

The Development And Verification Of A UV- Visible Spectrophotometric Technique For Glipizide Evaluation

AUTHORS

RUSHIKESH DESHMUKH, HARSHADA KANADJE, VAIBHAV BIDWE, GAURI SABE ,DIPTI RAKHONDE .

ABSTRACT

Glipizide is an oral hypoglycemic medication that works by inhibiting the ATP-sensitive K channel, which stimulates the release of insulin from pancreatic beta cells. Glipizide's creation and verification using UV spectrophotometer use. Glipizide has a concentration range of 1–5 μ g/ml and follows Beer's law, having a maximum absorbance at 275 nm. Recovery checking was used to test the three distinct accuracy concentrations: 80%, 100%, and 120%. The recovery % was discovered to be comfortably within the allowed range. The interday % R.S.D. for 10, 20, and 30 μ g/ml was 0.006, 0.00325, and 0.752, respectively. The intraday % RSD for 80% , 100% , 120% was 0.243, 0.325, 0.181 respectively . For linearity the concentration range is 10, 20 ,30 ,40 , and 50 μ g/ml .

KEYWORDS

Glipizide , Spectroscopic Technique , Method Validation ,ICH Guidelines

Introduction:

Glipizide is one of the most widely recommended medicines for type 2 diabetes treatment. It's a sulfonylurea-based oral hypoglycemic drug. It is a property of second-generation sulfonylurea that it is active at very low doses. Glipizide lowers blood glucose via increasing insulin secretion and modifying insulin sensitivity; most patients experience a persistent rise in glucose stimulated insulin secretion throughout long-term treatment.^[1]

A significant amount of the antidiabetic impact of glipizide is also thought to be derived from changing how responsive insulin-sensitive tissues are, which amplifies the effects of insulin (3,4). Studies have indicated that glipizide can enhance long-term effects on insulin secretion (4). However, other research using glipizide for longer than six months has not shown tolerance to the hypoglycemia effects (5). Glipizide medication was shown to stabilize blood glucose levels for at least 4 years (5). According to one study, 70% of patients on glipizide maintained control for up to 6 years⁷ (with a cumulative secondary failure rate of about 30%)(4-5). Additionally, data indicate that glipizide enhances glucose consumption through increasing the number of insulin receptors and/or extrapancreatic availability of insulin, in addition to stimulating pancreatic insulin secretion(6). Several investigations, including meta-analyses, showed that sulfonylurea supplementation

reduces daily insulin dose by 25–35% while improving glycemic control [7-8]. According to the literature currently in publication, analytical techniques such as gas chromatography (GC) and high performance liquid chromatography (HPLC) have been developed for the purpose of determining the presence of glipizide in human serum, plasma, or urine.[9,10,11,12]. The chemical name (IUPAC) of Glipizide is *N*-[2-[4-(cyclohexylcarbamoylsulfamoyl)phenyl]ethyl]-5-methylpyrazine-2-carboxamide with molecular formula $C_{21}H_{27}N_5O_4S$ and molecular weight is 445.5.^[2]

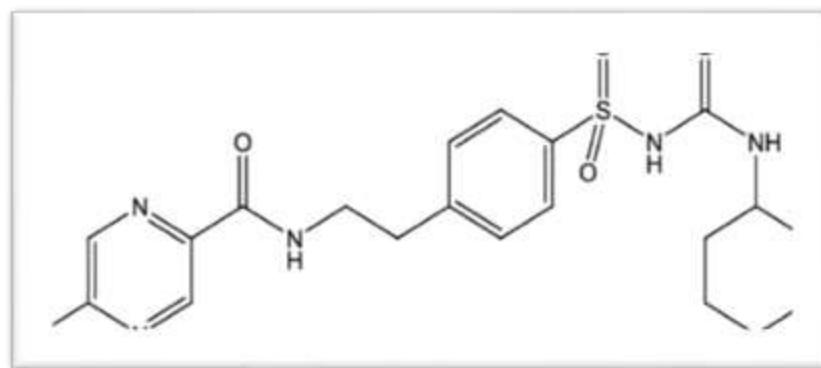


Fig.No.1 Chemical Structure of Glipizide

The goal of this research is to develop a simple, fast, selective, and cost-effective UV spectrometric method for quantifying Glipizide in bulk and pharmaceutical dose form. The method was shown in accordance with ICH Q2(R1) standards. As per the literature survey, it is revealed that some HPLC method[13,14,15,16] were reported, few HPTLC method [17,18] work was found and liquid chromatography work has performed earlier[19]. In the present study the attempt was made to develop and validate a cost effective UV Spectroscopic method for the estimation of Glipizide.

