethanol (ml)	5	5	5	5
Methyl paraben(g)	0.03	0.03	0.03	0.03
Propyl paraben(g)	0.01	0.01	0.01	0.01
Purified water (ml)	100	100	100	100
Upto		Part of the second		
Triethanolamine	Adjust pH	6-6.5	•	•

Composition of HPMC K 100M based batches

Ingredients	Formulation Batches				
	H_1	H_2	H ₃	H ₄	
Tizanidine hydrochloride (mg)	50	50	50	50	
HPMCK100M (g)	1.5	1.5	1.5	1.5	
Propylene glycol (ml)	10	5	10	5	
DMSO (ml)	7	7	12	12	
Ethanol (ml)	5	5	5	5	
Methyl paraben(g)	0.03	0.03	0.03	0.03	
Propyl paraben(g)	0.01	0.01	0.01	0.01	

Purified water (ml)	100	100	100	100
Upto				
Triethanolamine	Adjust pH	6-6.5		

Preparation Of Gel

- Accurately weigh polymer and add in 50 ml of distilled water.
- Kept the beaker aside for half an hour to swell the polymer.
- Prepare solution of drug by using water.
- Then take propylene glycol and DMSO in another beaker and add preservative.
- Then by using mechanical stirrer at 1200 rpm mixed the prepared solution of drug and preservative.
- Then finally volume made upto 100ml by adding water and Triethanolamine added dropwise for adjustment of skin pH (6-6.5)
- Then kept the beaker 24 hours in dark.

Parameters and Optimized Condition

Parameters	Optimized Conditions
RPM for gel preparation	1200 rpm
Time for gel preparation	½ hour
Quantity of triethanolamine	q.s. to adjust pH (6-6.5)

Characterization of gel

- Physical appearance
- Extrudability
- Measurement of pH
- Spreadability
- Rheological study
- % Drug content
- In-vitro drug release

Characterization of optimized batches

- Ex-vivo permeation study
- Skin irritation study
- Stability study

In-vitro Characterization Optimized Condition

Parameters	Optimized condition
Receptor compartment	Phosphate buffer pH 7.4
RPM of diffusion cell	50 rpm
Systems temperature	$37\pm0.5^{\circ}$ C
Sampling volume	1 ml

Results and Discussion

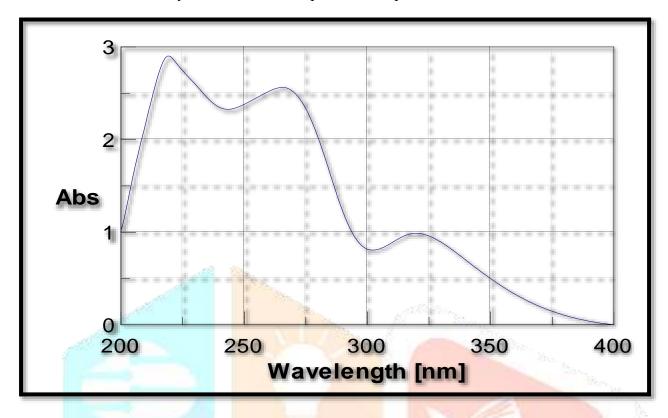
Preformulation Study

Drug Authentication

Organoleptic properties of Tizanidine hydrochloride

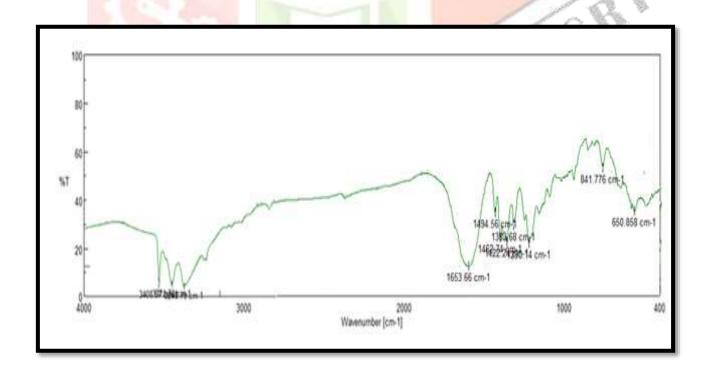
Criteria	Observation	
Colour	White- yellowish	
Odour	Odourless	
Nature	Crystalline powder	

