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Abstract—This paper explores the progressive evolution of
Convolutional Neural Network (CNN) architectures for Field-
Programmable Gate Arrays (FPGAs), emphasizing design
optimization strategies, advancements in computational
complexity reduction, speed enhancements, and efficient
resource utilization. Recent developments in FPGA-based CNN
architectures are reviewed, highlighting key innovations and
methodologies that have contributed to achieving real-time
inference on resource-constrained hardware.
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. INTRODUCTION

Neural networks are a type of machine learning algorithm
that are inspired by the human brain. They are made up of
interconnected nodes, or neurons, that learn to recognize
patterns in data. Neural networks have been used to achieve
state-of-the-art results in a wide range of tasks, including
image recognition, natural language processing, and speech
recognition. One of the key advantages of neural networks is
their ability to learn from data. They can be trained on large
amounts of data to recognize complex patterns that would be
difficult to identify using traditional methods. This makes
them well-suited for tasks where there is a lot of data
available, such as image recognition and natural language
processing [1].

Neural networks are also very powerful. They can be used to
solve problems that are difficult or impossible to solve with
traditional methods. For example, neural networks have been
used to develop self-driving cars and to diagnose diseases.
However, neural networks also have some disadvantages.
They can be difficult to train, and they can be sensitive to
noise in the data. Additionally, they can be computationally
expensive to run [2].

Convolutional Neural Networks (CNNs) have brought
about remarkable breakthroughs in various domains, such as
image recognition, natural language processing, and medical
diagnosis. These networks have demonstrated state-of-the-art
performance by automatically learning hierarchical features
from raw data. However, the computational complexity of
CNNs poses a significant challenge, especially when it comes
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to real-time inference on resource-constrained devices such
as mobile phones, 10T devices, and embedded systems. To
address this challenge, researchers and engineers are
increasingly focusing on developing specialized hardware
accelerators to efficiently execute CNN computations.

Traditionally, CNN inference has been performed on
general-purpose computing platforms such as CPUs and
GPUs. While these platforms offer significant processing
power, they are not always well-suited for real-time and
power-efficient inference tasks. As the demand for deploying
CNNs in applications with strict latency and energy
requirements grows, there is a need for dedicated hardware
accelerators that can perform  CNN computations with
optimal performance and energy efficiency.

The motivation behind this paper lies in the pressing need
to bridge the gap between the computational demands of
CNNs and the available hardware resources. There are
several key motivations for exploring recent advances in
CNN architectures for hardware accelerator implementation:

a. Real-time Inference: Many applications, such as
autonomous vehicles, robotics, and augmented
reality, require real-time inference to make timely
decisions. Hardware accelerators can significantly
reduce the inference time, enabling these
applications to operate smoothly and efficiently.

b. Energy Efficiency: CNN inference on power-
constrained devices, including mobile phones and
edge devices, often leads to high energy
consumption. Hardware accelerators designed with
energy efficiency in mind can prolong the battery
life of these devices and reduce their environmental
impact.

c. Scalability: As the diversity and complexity of CNN
applications increase, so does the need for scalable
solutions. Hardware accelerators can be customized
to meet the specific requirements of different
applications, ensuring optimal performance across a
wide range of use cases.

d. Compact and Lightweight Models: CNN models are
becoming increasingly complex, which poses
challenges in terms of memory and storage
requirements. Specialized hardware can handle
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model complexity by offloading computations and
enabling the deployment of compact, lightweight
models.

e. [Edge Computing: The rise of edge computing has
brought attention to the need for on-device
processing, reducing the reliance on cloud
resources. Hardware accelerators enable efficient
on-device inference, preserving privacy, reducing
latency, and minimizing data transfer.

1. EvoLuTIioN oF CNN
ARCHITECTURES FOR FPGAS

For different applications of image classification CNN is a
widely applied machine learning algorithm/architecture. The
block diagram of CNN algorithm implementation on FPGA
is shown in Fig. 1.
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Fig 1. FPGA Implementation of CNN Architecture

There are many CNN-based architectures, which have been
classified as early FPGA-based architectures and Compact
CNN architectures discussed in the section, highlighting their
characteristics.

A. Early FPGA-based CNN Architectures

SqueezeNet: It was presented by landola et al. in 2016,
and focuses on reducing model size and computational
complexity without sacrificing accuracy [1]. It introduces
1x1 convolutions (squeeze layers) to efficiently reduce the
number of input channels, followed by a combination of 3x3
and 1x1 convolutions (expand layers) to capture rich feature
representations. SqueezeNet's "squeeze and expand"
architecture balances computational efficiency and accuracy.
The 1x1 convolutions significantly reduce the number of
parameters, enabling the network to be compressed while
maintaining performance. This makes SqueezeNet an
attractive choice for embedded systems, with limited memory
and computation resources.

