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Abstract—This paper explores the progressive evolution of 

Convolutional Neural Network (CNN) architectures for Field-

Programmable Gate Arrays (FPGAs), emphasizing design 

optimization strategies, advancements in computational 

complexity reduction, speed enhancements, and efficient 

resource utilization. Recent developments in FPGA-based CNN 

architectures are reviewed, highlighting key innovations and 

methodologies that have contributed to achieving real-time 

inference on resource-constrained hardware. 
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I. INTRODUCTION 

Neural networks are a type of machine learning algorithm 
that are inspired by the human brain. They are made up of 
interconnected nodes, or neurons, that learn to recognize 
patterns in data. Neural networks have been used to achieve 
state-of-the-art results in a wide range of tasks, including 
image recognition, natural language processing, and speech 
recognition. One of the key advantages of neural networks is 
their ability to learn from data. They can be trained on large 
amounts of data to recognize complex patterns that would be 
difficult to identify using traditional methods. This makes 
them well-suited for tasks where there is a lot of data 
available, such as image recognition and natural language 
processing [1]. 

Neural networks are also very powerful. They can be used to 
solve problems that are difficult or impossible to solve with 
traditional methods. For example, neural networks have been 
used to develop self-driving cars and to diagnose diseases. 
However, neural networks also have some disadvantages. 
They can be difficult to train, and they can be sensitive to 
noise in the data. Additionally, they can be computationally 
expensive to run [2]. 

Convolutional Neural Networks (CNNs) have brought 
about remarkable breakthroughs in various domains, such as 
image recognition, natural language processing, and medical 
diagnosis. These networks have demonstrated state-of-the-art 
performance by automatically learning hierarchical features 
from raw data. However, the computational complexity of 
CNNs poses a significant challenge, especially when it comes 

to real-time inference on resource-constrained devices such 
as mobile phones, IoT devices, and embedded systems. To 
address this challenge, researchers and engineers are 
increasingly focusing on developing specialized hardware 
accelerators to efficiently execute CNN computations. 

Traditionally, CNN inference has been performed on 
general-purpose computing platforms such as CPUs and 
GPUs. While these platforms offer significant processing 
power, they are not always well-suited for real-time and 
power-efficient inference tasks. As the demand for deploying 
CNNs in applications with strict latency and energy 
requirements grows, there is a need for dedicated hardware 
accelerators that can perform CNN computations with 
optimal performance and energy efficiency. 

The motivation behind this paper lies in the pressing need 
to bridge the gap between the computational demands of 
CNNs and the available hardware resources. There are 
several key motivations for exploring recent advances in 
CNN architectures for hardware accelerator implementation: 

a. Real-time Inference: Many applications, such as 
autonomous vehicles, robotics, and augmented 
reality, require real-time inference to make timely 
decisions. Hardware accelerators can significantly 
reduce the inference time, enabling these 
applications to operate smoothly and efficiently. 

b. Energy Efficiency: CNN inference on power-
constrained devices, including mobile phones and 
edge devices, often leads to high energy 
consumption. Hardware accelerators designed with 
energy efficiency in mind can prolong the battery 
life of these devices and reduce their environmental 
impact. 

c. Scalability: As the diversity and complexity of CNN 
applications increase, so does the need for scalable 
solutions. Hardware accelerators can be customized 
to meet the specific requirements of different 
applications, ensuring optimal performance across a 
wide range of use cases. 

d. Compact and Lightweight Models: CNN models are 
becoming increasingly complex, which poses 
challenges in terms of memory and storage 
requirements. Specialized hardware can handle 
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model complexity by offloading computations and 
enabling the deployment of compact, lightweight 
models. 

e. Edge Computing: The rise of edge computing has 
brought attention to the need for on-device 
processing, reducing the reliance on cloud 
resources. Hardware accelerators enable efficient 
on-device inference, preserving privacy, reducing 
latency, and minimizing data transfer. 

II. EVOLUTION OF CNN 

ARCHITECTURES FOR FPGAS 

For different applications of image classification CNN is a 

widely applied machine learning algorithm/architecture. The 

block diagram of CNN algorithm implementation on FPGA 

is shown in Fig. 1. 

