

Overview Of Impurity Profile

MADHURI RANDE¹, GAURI SABE², BHUMIKA DAHEKAR³,

DIPTI RAKHONDE⁴, NAVINYA CHORE⁵

1. Student of Shri Sant Gajanan Maharaj College of Pharmacy, Buldhana
2. Student of Shri Sant Gajanan Maharaj College of Pharmacy, Buldhana
3. Student of Shri Sant Gajanan Maharaj College of Pharmacy, Buldhana
4. Student of Shri Sant Gajanan Maharaj College of Pharmacy, Buldhana
5. Student of Shri Sant Gajanan Maharaj College of Pharmacy, Buldhana

Abstract:

Impurities in pharmaceutical and chemical products are a critical concern as they can have significant impacts on product quality, safety, and efficacy. The integration of upstream and downstream processing has emerged as a valuable tool for developing manufacturing processes that yield high-quality products with lower costs. Traditionally, optimizations in bio manufacturing have focused on titers, aggregates, and product quality, often neglecting other process-related impurities. However, as product titers increase, the creation of more difficult-to-separate impurities becomes a growing challenge.

The importance of comprehensive impurity analysis cannot be overstated, as it is essential for ensuring the safety and efficacy of pharmaceutical products. An integrated approach that considers the different facets of downstream processing, including separation, purification, concentration, and conversion, is crucial for understanding and addressing impurity-related issues.

Keyword: Impurity, Purification, bio manufacturing, Extraction ,Product Quality

Introduction: Impurities are substances that affect the purity of a product. In the pharmaceutical industry, an impurity is defined as organic matter that is not a drug or chemical ingredient. This impurity will occur during the formation or aging of the two substances in the drug. It refers to any product, such as a starting or intermediate product, that is produced by a side reaction and coexists with the parent chemical. The selected method must be used to identify and quantify impurities at levels greater than 0.1%. The main challenge for the API industry and the pharmaceutical industry is to p Reduce the proper product. Rigorous quality manage is needed to maintain the great and purity of products in all industries. The purity of an energetic factor depends on many factors, including the sort of uncooked material, production, crystallization and purification system. The thoughts approximately purity have changed over time, inseparable from developments in analytical chemistry. The pharmacopoeia isn't always simplest involved with purity, but also units strict policies regarding the content of diverse impurities. Impurities in pharmaceutical products are undesirable substances that stay in the energetic pharmaceutical element (API) or are fashioned during the producing system or when the API and API product age. [1-4].The International Conference on

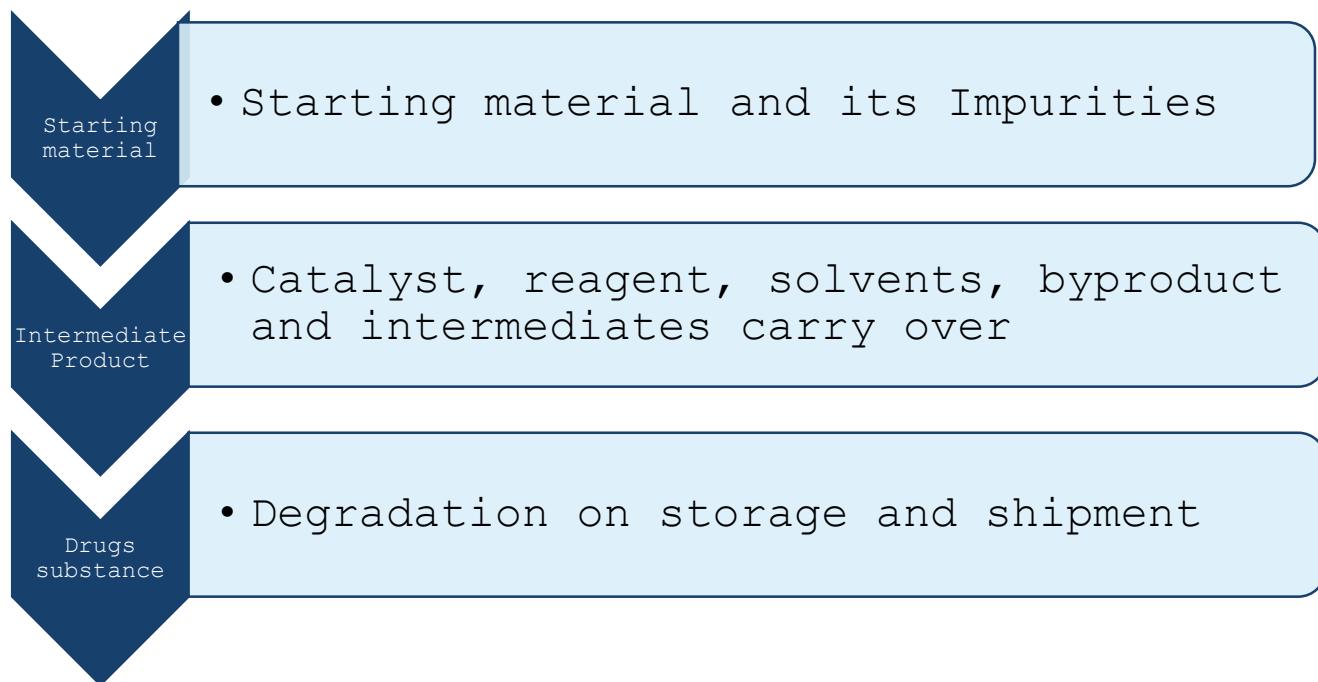
Harmonization (ICH) has published hints on Impurities are referred to by loads of terms. Various regulatory businesses and the ICH use the phrases listed underneath to characterize contaminants.