MATERIALS AND METHODS:

Materials used

Pure standard Glipizide was obtained as a gift sample from Ajanta Pharma Ltd. Mumbai. Commercial tablet of Glipizide formulation was purchased as research sample from Wockhardt Ltd, Aurangabad. DMF is used as a solvent.

INSTRUMENTATION:

UV-Visible Double Beam Spectrophotometer (Systronics-2201) with 1 cm matches quartz cell, electronic balance (SHIMADZU-AY220) and a sonicator (Oscar Ultrasonic Cleaner Microclean-103) was used in the study.

UV-Visible Double Beam Spectrophotometer

Sr.No.	Parameter	Optimized Method
1	Model No.	UV-1800
2	Cuvvete	Quartz Cuvette
3	Detector	UV-Visible Detector
4	Scan mode	Single

5	Scan Range	200-400
6	λ max	290
7	Software	UV-Probe

Preparation of standard stock solution

Standard stock solution of Glipizide (GLP) was prepared by dissolving 10 mg GLP in 100 ml of 0.1N NaOH to obtain concentration of 100 μ g/ml. Spectrum measurement of Glipizide in 0.1N NaOH.

The second stock solution was prepared by diluting 0.5 ml of the above standard stock solution upto 10 ml and scanned between 200- 400 nm in UV Visible double beam spectrophotometer. The UV absorption spectrum of Glipizide showed peak at 229 nm. The maximum wavelength of 229 nm was selected for the present study.

Assay:

Weigh and powder 20 tablets. Weigh accurately a quantity of the powder containing 10 mg of glipizide transferred into 10 ml of volumetric flask and dissolved in NaOH. This solution was sonicated and the final volume was made up to the mark with 0.1N NaOH. 1 ml of solution was transferred into 10 ml volumetric flask and adjust upto the mark. The absorbance of this solution measured at 229 nm. The result of assay was shown in table 1.

Method validation

Validation parameter such as Linearity and range, Accuracy, precision, ruggedness, robustness, LOD and LOQ according to ICH Q2(R1) guideline.

Accuracy

Accuracy was determined by preparing solution of different concentration that is 80%, 100%, 120%. The percentage recovery was calculated (table 2).Three sample solution at each level were tested for absorbance 275 nm in comparison to blank . the drug's absorbance at each level was used to compute the percent recovery of the drug at each of three level . recovery experiments were conducted at 80, 100 , 120 % of the target concentration , respectively , to determine the accuracy of the suggested approach .using the current technique , a predetermined quantity of pre-analyzed sample solution was spiked with standard glipizide solution 10 μ g/ml.

Precision

The precision (measurement of intra-day, inter-day) determined by analyzing the five samples of same concentration (30 μ g/ml) the absorbance was noted. From the measured absorbance result mean, standard deviation was then computed **Limit of Detection (LOD)**.The limit of detection (LOD) was determined by using linearity. LOD was calculated by using equation-

$$LOD = 3.3 \delta/s$$

Where δ is a standard deviation and s is the slope.

Linearity:

Aliquots of 0.1, 0.2, 0.3, 0.4, 0.5 were taken from standard stock solution and the volume made upto 10 ml with 0.1N NaOH. Calibration curve was plotted between absorbance versus concentration. By graphing absorbance on y-axis against concentration [10 to 50] on x- axis a calibration curve was created .