 
Fig 1. FPGA Implementation of CNN Architecture 

 

There are many CNN-based architectures, which have been 

classified as early FPGA-based architectures and Compact 

CNN architectures discussed in the section, highlighting their 

characteristics. 

A. Early FPGA-based CNN Architectures 

SqueezeNet: It was presented by Iandola et al. in 2016, 
and focuses on reducing model size and computational 
complexity without sacrificing accuracy [1]. It introduces 
1x1 convolutions (squeeze layers) to efficiently reduce the 
number of input channels, followed by a combination of 3x3 
and 1x1 convolutions (expand layers) to capture rich feature 
representations. SqueezeNet's "squeeze and expand" 
architecture balances computational efficiency and accuracy. 
The 1x1 convolutions significantly reduce the number of 
parameters, enabling the network to be compressed while 
maintaining performance. This makes SqueezeNet an 
attractive choice for embedded systems, with limited memory 
and computation resources. 

MobileNet: Introduced by Howard et al. in 2017, is 
designed to provide efficient convolutional operations by 
leveraging depthwise separable convolutions [2]. Traditional 
convolutions are split into two separate layers: depthwise 
convolution, which applies a single convolutional filter per 
input channel, and pointwise convolution, which performs 
1x1 convolutions to combine information across channels. 
This separation significantly reduces computational 
complexity while retaining expressive power. MobileNet's 

depthwise separable convolutions allow for efficient 
computation by first capturing spatial information and then 
combining it across channels. This design reduces the number 
of multiplications, making it well-suited for embedded 
systems. The architecture achieves a good trade-off between 
accuracy and speed, making it suitable for real-time 
applications on FPGAs. 

ShuffleNet: It was proposed by Zhang et al. in 2018, and 
introduces channel shuffling and group convolutions to 
minimize computation while maintaining information flow 
across channels [3]. The architecture divides the input 
channels into groups, applying separate convolutions to each 
group, and then shuffling the output channels to mix 
information. By using group convolutions and channel 
shuffling, ShuffleNet reduces the computation cost 
associated with cross-channel interactions. This design 
enables efficient feature extraction while achieving 
competitive accuracy. The architecture's adaptability to 
varying hardware constraints makes it a strong candidate for 
embedded FPGA implementations. 

EfficientNet: It was proposed by Tan et al. in 2019, and 
introduces a compound scaling method that optimizes model 
depth, width, and resolution simultaneously [4]. The 
architecture uses a baseline network and scales it uniformly 
to achieve better performance across different resource 
constraints. EfficientNet addresses the challenge of balancing 
depth, width, and resolution by using a compound scaling 
strategy. By optimizing these dimensions together, the 
architecture achieves higher accuracy with fewer parameters 
compared to handcrafted designs. This adaptability to 
different computational budgets makes EfficientNet a 
valuable candidate for FPGA-based embedded systems. 

B. Compact CNN Architectures 

Xception (2016) (Extreme Inception) is an architecture 
introduced by Chollet in 2016 [5]. It extends the Inception 
architecture by replacing standard convolutions with 
depthwise separable convolutions across all layers. This 
design leads to increased efficiency and reduced 
computational complexity. 

CondenseNet (2018) introduced by Huang et al. in 2018, 
presented a novel approach to network compression [6]. It 
utilizes a "learning from experts" paradigm, where a compact 
model learns from a larger, more expressive "teacher" 
network. The architecture dynamically selects important 
filters to keep during training, resulting in a compact yet 
efficient model. 

MobileNetV2 (2018) a follow-up to MobileNet, was 
introduced in 2018 by Sandler et al [7]. It refines the 
depthwise separable convolution approach and introduces 
inverted residuals and linear bottlenecks. These 
enhancements further improve the efficiency and 
performance of the architecture. 

PeleeNet (2018) proposed by Wang et al. in 2018, aims to 
strike a balance between accuracy and efficiency [8]. It 
introduces a novel Pelee block that combines multiple feature 
maps at different scales. This block enables the network to 
maintain accuracy while minimizing computation. 