- 1 Intermediate
- 2 Penultimate intermediate
- 3 By-products
- 4 Transformation products
- 5 Interaction products
- 6 Related products
- 7 Degradation products

Impurity profile is description of the identified and unidentified impurities present in a typical batch of API produced by a specific controlled production process⁸⁻¹⁰. The main reasons for the increasing interest of drug manufacturers and drug registration authorities in the impurity profiles of bulk drug substances are as follows [5]:

IMPURITY PROFILING:-

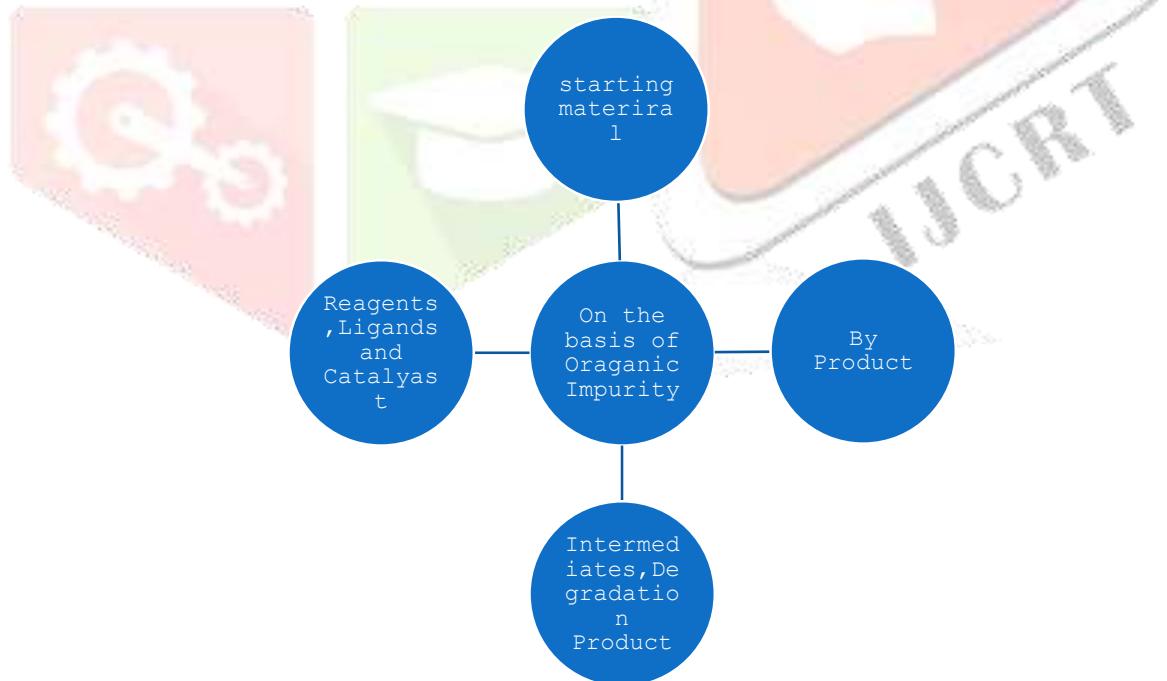
It is the system of assessing information to be able to determine the organic protection of a particular impurity. Impurity profiling is executed which will keep the API's stability and efficacy. Impurity profiling include identity, structure elucidation and quantitative determination of impurities and degradation product in bulk drug materials and pharmaceutical formula [6].