MobileNet: Introduced by Howard et al. in 2017, is
designed to provide efficient convolutional operations by
leveraging depthwise separable convolutions [2]. Traditional
convolutions are split into two separate layers: depthwise
convolution, which applies a single convolutional filter per
input channel, and pointwise convolution, which performs
1x1 convolutions to combine information across channels.
This separation significantly reduces computational
complexity while retaining expressive power. MobileNet's

depthwise separable convolutions allow for efficient
computation by first capturing spatial information and then
combining it across channels. This design reduces the number
of multiplications, making it well-suited for embedded
systems. The architecture achieves a good trade-off between
accuracy and speed, making it suitable for real-time
applications on FPGAs.

ShuffleNet: It was proposed by Zhang et al. in 2018, and
introduces channel shuffling and group convolutions to
minimize computation while maintaining information flow
across channels [3]. The architecture divides the input
channels into groups, applying separate convolutions to each
group, and then shuffling the output channels to mix
information. By using group convolutions and channel
shuffling, ShuffleNet reduces the computation cost
associated with cross-channel interactions. This design
enables efficient feature extraction while achieving
competitive accuracy. The architecture's adaptability to
varying hardware constraints makes it a strong candidate for
embedded FPGA implementations.

EfficientNet: It was proposed by Tan et al. in 2019, and
introduces a compound scaling method that optimizes model
depth, width, and resolution simultaneously [4]. The
architecture uses a baseline network and scales it uniformly
to achieve better performance across different resource
constraints. EfficientNet addresses the challenge of balancing
depth, width, and resolution by using a compound scaling
strategy. By optimizing these dimensions together, the
architecture achieves higher accuracy with fewer parameters
compared to handcrafted designs. This adaptability to
different computational budgets makes EfficientNet a
valuable candidate for FPGA-based embedded systems.

B. Compact CNN Architectures

Xception (2016) (Extreme Inception) is an architecture
introduced by Chollet in 2016 [5]. It extends the Inception
architecture by replacing standard convolutions with
depthwise separable convolutions across all layers. This
design leads to increased efficiency and reduced
computational complexity.

CondenseNet (2018) introduced by Huang et al. in 2018,
presented a novel approach to network compression [6]. It
utilizes a "learning from experts™ paradigm, where a compact
model learns from alarger, more expressive “teacher"
network. The architecture dynamically selects important
filters to keep during training, resulting in a compact yet
efficient model.

MobileNetV2 (2018) a follow-up to MobileNet, was
introduced in 2018 by Sandler et al [7]. It refines the
depthwise separable convolution approach and introduces
inverted residuals and linear bottlenecks. These
enhancements  further improve the efficiency and
performance of the architecture.

PeleeNet (2018) proposed by Wang et al. in 2018, aims to
strike a balance between accuracy and efficiency [8]. It
introduces a novel Pelee block that combines multiple feature
maps at different scales. This block enables the network to
maintain accuracy while minimizing computation.

FBNet (2019) introduced by Wu et al. in 2019, utilizes a
differentiable architecture search approach to discover
efficient network architectures [9]. It introduces a flexible
block-wise search space, enabling the network to be
optimized for different hardware constraints.

MixNet (2020) introduced by Tan et al. in 2020, utilizes
mixed-depthwise convolutions to improve efficiency [10]. It
explores various combinations of depthwise and pointwise
convolutions to optimize the network's performance and
computational complexity. MixNet achieves a good balance
between accuracy and efficiency.
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High-Resolution Network (HRNet) (2020) proposed by
Wang et al. in 2020, challenges the trade-off between spatial
resolution and computation efficiency [11]. HRNet maintains
high-resolution representations throughout the network's
processing, allowing it to capture fine-grained details while
still achieving competitive performance.

GhostNet (2020) proposed by Han et al. in 2020,
introduces the concept of "ghost" modules, where a
lightweight operation is performed on a subset of the input
channels [12]. This approach reduces computational
complexity while maintaining expressive power. GhostNet
demonstrates strong performance on both accuracy and
efficiency metrics.

RegNet (2020) proposed by Radosavovic et al. in 2020,
introduces a design space exploration approach to find
optimal architectures under computational constraints [13]. It
focuses on scaling up networks while maintaining efficiency.
By systematically searching the architecture space, RegNet
identifies high-performing designs that match specific
resource budgets.