FBNet (2019) introduced by Wu et al. in 2019, utilizes a 
differentiable architecture search approach to discover 
efficient network architectures [9]. It introduces a flexible 
block-wise search space, enabling the network to be 
optimized for different hardware constraints. 

MixNet (2020) introduced by Tan et al. in 2020, utilizes 
mixed-depthwise convolutions to improve efficiency [10]. It 
explores various combinations of depthwise and pointwise 
convolutions to optimize the network's performance and 
computational complexity. MixNet achieves a good balance 
between accuracy and efficiency. 
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High-Resolution Network (HRNet) (2020) proposed by 
Wang et al. in 2020, challenges the trade-off between spatial 
resolution and computation efficiency [11]. HRNet maintains 
high-resolution representations throughout the network's 
processing, allowing it to capture fine-grained details while 
still achieving competitive performance. 

GhostNet (2020) proposed by Han et al. in 2020, 
introduces the concept of "ghost" modules, where a 
lightweight operation is performed on a subset of the input 
channels [12]. This approach reduces computational 
complexity while maintaining expressive power. GhostNet 
demonstrates strong performance on both accuracy and 
efficiency metrics. 

RegNet (2020) proposed by Radosavovic et al. in 2020, 
introduces a design space exploration approach to find 
optimal architectures under computational constraints [13]. It 
focuses on scaling up networks while maintaining efficiency. 
By systematically searching the architecture space, RegNet 
identifies high-performing designs that match specific 
resource budgets. 

C. Hardware Implementation Challenges 

Despite their advantages, FPGA implementations of 
neural networks come with their challenges. Design 
complexity is a significant hurdle, as creating efficient FPGA 
architectures for diverse neural network models requires 
specialised knowledge and expertise. FPGAs operate under 
resource limitations, necessitating careful resource allocation 
to fully utilize available hardware. Managing the memory 
hierarchy, including on-chip memory, cache coherence, and 
memory bandwidth, presents a complex challenge in 
maintaining efficient data access. Balancing the need to 
reduce precision for efficiency while preserving model 
accuracy is challenging due to quantization-induced errors. 
Ensuring efficient data movement between memory 
hierarchies and processing units is critical to avoid 
performance bottlenecks. Adapting neural network 
algorithms to align with FPGA hardware and dealing with 
limited development tools and debugging support can slow 
down the development process. Integrating FPGA-
accelerated neural networks with existing systems and 
software also poses integration complexities. Ensuring the 
correctness, reliability, and scalability of FPGA-based neural 
network implementations adds to the development effort. 
Lastly, the dynamic nature of workloads and neural network 
models requires flexibility in FPGA design and adaptation to 
changing requirements. While FPGAs hold immense promise 
for neural network acceleration, addressing these challenges 
is crucial for realizing their full potential. 

III. EVALUATION METRICS AND 

OPTIMIZATION STRATEGIES 

A. Performance Evaluation 

1. Latency (s): Latency can be calculated by dividing the 
total processing time (in seconds) by the number of processed 
data points: 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑠) =  
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 (𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑃𝑜𝑖𝑛𝑡𝑠 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 —    (1) 

2. Throughput (OPS or IPS): Throughput is calculated as 
the reciprocal of latency: 

Throughput (OPS/IPS) = 
1

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑠)
               —    (2) 

3. Accuracy (%): Accuracy is typically measured as the 
ratio of correctly classified data points to the total number of 
data points: 

𝐴𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐷𝑎𝑡𝑎 𝑃𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑃𝑜𝑖𝑛𝑡𝑠
 

                                                                           — (3) 

Training the model with quantization in mind can mitigate 
the impact of reduced precision on accuracy. Weight pruning 
techniques can reduce model complexity without 
significantly affecting accuracy. 

4. Resource Utilization (%): Resource utilization is often 
reported as the percentage of FPGA resources used. This can 
vary depending on the specific resources of interest, such as 
logic elements, memory blocks, or DSP units: 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%)  

=  
𝑈𝑠𝑒𝑑 𝐹𝑃𝐺𝐴 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑃𝐺𝐴 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
 𝑋 100% 

                                                                 — (4) 

Mapping layers to FPGA resources efficiently and 
optimizing resource-sharing can reduce resource usage. 
Design custom hardware modules tailored to specific CNN 
layers to optimize resource utilization. 