SOURCE OF IMPURITY:-

The foremost sources of impurities are intermediate and with the aid of-merchandise which can be carried into the API as impurities. A starting fabric used inside the synthesis of drug materials, solvents used inside the synthesis and purification of API, catalyst and reagent used inside the procedure are also the capacity source of impurities in API. If drug substance required is a specific isomer then stereoisomers of uncooked fabric and intermediate also contribute to the generation of chiral impurities in API.

Types of impurity:

According to ICH guidelines, impurities in drug substance produced by chemical synthesis can be broadly classified into following three categories


1. Organic Impurities (Process and drug-related)
2. Inorganic Impurities (Reagent, ligands, catalysts)
3. Residual Solvents (Volatile solvents)

Following Fig 1.1 shows generation and its source at various stages of drug synthesis [7].

ORGANIC IMPURITIES

These types of impurities arise during the manufacturing process and/or during storage of the drug substance. These include following sub-impurities.

Fig 2. Classification Of Impurity on The Basis of Organic Impurities

Starting Materials or Intermediate Impurities:-

These are the maximum commonplace impurities located in every API until a proper care is taken in each step concerned for the duration of the multi-step synthesis. Although the end products are usually washed with solvents, there are always chances of getting the residual unreacted starting substances unless the manufacturers are very cautious approximately the impurities.

By product:

By-merchandise from the facet reactions are the various most common manner impurities in drugs. By-merchandise may be shaped through a lot of side reactions, which include incomplete response, overreaction, isomerization, dimerization, and rearrangement, unwanted reactions among starting substances or intermediates with chemical reagents or catalysts.

Reagents, Ligands and Catalysts:

These chemicals are rarely found in APIs; however, they can sometimes cause problems as impurities. The presence Of sure chemicals, which includes triethylamine, has also been shown to have a unfavorable impact at the product. Samples of ampicillin trihydrate with triethylamine content material ranging from 2000 ppm to 4000 ppm (as decided by using a colorimetric method evolved by way of Gist-Brocades, Delft, The Netherlands) had been determined to be strong in opposition to fast protection measures. However, when the triethylamine content reached 7000 ppm, the product showed good sized deterioration. Chemical reagents, ligands, and catalysts used in the synthesis of medication can input the final product as a number of impurities. For instance, chloromethyltetrahydropyran-four-yl carbonate (CCMTHP) become used as an alkylating agent inside the synthesis of the β -lactam API and was located to be an impurity within the final product. Many reactions are promoted via metal-based catalysts. For example, Ziegler-Natta catalysts incorporate titanium, Grubb catalysts include ruthenium, and Adam catalysts contain platinum. Sometimes reactants or catalysts can interact with intermediates or very last merchandise to supply products. For instance, pyridine, a catalyst used in labyrinth synthesis, reacts with intermediates to form the impurity pyridinium.. [13, 14, 15, 16]

Degradation Products:

The degradation of penicillins and cephalosporins is a well-known instance of degradation products. The presence of a β -lactam ring as well as that of an α -amino institution in the C6/C7 facet chain performs a crucial function of their degradation.

A .Synthesis Related Impurities:

New chemical entity generated for the duration of artificial manner from uncooked material, solvent, intermediate, derivative. During synthesis manner, if impurity present in hint or in huge amount in any of substance involved in response, that ultimately bring about final product infected with one or extra undesirable materials. Therefore, synthesis related impurity require upmost care at some stage in each step concerned in synthesis procedure to reduce level of impurity that may rise up.B. Formulation Related Impurities:

Drug substance subjected to variety of conditions that leads to its degradation or other reactions. Factors Affecting On Formulation Related Impurities

a. Environment related

I. Exposed to adverse temperature:

E.g. Vitamins are heat sensitive and its degradation lead to loss in potency.

II. Exposed to light:

Photosensitive material when exposed to light / UV light undergo degradation which forms impurity.