Solubility of Tizanidine hydrochloride

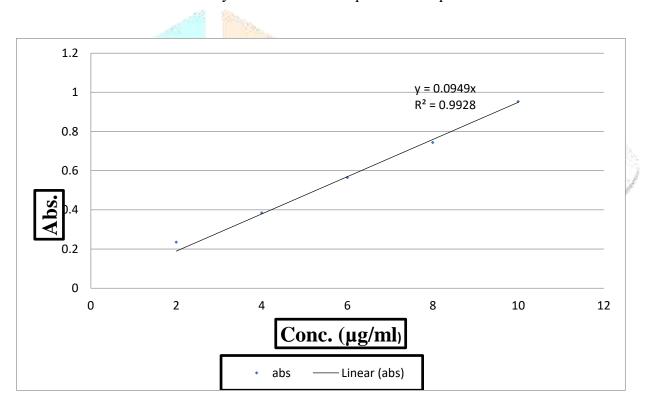

Medium	Tizanidine hydrochloride
Distilled water	Soluble
Methanol	Soluble
DMSO	Soluble
Phosphate Buffer pH 7.4	Soluble

Melting point:

Digital melting point apparatus: 285-288⁰ C as per literature


UV Spectroscopy

UV Scan of Tizanidine Hydrochloride in Phosphate Buffer pH 7.4

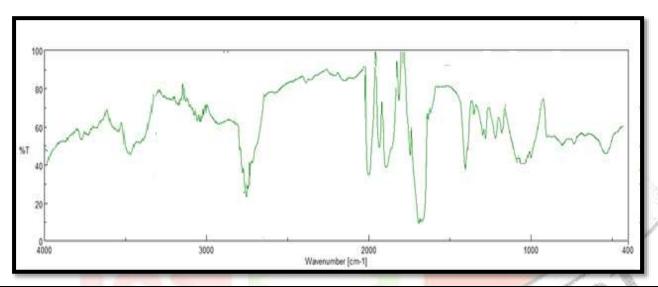

IR Spectroscopy

IR spectrum of Tizanidine hydrochloride

Sr no.	Tizanidine hydrochloride structure	Peaks cm ⁻¹	Indication	Functional Group
1		3376.44	N=H Stretch	Amide group
2	N _S	1663.66	C=N Stretch	Nitriles
3	N NH .HCI	1473.64	C =C stretch	Aromatic ring
5	NH	650.85	C-Cl Stretch	Alkyl halide

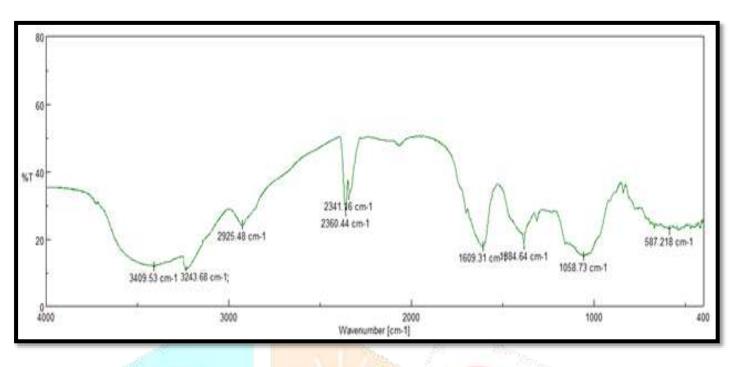
Calibration Curve of Tizanidine hydrochloride in Phosphate Buffer pH 7.4