5. Energy Efficiency (OPS/Watt): Energy efficiency 
measures the number of operations performed per watt of 
power consumed. It can be calculated as: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
   — (5) 

6. Memory Efficiency (%): Memory efficiency is often 
measured as the percentage of on-chip memory used 
compared to the total available on-chip memory: 

𝑀𝑒𝑚𝑜𝑟𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑈𝑠𝑒𝑑 𝑂𝑛−𝐶ℎ𝑖𝑝 𝑀𝑒𝑚𝑜𝑟𝑦

𝑇𝑜𝑡𝑎𝑙 𝑂𝑛−𝑐ℎ𝑖𝑝 𝑀𝑒𝑚𝑜𝑟𝑦
 𝑋 100%           

                                                                        — (6) 

Effective use of on-chip memory resources, such as block 
RAM, can reduce off-chip memory access, minimizing 
memory-related bottlenecks. 

B. Hardware Optimization Strategies 

a. Quantization and Pruning Techniques 

Reducing the precision of weights and activations 

(quantization) or removing less important connections 

(pruning) can significantly reduce memory requirements and 

computational complexity. The benefits of these techniques 

are lower memory usage, reduced computation, and 

potentially faster inference. Challenges of these techniques 

are balancing between precision reduction and model 

accuracy, and handling quantization-induced degradation. 

 

b. Layer Fusion 

Combining consecutive layers with compatible operations 

into a single operation reduces memory access and 

intermediate data transfer. The benefits of these techniques 

are minimized memory bandwidth requirements, reduced 

latency, and efficient resource utilization. Challenges of these 

techniques are Identifying compatible layers, and managing 

fused operations for different layer sizes. 

 

c. Winograd Transformation 

Applying the Winograd convolutional transformation to 

reduce the number of multiplications required for 

convolution operations. The benefits of these techniques are 

faster convolutions, reduced arithmetic complexity, and 

improved efficiency. Challenges of these techniques are 

adapting the transformation to different convolutional kernel 

sizes, and handling the overhead of transformation 

computation. 

 

d. Dataflow Optimization 

Reordering computations to exploit parallelism and minimize 

data movement, enhancing memory access patterns. The 

benefits  of these techniques are improved memory 

bandwidth utilization, reduced data transfer time, and 

increased throughput. The challenge  of these techniques is 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882 

IJCRT2408165 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b496 
 

designing an optimal data flow for different CNN layers and 

architectures. 

 

e. Loop Unrolling 

Expanding loops in the code to expose more parallelism and 

minimize loop overhead. The benefits of these techniques are 

Increased instruction-level parallelism, reduced loop 

overhead, and improved throughput. Challenges  of these 

techniques are Balancing between loop unrolling and 

resource usage, and managing code complexity. 

 

f. Custom Hardware Units 

Description: Designing custom hardware accelerators for 

specific operations (e.g., convolution, pooling) to maximize 

efficiency. The benefits of these techniques are Higher 

performance, lower power consumption, and optimized 

resource usage. Challenges of these techniques are Hardware 

design complexity and integration with existing FPGA 

resources. 

 

g. Memory Hierarchy Optimization: 

Employing on-chip memory (registers, block RAM) 

efficiently to reduce data movement to external memory. The 

benefits of these techniques are faster data access, reduced 

memory bandwidth usage, and improved latency. The 

challenges of these techniques are managing memory space, 

handling data storage and transfers, and minimizing memory 

conflicts. 

 

h. Pipeline and Parallelism: 

Partitioning the computation into stages and exploiting 

pipelining and parallelism to maximize resource utilization. 

The benefits of these techniques are higher throughput, 

reduced latency, and improved overall performance. 

Challenges of these techniques are ensuring correct data 

dependencies, managing pipeline stalls, and balancing 

resource allocation. 

 

i. Layer Skipping and Skip Connections: 

Introducing skip connections to allow skipping certain layers 

during inference based on certain conditions or heuristics. 

The benefits of these techniques are faster inference for 

specific inputs, reduced computational load, and potential 

energy savings. The challenges of these techniques are 

identifying suitable layers for skipping and avoiding adverse 

effects on accuracy. 