III. Humidity:

It can be detrimental to bulk powder and formulation containing solid dosage form.

b. Formation of impurities on ageing:

Mutual interaction:

Interaction between ingredients involved in formulation leads to mutual interaction which causes impurity formation. Solutions and suspensions are prone to degradation due to hydrolysis. Water used in formulation contribute to not only its impurity but also provide situation for hydrolysis and catalysis

C. Functional Group Related Impurities

a) Ester hydrolysis: Eg Drugs like aspirin

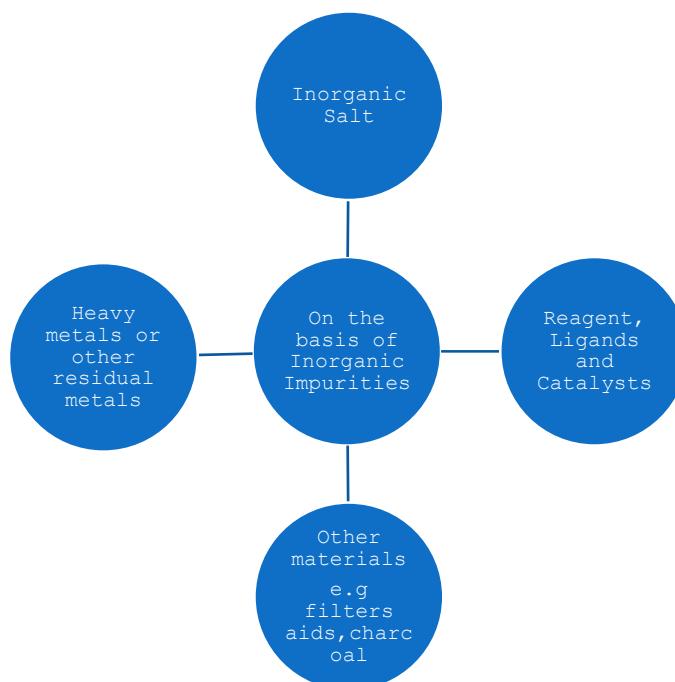
b) Hydrolysis: usually drug like benzyl penicillin, barbital and chloramphenicol undergo hydrolysis.

C) Oxidative degradation: Drug like hydrocortisone, methotrexate, heterocyclic aromatic ring, nitroso/nitrile derivatives.

D) Photolytic cleavage: Product uncovered to light even as manufacturing or storage in medical institution pending use or through patron pending use.

E) Decarboxylation: a few dissolved carboxylic acid which include p-amino salicylic acid unfastened CO₂ whilst heated.

2. INORGANIC IMPURITIES


Inorganic impurities are also obtained from the manufacturing processes which are used in bulk drug formulation.

a. Reagent, Ligands and Catalysts: In some processes, these could create a problem unless the manufacturing take proper care during production.

b. Heavy Metals: The main source of heavy metals are the water used in the processes and the reactors where acidification or acid hydrolysis take place. These impurities of heavy metals can easily be avoided using demineralized water and glass-lined reactor.

c. Other Materials (Filter Aids, Charcoal):

The regular monitoring of fibers and black particles in the bulk drugs is essential to avoid these contaminations.

Fig 3. Classification Of Impurity on The Basis of Inorganic Impurites

3. RESIDUAL SOLVENTS

Residual solvents (Table 1) need to no longer be used in the manufacture of drugs, excipients and pharmaceutical products because these residual solvents are unacceptably toxic or environmentally unsafe. However, if they are used inside the manufacture of non-exempt products, their content material have to be constrained as proven in Table 1 except otherwise distinct inside the character monograph. 1,1,1-trichloroethane solvent is indexed in Table 1 due to its environmental risks. The 1500 ppm restrict is based on protection facts. When Class 1 residual solvents are used or produced all through the manufacture or purification of pharmaceutical products, excipients or pharmaceutical merchandise, these solvents have to be identified and measured. The tactics described in the "Inspection, Inspection, and Testing of Electrical Equipment" section of this bankruptcy observe to all areas. Otherwise, the precise certification technique will apply. Such approaches ought to be submitted to USP for assessment. There are 3 type of elegance in residual impurity:

1. Class 1
2. Class 2
3. Class 3

CLASS 1

Class1 Residual solvents (Table 1) ought to now not be used inside the manufacture of medication, excipients and pharmaceutical merchandise because those residual solvents have unacceptable toxicity or are harmful to the environment. However, if they may be used inside the manufacture of non-exempt merchandise, their content material need to be confined as shown in Table 1 until otherwise certain in the individual monograph. The solvent 1,1,1-trichloroethane is covered in Table 1 due to its environmental hazards. The 1500 ppm limit is based totally on protection information. When Class 1 residual solvents are used or produced at some stage in the manufacture or purification of medication, excipients or pharmaceutical products, these solvents need to be identified and quantified. The strategies defined inside the Identification, Inspection and Testing of

Electrical Equipment phase of this General Chapter are to be used anywhere. Otherwise, the right proof system could be used. Such procedures have to be submitted to USP for evaluation.