Absorbance of Tizanidine hydrochloride in phosphate buffer7.4


Sr. no,	Concentration (mcg/ml)	Absorbance
1.	2	0.235±0.011
2.	4	0.385±0.012
3.	6	0.565±0.013
4.	8	0.744±0.011
5.	10	0.953±0.013

e493

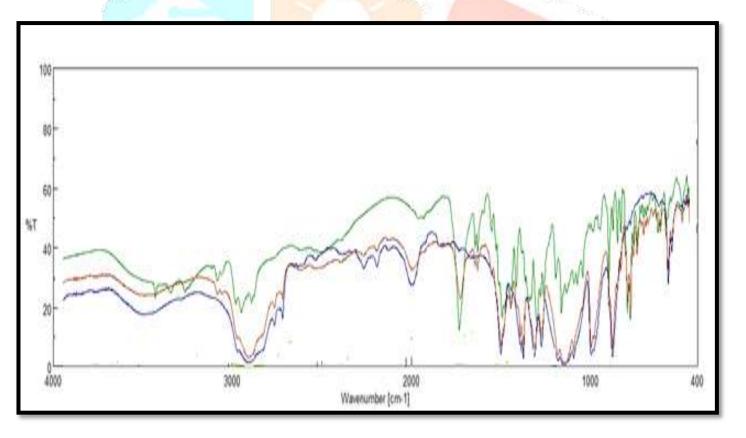
Values of Tizanidine hydrochloride calibration curve


Absorption maxima(nm)	320
Slope(m)	0.0949
Intercept(c)	0
Coefficient of correlation(r)	0.9928

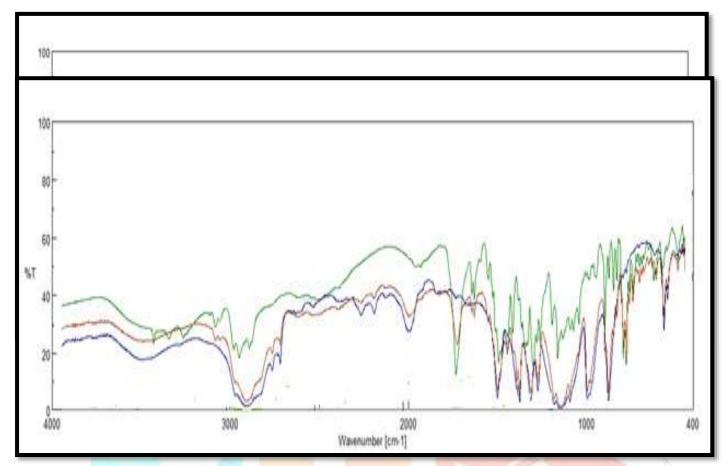
Polymer Authentication: IR of Carbopol 934

Sr. no.	Carbopol 934 structure	Peaks	Indications	Functional
		cm ⁻¹		Group
		32.50		be-1
1		2950.33	O-H Stretching vibration	Hydroxyl group
	нн	83	Same.	
2		1714.41	C=O stretching vibration	C=O group of acids
	I I I		The state of the second	
3	H (==5	1450.35	C-O stretching vibration	Carbonyl group of
	_ OH _ n		_	acids
4	with acid mannemer unit to continue equity	850.37	= C-H out of plane	Aromatics and enes
			bending	

IR of HPMC K 100M


Sr. no.	HPMCK100M structure	Peaks cm ⁻¹	Indications	Functional Group
1	OHOR OR	1058.7	aliphatic C-O stretching	Ether group
2	OR OR	2925.4	C-H Stretching	Benzene ring
3	OHOR OHOR	3243.6	N-H Stretching	Primary amino group
4		3409.53	O-H Stretching	Alcohol

Compatibility by UV visible Spectroscopy


Compatibility study of Tizanidine Hydrochloride by UV Spectroscopy

Sr. No.	Name	Max. wavelength in nm		
		Initial	After 2 weeks	After 4 weeks
1	Physical mixture of Tizanidine hydrochloride + Carbopol934	320	318	320
2	Physical mixture of Tizanidine hydrochloride + HPMCK100M	318	320	320

Compatibility study by IR Spectroscopy

Initial Compatibility

Compatibility after 2 weeks

Compatibility after 4 weeks

Physical appearance of trial batches:-

Batches	The second secon	Physical appearance
F ₁		White transparent
F ₂		White transparent
F ₃		White transparent
F ₄		White transparent
F ₅		White transparent
F ₆		White transparent
F ₇		White transparent
F ₈		White transparent