Sr. no	Concentration [GLP]	Absorbance
1	10	0.411
2	20	0.774
3	30	1.101
4	40	1.422
5	50	1.822

Table 1- Linearity Study of Glipizide

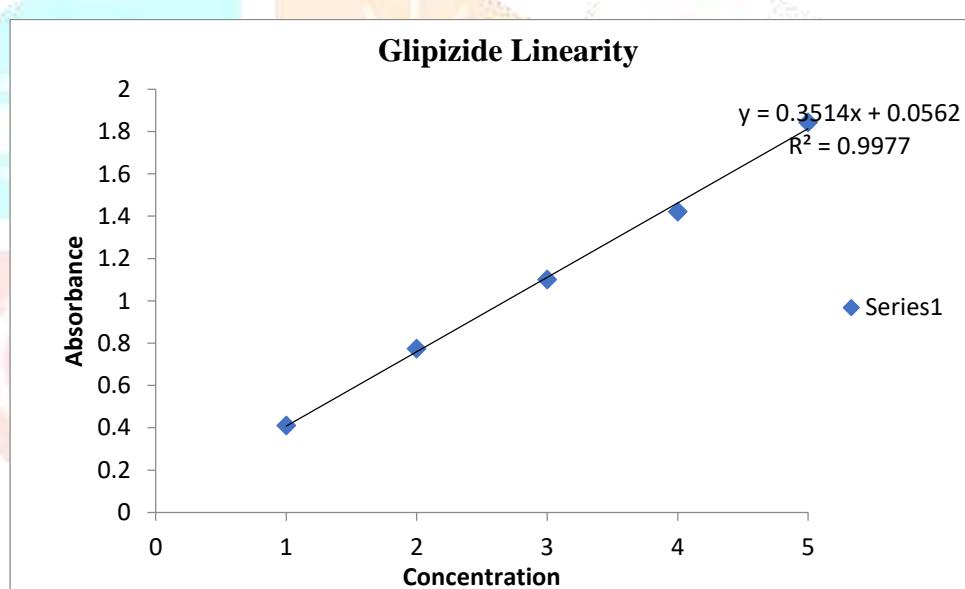


Fig 1– Linearity Curve for Glipizide

Precision (Table No.3)

1] INTER DAY PRECISION

For Glipizide :

Sr no	Concentration	Interday	Absorbance	Mean	SD	RSD
1	10 μ g/ml	Day1	0.411	0.421667	0.002887	0.00699
2	10 μ g/ml	Day2	0.416			
3	10 μ g/ml	Day3	0.411			

Table – Inter-Day Precision for Glipizide [10 μ g/ml]

Sr no	Concentration	Interday	Absorbance	Mean	SD	RSD
1	20 μ g/ml	Day1	0.774	0.773667	0.002517	0.00325
2	20 μ g/ml	Day2	0.776			
3	20 μ g/ml	Day3	0.771			

Table – Inter-Day Precision for Glipizide[20 μ g/ml]

Sr no	Concentration	Interday	Absorbance	Mean	SD	RSD
1	30 μ g/ml	Day1	1.101	1.103666	0.41029	0.752577
2	30 μ g/ml	Day2	1.106			
3	30 μ g/ml	Day3	1.104			

Table – Inter-Day Precision for Glipizide[30 μ g/ml]

2] INTRA- DAY PRECISION

For Glipizide :

Sr no	Concentration	Intraday	Absorbance	Mean	SD	RSD
1	10 μ g/ml	Morning	0.411	0.41	0.001	0.243
2	10 μ g/ml	Afternoon	0.409			
3	10 μ g/ml	Evening	0.410			

Table – Intraday Precision at 10 μ g/ml

Sr no	Concentration	Intraday	Absorbance	Mean	SD	RSD
1	20 μ g/ml	Morning	0.774	0.773	0.0025	0.325
2	20 μ g/ml	Afternoon	0.771			
3	20 μ g/ml	Evening	0.776			

Table – intraday precision at 20 μ g/ml

Sr no	Concentration	Intraday	Absorbance	Mean	SD	RSD
1	30 μ g/ml	Morning	1.101	1.103	0.002	0.181
2	30 μ g/ml	Afternoon	1.103			
3	30 μ g/ml	Evening	1.105			