C. Hardware Implementation Challenges

Despite their advantages, FPGA implementations of
neural networks come with their challenges. Design
complexity is a significant hurdle, as creating efficient FPGA
architectures for diverse neural network models requires
specialised knowledge and expertise. FPGAs operate under
resource limitations, necessitating careful resource allocation
to fully utilize available hardware. Managing the memory
hierarchy, including on-chip memory, cache coherence, and
memory bandwidth, presents a complex challenge in
maintaining efficient data access. Balancing the need to
reduce precision for efficiency while preserving model
accuracy is challenging due to quantization-induced errors.
Ensuring efficient data movement between memory
hierarchies and processing units is critical to avoid
performance bottlenecks. Adapting neural network
algorithms to align with FPGA hardware and dealing with
limited development tools and debugging support can slow
down the development process. Integrating FPGA-
accelerated neural networks with existing systems and
software also poses integration complexities. Ensuring the
correctness, reliability, and scalability of FPGA-based neural
network implementations adds to the development effort.
Lastly, the dynamic nature of workloads and neural network
models requires flexibility in FPGA design and adaptation to
changing requirements. While FPGAs hold immense promise
for neural network acceleration, addressing these challenges
is crucial for realizing their full potential.

1l. EVALUATION METRICS AND
OPTIMIZATION STRATEGIES
A. Performance Evaluation

1. Latency (s): Latency can be calculated by dividing the
total processing time (in seconds) by the number of processed
data points:

Total Processing Time (s)

Latency (s) = — @
y( ) Number of Data Points Processed ( )

2. Throughput (OPS or IPS): Throughput is calculated as
the reciprocal of latency:

1
Latency (s)

Throughput (OPS/IPS) = 2

3. Accuracy (%): Accuracy is typically measured as the
ratio of correctly classified data points to the total number of
data points:

Number of Correctly Classified Data Points

Acuraccy =
Y Total Number of Data Points

—@Q)

Training the model with quantization in mind can mitigate
the impact of reduced precision on accuracy. Weight pruning
techniques can reduce model complexity without
significantly affecting accuracy.

4. Resource Utilization (%): Resource utilization is often
reported as the percentage of FPGA resources used. This can
vary depending on the specific resources of interest, such as
logic elements, memory blocks, or DSP units:

Resource Utilization (%)
Used FPGA Resources

= 0,
Total FPGA Resourcefdrx 100%

Mapping layers to FPGA resources efficiently and
optimizing resource-sharing can reduce resource usage.
Design custom hardware modules tailored to specific CNN
layers to optimize resource utilization.

5. Energy Efficiency (OPS/Watt): Energy efficiency
measures the number of operations performed per watt of
power consumed. It can be calculated as:

Energy Efficiency = Throughput

— ()

6. Memory Efficiency (%): Memory efficiency is often
measured as the percentage of on-chip memory used
compared to the total available on-chip memory:

Power Consumption

Used On—Chip Memory

X 100%

Memory Ef ficiency =

Total On—chip Memory

—(6)

Effective use of on-chip memory resources, such as block
RAM, can reduce off-chip memory access, minimizing
memory-related bottlenecks.

B. Hardware Optimization Strategies

a. Quantization and Pruning Techniques

Reducing the precision of weights “and activations
(quantization) or removing less .important connections
(pruning) can significantly reduce memory requirements and
computational complexity. The benefits of:-these techniques
are lower memory usage; reduced computation, and
potentially faster inference. Challenges of these techniques
are balancing between precision reduction and model
accuracy,-and handling quantization-induced degradation.

b. Layer Fusion

Combining consecutive layers with compatible operations
into a single operation reduces memory access and
intermediate data transfer. The benefits of these techniques
are minimized memory bandwidth requirements, reduced
latency, and efficient resource utilization. Challenges of these
techniques are Identifying compatible layers, and managing
fused operations for different layer sizes.

¢. Winograd Transformation

Applying the Winograd convolutional transformation to
reduce the number of multiplications required for
convolution operations. The benefits of these techniques are
faster convolutions, reduced arithmetic complexity, and
improved efficiency. Challenges of these techniques are
adapting the transformation to different convolutional kernel
sizes, and handling the overhead of transformation
computation.

d. Dataflow Optimization
Reordering computations to exploit parallelism and minimize
data movement, enhancing memory access patterns. The
benefits  of these techniques are improved memory
bandwidth utilization, reduced data transfer time, and
increased throughput. The challenge of these techniques is
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designing an optimal data flow for different CNN layers and
architectures.

e. Loop Unrolling
Expanding loops in the code to expose more parallelism and
minimize loop overhead. The benefits of these techniques are
Increased instruction-level parallelism, reduced loop
overhead, and improved throughput. Challenges of these
techniques are Balancing between loop unrolling and
resource usage, and managing code complexity.

f. Custom Hardware Units

Description: Designing custom hardware accelerators for
specific operations (e.g., convolution, pooling) to maximize
efficiency. The benefits of these techniques are Higher
performance, lower power consumption, and optimized
resource usage. Challenges of these techniques are Hardware
design complexity and integration with existing FPGA
resources.