 

IV. COMPARATIVE ANALYSIS 

The reviewed architectures have been divided into two 
categories; CNN architecture on software and CNN 
architecture on FPGA. In Table 1 both categories have been 
compared with respect to Top-1 accuracy and number of 
trainable parameters. Top-1 accuracy gives the highest 
probability of classifying class A and class A. The number of 
parameters are the trainable parameters from each layer and 
it provides the number of learnable elements for a filter.  

Table 1. Comparison of state-of-the-art models 

Type of Model Model Name Top-1 
Accuracy 

No. of 
Parameters 

Convolution 
Based 

Architecture on 

Software 

DenseNet-121 75 8.1M 

Xception 79 22.9M 

EicientNet-B5 82.6 30.6M 

NasNetLarge 83.5 88.9M 

ConvNextLarge 86.3 197M 

CNN 

Architecture for 

FPGA  

SqueezeNet 60.4 1.2M 

MobileNet-V2 71 3.4M 

ShuleNet 72.5 3.4M 

GhostNet 73.9 5.2M 

EicientNet-B0 77.1 5.3M 

It is evident from the comparison that Top-1 accuracy is 
proportional to the number of parameters, the larger the 
learnable parameters, the better the Top-1 accuracy. It has 
also been observed that the parameters are less for FPGA 
which may be due to the hardware resource constraints. 
Hence, the Top-1 accuracy has been compromised due to 
reduced parameters. 

Similarly, Table.2 compares all the CNN-based 
architectures that have been implemented on FPGA. The 
common metrics such as accuracy, sensitivity, and F1-score 
have been compared along with the specific metrics such as 
Kappa score and MAC units. 

Table 2. Comparison of the models on FPGA 

Model Acc Se F1 Kappa Params MACs 

EfficientNet  95.7  94.4  94.0  93.7  2.91  683 

MobileNetV
2 

95.4 92.6 93.3 93.1 3.32 313 

ESPNetV2 95.0 92.7 93.0 92.6 2.19 297 

ShuffleNet 94.9 91.6 92.5 92.3 5.32 570 

MixNet‐S 95.4 92.8 93.4 93.2 2.60 250 

MDNet‐S 96.9 95.1 95.5 95.3 2.50 220 

It has been observed that MDNet-S is showing the best result 
in terms of accuracy and MAC units. The results and 
observations pointed out that the architecture to be deployed 
on an FPGA should be optimized in terms of computing 
hardwares. 

V. Availability of data and materials 

Table 1 and Table 2 in the present paper. 

 

VI. Competing interests 

 

As if know there is dedicated CNN architecture for each 

specified application. My work is to find efficient 

architecture for all image processing CNN architecture as 

generic 

VII. Funding 

Not Applicable 
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VIII. Authors' contributions 

 

The reviewed architectures have been divided into two 

categories; CNN architecture on software and CNN 

architecture on FPGA. In Table 1 both categories have been 

compared with respect to Top-1 accuracy and number of 

trainable parameters. Comparison of the models on FPGA as 

shown in table 2. 

And discussed their performance, accuracy Mac units and 

computing hardware. And understand there is still area of 

improvement to have generic solution for image processing 

for efficient performance 

IX. CONCLUSION 

In this work, different CNN based architectures have been 
reviewed which are compatible with hardware accelerators 
such as FPGAs. It has been observed that the development of 
new architectures may give better performance but not 
necessarily be an efficient architecture when deployed on the 
FPGA. It has been understood that machine learning 
architecture (such as CNN) can be implemented in two ways: 
a. RTL Implementation b. HW/SW Co-simulation. RTL 
implementation can be a better approach provided the 
architecture is simple or less complex. For any complex 
architecture (i.e. with more layers and backdrops) HW/SW 
co-simulation techniques (such as AutoML, NNgen etc.) are 
better. Study has also shown the development of compressed 
CNN architectures which addresses the hardware constraints 
of FPGA and propose an efficient implementation on FPGA. 
This paper has provided research possibilities and a roadmap 
towards development of FPGA friendly ML architectures. 
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