Table – intraday precision at 30 μ g/ml

Repeatability

For Glipizide

Sr no	Concentration μ g/ml	Absorbance
1	10 μ g/ml	0.411
2	10 μ g/ml	0.412
3	10 μ g/ml	0.411
4	10 μ g/ml	0.412
5	10 μ g/ml	0.416
6	10 μ g/ml	0.417

Mean	SD	RSD
0.413167	0.002639	156.561955286

Table- Repeatability study of Glipizide

Range

The range of an analytical procedure is an interval between upper and lower concentration of an analyte in the sample for which it has been showed that the analytical procedure has a suitable level of linearity, accuracy, precision. The obtained range of an analyte is 10 to 50 $\mu\text{g}/\text{ml}$.

Ruggedness

Ruggedness of the method was determined by analyzing same sample by different analysts (analyst 1 and 2) at different condition and the respective absorbance were noted and result was indicated as %RSD.

Robustness

Robustness of the method was determined by carrying out the analysis at two different wavelength (225 and 232) preparing solution 15 $\mu\text{g}/\text{ml}$.

➤ Accuracy (Table No.2)

AT 80%

Sr no	Sol.	Abs.	Conc.Bef addition [$\mu\text{g}/\text{ml}$]	STD added [$\mu\text{g}/\text{ml}$]	Abs	Conc. after addition [$\mu\text{g}/\text{ml}$]	% Recovery
1	10	0.710	10	8	0.992	18	99.28%
2	10	0.711	10	8	0.995	18	99.28%
3	10	0.709	10	8	0.993	18	99.08%
						Mean	SD
						99.21	0.11547
						RSD	
						0.1163	

Fig- Recovery Study of Glipizide at 80 %

AT 100%

Sr no	Sol.	Abs.	Conc.Bef addition [$\mu\text{g}/\text{ml}$]	STD added [$\mu\text{g}/\text{ml}$]	Abs	Conc. after addition [$\mu\text{g}/\text{ml}$]	% Recovery
1	10	0.820	10	10	1.008	20	99.98%
2	10	0.821	10	10	1.112	20	99.26%
3	10	0.819	10	10	1.114	20	99.26%
						Mean	SD
						99.5	0.41569
						RSD	
						0.4177	

Fig- Recovery Study of Glipizide at 100 %

AT 120%

Sr no	Sol.	Abs.	Conc.Bef addition [µg/ml]	STD added [µg/ml]	Abs	Conc. after addition[µg/ml]	% Recovery
1	10	0.870	10	12	1.112	22	99.21%
2	10	0.875	10	12	1.114	22	99.21%
3	10	0.876	10	12	1.118	22	99.12%
						Mean	SD
						99.18	0.0519
						RSD	
						0.05232	

Fig- Recovery Study of Glipizide at 120 %

Detection Limit

1. For 80%

$$\begin{aligned}
 \text{LOD} &= \frac{3.3 \times \sigma}{S} \\
 &= \frac{3.3 \times 0.1163}{0.03037} \\
 &= 12.65 \mu\text{g/ml}
 \end{aligned}$$

2. For 100%

$$\begin{aligned}
 \text{LOD} &= \frac{3.3 \times \sigma}{S} \\
 &= \frac{3.3 \times 0.4177}{0.0307} \\
 &= 44.89 \mu\text{g/ml}
 \end{aligned}$$

3. For 120%

$$\begin{aligned}
 \text{LOD} &= \frac{3.3 \times \sigma}{S} \\
 &= \frac{3.3 \times 0.05232}{0.0307} \\
 &= 5.62 \mu\text{g/ml}
 \end{aligned}$$

Where

σ = Relative standard deviation of the response.

S = the slope of the calibration curve (of the analyte).