Viscosity of trial batches:-

Batches	Viscosity (cps)	Batches	Viscosity (cps)
F ₁	12,440	F ₅	11,210
F ₂	15,450	F ₆	11,409
F ₃	17,450	F ₇	12,224
F ₄	17,421	F ₈	13,750

Drug Release of trial batches at 6 hours

Batches	%drug release	Batches	%drug release
F ₁	55.26	F ₅	51.01
F ₂	55.86	F ₆	50.09
F ₃	49.06	F ₇	52.04
F ₄	50.65	F ₈	53.70

pH of trial batches

Batches	рН
F ₁	6.2
F ₂	6.4
F ₃	6.4
F ₄	6.5
F ₅	6.6
F ₆	6.7
F ₇	7.1
F ₈	6.5

From results of trial batches get the proper idea for preparation of further batches which gives best results.

Physical Appearance

All formulation batches were found to be homogenous. Clarity and homogeneity of final Carbopol934 based gel

Clarity and homogeneity of final HPMC K100M based gels

Formulation code	Clarity	Homogeneity
C1	+++	Excellent
C2	+++	Excellent
C3	+++	Excellent
C4	+++	Excellent

Formulation code	Clarity	Homogeneity
H1	+++	Excellent
H2	+++	Excellent
Н3	+++	Excellent
H4	+++	Excellent

Extrudability of final batches

Batches	E	Extrudability amount (%)	Batches	Extrudability amount (%)
C1	9	89.80	H1	89.06
C2	-	82.81	H2	86.06
СЗ	Ę (85.58	Н3	89.97
C4	AND THE PERSON NAMED IN	86.05	H4	91.71
				$(\text{mean} \pm (\text{SD}, \text{n=3})$

Measurement of pH of final batches

Batches	рН	Batches	рН
C1	6.4	H1	6.8
C2	6.2	H2	6.7
C3	6.4	Н3	6.6
C4	6.2	H4	6.7

Spreadability of final batches

Spreadability is expressed in terms of time in seconds taken by two slides to slip off from formulation, placed between, under the application of a certain load. Lesser the time taken for the separation of two slides, better the spreadability.

Spreadability was calculated by using following formula:

$$S = M \times L/T$$

Where S = spreadability,

M= weight in the pain (tied to upper side),

L= length moved by the slide,

 Batches
 Spreadability (gm.cm/sec)

 C1
 13.09 ± 0.66

 C2
 15.01 ± 2.66

 C3
 16.02 ± 1.66

 C4
 14.53 ± 0.66

T = time (in sec).

Batches	Spreadability (gm.cm/sec)
4	
H1	10.05±0.1
H2	1104±0.2
Н3	10.03±0.1
H4	12.03±0.2

Rheological Study:

The measurement of viscosity of prepared topical gel was done with Brookfield viscometer of cone and plate type with spindle no.64

Batches	C1	C2	C3	C4
Viscosity (cps.)	20,334±0.66	16,646±2.66	14,947±1.66	22,703±0.66

(mean \pm SD, n=3)

Batches	H1	H2	Н3	H4
Viscosity (cps.)	14,666±1.66	13,999±2.29	13,925±0.66	12,999±0.66

(mean \pm SD, n=3)

e500

HPMC K 100M based formulation showed low viscosity than Carbopol 934 based formulations.

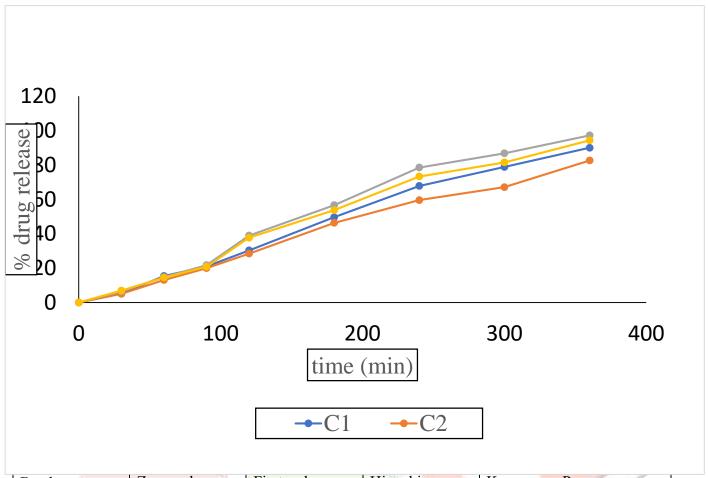
Drug Content Determination:

Drug content was calculated using the following equation, which was obtained by linear regression analysis of calibration curve. The drug content of all gel formulation is found within range i.e. $97.40\pm2.44-102.86\pm2.44$.

$$Y = 0.0948x$$

$$R^2 = 0.9928$$

Batches	Drug	Batches	Drug
	Content		Content
C1	98.81 ±3.22	H1	101.78±3.77
C2	97.56±2.86	H2	97.40±2.44
C3	99.49±2. <mark>99</mark>	Н3	100.58±1.44
C4	102.63±4.3	H4	102.86±2.44


In -vitro Drug Release

In vitro diffusion test was carried out using the flow through method with Modified- Franze diffusion cell. All formulations weighed 1.0 g flattened above the membrane with a surface area of 1 cm². System's temperature $37\pm0.5^{\circ}$ C with the receptor phosphate buffer pH 7.4. The assembly was kept on a magnetic stirrer and stirred at 50 rpm. After specific time interval 1ml of sample was withdrawn and replaced with same medium after each sampling and absorbance was taken by UV spectroscopy.

Drug release from Carbopol 934 based formulations (C1-C4)

Time (min)	% in-vitro drug release			
	C1	C2	C3	C4
30	5.2±0.57	5.04±0.57	6.44±0.57	6.95±0.57
60	15.38±0.57	13.09`±1.15	14.70±1.15	14.55±1.15
90	20.92±0.57	19.98±2.30	21.72±2.30	20.81±1.15
120	30.31±1.55	28.45±0.57	38.93±2.37	37.71±0.57
180	49.62±1.73	46.29±1.73	56.64±1.73	53.69±0.57
240	67.79±1.15	59.55± <mark>0.57</mark>	78.51±0.57	73.31±0.57
300	78.83±1.15	67.08±0.57	86.79±1.15	81.50±.0.57
360	89.99±0.57	82.58±0.81	97.23±0.57	94.43±1.73

In-vitro drug release profile of Tizanidine HCL from (C1-C4) batches

Batches	Zero-order	First order	Higuchi	Korsmeyer-P	eppas
- 1	\mathbb{R}^2	R ²	\mathbb{R}^2	R ²	N
C1	0.9927	0.9506	0.9150	0.9536	0.7948
C2	0.9931	0.9599	0.9197	0.9532	0.7747
C3	0.9815	0.8713	0.9171	0.9526	0.7461
C4	0.9862	0.9410	0.9196	0.9652	0.8022

Factorial design with surface plot % optimization of process variables

i) Carbopol 934

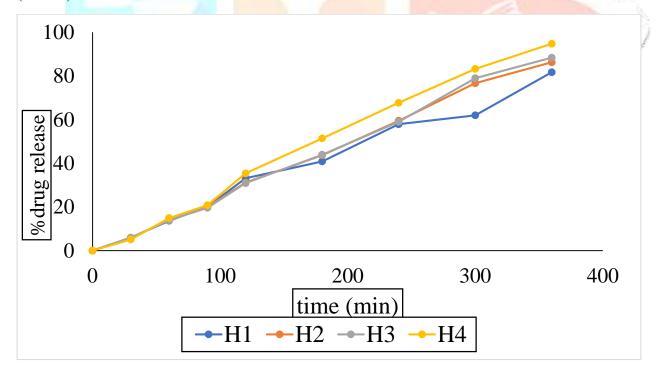
Coded & Actual value

 $X_1 = Propylene \ glycol \ conc.$

 X_2 = DMSO concentration

Coded value	Actual value				
Coded value	X ₁ (%v/w)	X ₂ (%v/w)			
-1	5	7			
+1	10	12			

2² full factorial design layout for Carbopol 934 based batches


3D response plot for %CDR at 6 hours (C1-C4 batches)