g. Memory Hierarchy Optimization:

Employing on-chip memory (registers, block RAM)
efficiently to reduce data movement to external memory. The
benefits of these techniques are faster data access, reduced
memory bandwidth usage, and improved latency. The
challenges of these techniques are managing memory space,
handling data storage and transfers, and minimizing memory
conflicts.

h. Pipeline and Parallelism:

Partitioning the computation into stages and exploiting
pipelining and parallelism to maximize resource utilization.
The benefits of these techniques are higher throughput,
reduced latency, and improved overall performance.
Challenges of these techniques are ensuring correct data
dependencies, managing pipeline stalls, and balancing
resource allocation.

i. Layer Skipping and Skip Connections:
Introducing skip connections to allow skipping certain layers
during inference based on certain conditions or heuristics.
The benefits of these techniques are faster inference for
specific inputs, reduced computational load, and potential
energy savings. The challenges of these techniques are
identifying suitable layers for skipping and avoiding adverse
effects on accuracy.

V. COMPARATIVE ANALYSIS

The reviewed architectures have been divided into two
categories; CNN architecture on software and CNN
architecture on FPGA. In Table 1 both categories have been
compared with respect to Top-1 accuracy and number of
trainable parameters. Top-1 accuracy gives the highest
probability of classifying class A and class A. The number of
parameters are the trainable parameters from each layer and
it provides the number of learnable elements for a filter.

Table 1. Comparison of state-of-the-art models

Type of Model Model Name Top-1 No. of
Accuracy Parameters
Convolution DenseNet-121 75 8.1M
Based
Architecture on
Software Xception 79 22.9M
EicientNet-B5 82.6 30.6M

NasNetLarge 83.5 88.9M
ConvNextLarge 86.3 197M
CNN SqueezeNet 60.4 1.2M
Architecture for
FPGA
MobileNet-V2 71 3.4M
ShuleNet 725 3.4M
GhostNet 73.9 5.2M
EicientNet-B0 77.1 5.3M

It is evident from the comparison that Top-1 accuracy is
proportional to the number of parameters, the larger the
learnable parameters, the better the Top-1 accuracy. It has
also been observed that the parameters are less for FPGA
which may be due to the hardware resource constraints.
Hence, the Top-1 accuracy has been compromised due to
reduced parameters.

Similarly, Table.2 compares all the CNN-based
architectures that have been implemented on FPGA. The
common metrics such as accuracy, sensitivity, and F1-score
have been compared along with the specific metrics such as
Kappa score and MAC units.

Table 2. Comparison of the models on FPGA

Model Acc Se F1 Kappa | Params MACs
EfficientNet | 95.7 | 944 94.0 93.7 291 683
g/lobiIeNetV 95.4 | 92.6 93.3 93.1 3.32 313
ESPNetV2 95.0| 92.7 93.0 92.6 2.19 297
ShuffleNet 94.9 | 91.6 92.5 92.3 5.32 570
MixNet-S 95.4 | 92.8 93.4 93.2 2.60 250
MDNet-S 96.9 | 95.1 95.5 95.3 2.50 220

It has been observed that MDNet-S is showing the best result
in terms of accuracy and MAC units. The results and
observations pointed out that the architecture to be deployed
on an FPGA should be optimized in terms of computing
hardwares.

V. Awvailability of data and materials

Table 1 and Table 2 in the present paper.
VI. Competing interests

As if know there is dedicated CNN architecture for each
specified application. My work is to find efficient
architecture for all image processing CNN architecture as
generic

VII. Funding
Not Applicable
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VIII. Authors' contributions

The reviewed architectures have been divided into two
categories; CNN architecture on software and CNN
architecture on FPGA. In Table 1 both categories have been
compared with respect to Top-1 accuracy and number of
trainable parameters. Comparison of the models on FPGA as
shown in table 2.

And discussed their performance, accuracy Mac units and
computing hardware. And understand there is still area of
improvement to have generic solution for image processing
for efficient performance

IX. CONCLUSION

In this work, different CNN based architectures have been
reviewed which are compatible with hardware accelerators
such as FPGAs. It has been observed that the development of
new architectures may give better performance but not
necessarily be an efficient architecture when deployed on the
FPGA. It has been understood that machine learning
architecture (such as CNN) can be implemented in two ways:
a. RTL Implementation b. HW/SW Co-simulation. RTL
implementation can be a better approach provided the
architecture is simple or less complex. For any complex
architecture (i.e. with more layers and backdrops) HW/SW
co-simulation techniques (such as AutoML, NNgen etc.) are
better. Study has also shown the development of compressed
CNN architectures which addresses the hardware constraints
of FPGA and propose an efficient implementation on FPGA.
This paper has provided research possibilities and a roadmap
towards development of FPGA friendly ML architectures.
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