Quantitation limit

Quantitation Limit (LOQ) may be expressed as:

1. For 80%

$$\begin{aligned} \text{LOQ} &= \frac{10 \sigma}{S} \\ &= \frac{10 \times 0.1163}{0.0307} \\ &= 37.88 \text{ } \mu\text{g/ml} \end{aligned}$$

2. For 100%

$$\begin{aligned} \text{LOQ} &= \frac{10 \sigma}{S} \\ &= \frac{10 \times 0.4177}{0.0307} \\ &= 112.89 \text{ } \mu\text{g/ml} \end{aligned}$$

3. For 120%

$$\begin{aligned} \text{LOQ} &= \frac{10 \sigma}{S} \\ &= \frac{10 \times 0.4177}{0.0307} \\ &= 136.05 \text{ } \mu\text{g/ml} \end{aligned}$$

Where

σ = Relative standard deviation of the response.

S = the slope of the calibration curve (of the analyte).

Results and Discussion

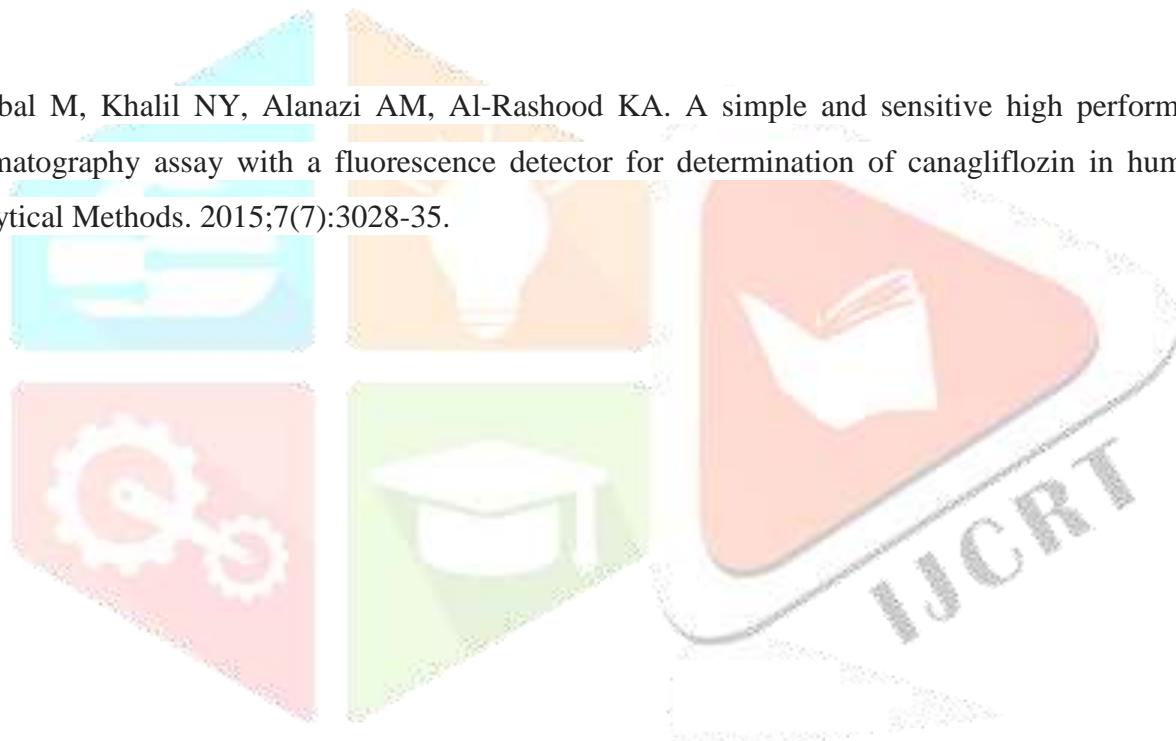
Glipizide had high methanol solubility in the current study. Plotting the absorbance against the concentrations of Glipizide in the range of 1–5 µg/ml yielded a linear relationship. The calibration curves for the medicines showed high linearity, as indicated by the correlation value of 0.9977. For Glipizide, the typical linear equation was $y = 0.3514x + 0.0562$. The results showed that the limits of quantification for 80%, 100%, and 120% were 37.88, 112.89, and 136.05 µg/ml, respectively, while the limits of detection for 80%, 100%, and 120% were 12.65, 44.89, and 5.62 µg/ml.