Drug release from HPMCK100M based formulations (H1-H4) batches

Time (min)	% in-vitro drug release						
	H1	H2	Н3	H4			
30	5.93±1.00	5.76±0.57	5.93±0.57	5.10±1.00			
60	13.69±3.46	14.13±1.15	13.94±0.57	14.93±1.00			
90	20.08±1.15	20.08±1.00	19.61±1.15	20.79±0.57			
120	33.12±0.57	31.17±0.57	30.92±1.73	35.42±0.57			
180	40.87±1.15	43.68±0.57	43.93±1.00	51.41±1.00			
240	57.92±0.57	59.47±1.13	58.99±1.00	67.71±1.15			
300	61.96±0.57	76.47±1.15	78.99±1.55	83.24±1.15			
360	81.73±0.57	82.27±0.57	88.40±1.73	94.78±0.57			

In-vitro drug release of Tizanidine hydrochloride from

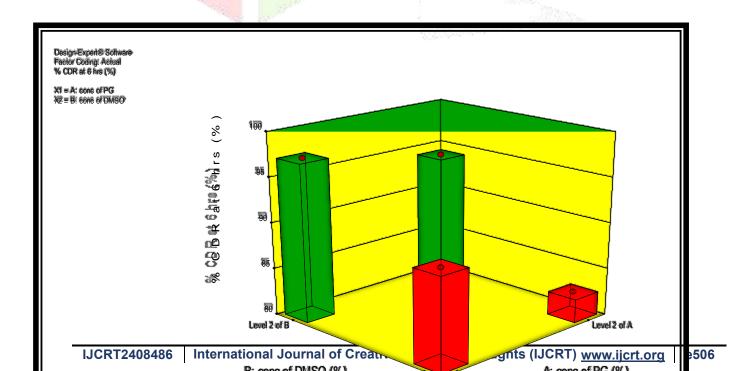
(H1-H4) batches

Drug release kinetics of H1-H4 batches

Batches	Zero order	First order	Higuchi	Korsmeyer-	Peppas
	\mathbb{R}^2	\mathbb{R}^2	\mathbb{R}^2	\mathbb{R}^2	N
H1	0.9864	0.9370	0.9211	0.9609	0.7052
H2	0.9969	0.9484	0.9125	0.9547	0.7141

Н3	0.9959	0.9304	0.9050	0.9544	0.7152
H4	0.9943	0.9064	0.9154	0.9495	0.8054

^{2&}lt;sup>2</sup> full factorial design layout forHPMCK100M based batches


Coded & Actual value

 $X_1 = Propylene glycol conc.$

 X_2 = DMSO concentration

Coded value	Actual value		
	X ₁ (%v/w)	X ₂ (%v/w)	
-1	5	7	
+1	10	12	

Batch No.	Variables in coded form	% CDR at 6 hrs	
4	X ₁	X_2	1 1
H-1	1	-1	81.73±0.57
H-2	-1	-1	82.27±0.57
H-3	1	1	88.40±1.73
H-4	-1	1	94.78±0.57

1 CR

Surface Response plot for % CDR at 6 hours (H1-H4)

It was concluded that the batch H4 and C3 showed good pH, viscosity, spread-ability and also maximum drug

Evaluation	C3	H4
рН	6.4	6.7
Spreadability (gm.cm/sec.)	14.53	12.03
Viscosity (cps)	13,999	16,646
% CDR at 6 hours	97.43	94.43

diffusion of 94.43% and 97.43% at 6 hours respectively.

Optimized
Batch
Characteristics

Optimized

Batch Characteristics of C3 and H4 batches

Ex-vivo Diffusion Study:

The gel formulations having maximum release were selected (C3 and H4) for further release study using rat abdominal skin as diffusion barrier

The result were depicted in table and plotted in four models of data treatments.

- 1) Zero order
- 2) First order
- 3) Higuchi model
- 4) Korsmeyer-peppas model

From the below plots the kinetics value were calculated and listed in table. The degree of linearity of this plots were tested by applying statistical regression analysis from correlation coefficient (R²) and slope (n) were determined.