CONCLUSIONS

The study's findings indicated that the suggested approach for determining the amount of glipizide in an active pharmaceutical component was straightforward, accurate, and quick. The technique demonstrated exceptional sensitivity, good linearity, and accuracy.

Reference:

1. Goyal S, Rai JK, Narang RK, Rajesh KS. Sulfonyl ureas for antidiabetic therapy, an overview for glipizide. *Int J Pharm Pharm Sci.* 2010 Jan 24;2(Suppl. 2):1-6.
2. <https://pubchem.ncbi.nlm.nih.gov/compound/3478>
3. Brogden RN, Heel RC, Pakes GE. Glipizide: A review of its pharmacological properties and therapeutic use. *Drugs* 1979; 18:329-353.
4. Feinglos MN, Lebovitz HE. Sulfonylurea treatment of insulin-independent diabetes mellitus. *Metabolism* 1980; 29:448.
5. Parodi FA, Caputo G. Long-term treatment of diabetes with glipizide. *Curr Med Res Opin* 1975; 3:31.
6. Almer LO, Johansson E, Melander A, Influence of sulfonylurea on the secretion, disposal and effect of insulin. *Eur J Clin Pharmacol* 1982; 22:27-32.
7. Riddle M, Haut IS, Bouma DJ, Phillipson B, yonker G. Efficacy of bedtime NPH insulin in treatment of secondary failure to glibenclamide *Diabetes Care* 1989; 12:582-5
8. Wright A, Felix Burden AC, Paisley RB, Cull CA, Holman RR. Sulfonyl- urea inadequacy. *Diabetes Care* 2002;25:330-6.
9. Hartving P, Fagerlund C, Gyllenhaal O. Electron-capture gas chromatography of plasma sulfonylureas after extractive methylation. *J Chromatogr.* 1980;181:17-24.
10. Wahlgren E, Melander A. A sensitive high performance liquid chromatographic (HPLC) technique for the measurements of Glipizide concentrations in human serum. *J Chromatogr.* 1979;164:541-546.
11. Emilsson H. High performance liquid chromatographic determination of glipizide in human plasma and urine. *J Chromatogr.* 1987;421:319-326.
12. Atif M, Ahmad M, Qamar uz-zaman M, et al. Glipizide pharmacokinetics in healthy and diabetic volunteers. *Trop J.Pharm Res.* 2011;10:147 152
13. Bhatt D, Thatavarthi P, Rajkamal B. Analytical method development and validation for the estimation of canagliflozin in bulk and formulation by RP-HPLC. *Int J Pharm Sci Drug Res.* 2018;10(3):139-43.
14. Gaikwad AV. A High Performance Liquid Chromatography Method Development and Validation for the Estimation of Canagliflozin in Bulk and Marketed Dosage Form. *Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm.* 2022 Jan 18;15(04).


15. Kaur I, Wakode S, Singh HP. Development and validation of a stability-indicating high performance thin layer chromatography (HPTLC) method for estimation of canagliflozin in bulk and pharmaceutical dosage form. *Journal of Applied Pharmaceutical Science*. 2016 May;6(5):51-7.

16. Alam P, Iqbal M, Foudah AI, Alqarni MH, Shakeel F. Quantitative determination of canagliflozin in human plasma samples using a validated HPTLC method and its application to a pharmacokinetic study in rats. *Biomedical Chromatography*. 2020 Nov;34(11):e4929.

17. Iqbal M, Khalil NY, Alanazi AM, Al-Rashood KA. A simple and sensitive high performance liquid chromatography assay with a fluorescence detector for determination of canagliflozin in human plasma. *Analytical Methods*. 2015;7(7):3028-35.

18. Bandhkavi S, Kumari KS. Development and validation of uv spectroscopic method for the estimation of canagliflozin in bulk and tablets. *International Journal of Pharmaceutics and Drug Analysis*. 2020 Feb 17:1-4.

19. Iqbal M, Khalil NY, Alanazi AM, Al-Rashood KA. A simple and sensitive high performance liquid chromatography assay with a fluorescence detector for determination of canagliflozin in human plasma. *Analytical Methods*. 2015;7(7):3028-35.