Drug Release kinetics of optimized C3 & H4batches

Optimized Batches	Zero order	First order	Higuchi model	Korsmeyer-Peppas model	
	\mathbb{R}^2	\mathbb{R}^2	\mathbb{R}^2	\mathbb{R}^2	N
C3	0.953	0.909	0.818	0.890	0.719
H4	0.960	0.934	0.826	0.857	0.584

The drug release pattern from the optimized formulation (C3 & H4) was diffusion controlled

obeying higuchi equation. However from the Korsmeyer-Peppas model the n value for C3& H4 was found to be 0.719 &0.584 respectively, thus indicating non-fickian diffusion.

Skin Irritation Study:

Skin irritation study was carried out by dividing animals in 2 groups each group consists of 4 rats

- ✓ Group 1 Control treated with normal saline.
- ✓ Group 2 was treated with optimized batch formulation.

The signs of skin irritation were observed for 24 and 72 hrs

Skin irritation study for optimized batch of C3 and H4 batch

No. of	Edem	a			Eryther	na		
No. of Animals	C3	, at the	H4		C3		H4	
	24 hr	72hr	24 hr	72hr	24 hr	72 hr	24 hr	72 hr
Group 1	0	0	0	0	0	0	0	0
Group 2	0	0	0	0	0	0	0	0

Stability Study:

As per ICH guideline stability study was carried out at $40^0\pm2^0$ C/ $75\pm5\%$ RH up to 90 days. The results indicate that there is no so much change in appearance, pH, and drug content.

Stability study of optimized batches of C3 and H4 batches

	100	Optimized batches					
Sr.No. parameters		C-3		H-4			
		Initial	After 3 month	Initial	After 3 month		
1	Appearance	White transparent	No change	White transparent	No change		
2	рН	6.4	6.3	6.7	6.7		
3	Drug content	99.49±2.99	99.45±1.55	102.86±2.44	102.85±0.57		

Summary and Conclusion

Summary

Optimization methodology helped to predict the best possible formulations. From drug release kinetics of all formulation it was concluded that all batches pass the zero order, first odder. Higuchi model and korsmeyer-peppas model. But among all gel formulation C3 which was carbopol 934 based and H4 which was HPMC

K100M based gel gave excellent pH value, rheological properties, spreadability homogeneity, consistency, drug content, % CDR and drug release kinetics. Optimization of parameters is powerful and efficient tool that shortens the time required for the development of pharmaceutical dosage forms.

From Ex-vivo study it was concluded that optimized batch passes higuchi model i.e. it is diffusion controlled. From peppas model it concluded that n value is between 0.5 < n > 1 so it was non-fickian diffusion.

Conclusion:

It can be concluded that from the above results that Tizanidine hydrochloride topical gel formulations prepared with Carbopol 934 and HPMCK 100M with combination of Propylene glycol and DMSO concentration showed acceptable physical properties, drug content and drug release.

Thus prepared skeletal muscle relaxant gel for topical drug delivery will avoid first pass metabolism.

The topical gel formulation administered directly on to the skin thus minimize the systemic side effects and will give best results.

REFERENCES

- 1) Gupta R, Bajpai M et al, Influence of formulation parameters on Tizanidine Hydrochloride Nanoparticles Int J Pharm Bio Sic, 2013; 4(2): 1056-1078
- 2) P. Kumar Nallsivian, K.C. Saranya et al simultaneous Determination and Tizanidine in Bulk drug and its combined Dosage Form Spectrophotometry Der Pharmacia Lettre, 2010:2(6);289-295.
- 3) Sudhashree Sahoo, Chandra Kanti Chakraborti and Subhash Chandra Mishra, Qualitative Analysis of Controlled Release Ciprofloxacin / Cabopol 934 mucoadhesive Suspension, J Adv Pharm Technol Res.:2011; 2(3):195-204.
- 4) Doaa A.Helal, Dallia Abd El-Rhman et al, Formulation and Evaluation of Fluconazole Topical Gel, Int J Pharm Sci., 2012; 4(5): 176-183.
- 5) Ghul<mark>am Murtaza Rao, Kharr M Ayoub et al, Formulation and Permeation of Kinetic studies of Flurbiprofen, Topical Journal of Pharmaceutical Research, 2015; 14(2): 145-203.</mark>