Solvent	Concentration Limi((ppm)	Concern
Benzene	2	Carcinogen
Carbon tetra chloride	4	Toxic and Enviornmental hazard
1,2 dichloroethane	5	Toxic
1,1 dichloroethane	8	Toxic
1,1,1 trichloro ethane	1500	Enviornmental Hazard

TABLE:- CLASS-1 RESIDUAL IMPURITIES

CLASS 2

Class 2 Because of the toxicity of Residual solvents, Category 2 residual solvents (Table 2) have to be constrained to drugs, excipients and pharmaceutical merchandise. The proposed results do no longer mirror the actual evaluation required for choice making. If ranges of Class 2 solvents are better than the Option 1 limits, they have to be recognized and measured. The approaches described inside the Identification, Control and Testing of Electrical Equipment section of this General Section shall be used anywhere. Otherwise, suitable verification procedures need to be used.

Solvent	PDE(mg/day)	Concentration
Acetonitrile	4.1	410
Chlorobenzene	3.6	360
Chloroform	0.6	60
Cyclohexane	38.8	3880
1,2-Dichloroethane	18.7	1870
1,2-Dimethoxyethane	1.0	100
N,N-Dimethylacetamide	10.9	1090
N,N-Dimethylformamide	8.8	880
1,4-Dioxane	3.8	380
2-Ehtoxyethanol	1.6	160
Ethylene glycol	6.2	620
Formamide	2.2	220
Hexane	2.9	290
Methanol	30.0	3000
2- methoxyethanol	0.5	50
Methylbutylketone	0.5	50
Methylcyclohexane	11.8	1180
Methylenechloride	6.0	600
N-metylpyrrolidone	5.3	530
Nitromethane	0.5	50
Pyridine	2.0	200
Sulfolane	1.6	160
Tetrahydrofuran	7.2	720
Tetralin	1.0	100
Toluene	8.9	890
Trichloroethylene	0.8	80
Xylene	21.7	2170

TABLE:- CLASS 2 RESIDUAL IMPURITIES

CLASS 3

Class 3 residual solvents can be considered much less toxic and pose much less of a chance to human health than Class 1 and a couple of residual solvents. Class 3 does not incorporate solvents acknowledged to be dangerous to human health at medically well-known stages. There are reports that they may be non-toxic in acute or quick-term studies and terrible in nontoxicity research. Unless otherwise laid out in every monograph, Class 3 residual solvents are constrained to a maximum of fifty mg consistent with day (equivalent to 5000 ppm or much less than zero.5%). If the Class 3 weight restriction in a monograph is greater than 50 mg according to day, the final solvent ought to be diagnosed and measured. Supplied. Otherwise, suitable verification methods must be used. Such approaches must be submitted to USP for evaluation. There are USP standards for use on this process..

ISOLATION OF IMPURIY:

The isolation of impurities can be classified by following methods

1. Reference standard method

2. Spectroscopic method

3. Separation method

4. Isolation method

5. Characterization method

1. REFERENCE STANDARD METHOD:-

Reference standards function the basis of assessment of each process and product performance and are the benchmarks for assessment of drug safety for patient consumption. The key objective of this is to offer clarity to the general lifestyles cycle, qualification and governance of reference standards utilized in improvement and manage of new pills. These requirements are wanted, no longer only for the energetic substances in dosage bureaucracy but also for impurities, degradation merchandise, starting materials, technique intermediates, and excipients.[17-18].

2. SPECTROSCOPIC METHOD:-

The UV, IR, MS, NMR and Raman spectroscopic methods are routinely Getting used for characterizing impurities.

A. Ultraviolet (UV)

It is now viable to get enough simultaneous records at numerous wavelengths to ensure greater selectivity.

B. Infrared (IR)

Infrared spectro photometry provides precise facts on some purposeful organizations which could allow quantification and selectivity.

C. Nuclear magnetic resonance (NMR)

It has restricted use as a quantitative technique due to cost and time concerns.

D. Mass spectrometry (MS):-

Mass spectrometry presents high-quality structural statistics, and, based at the decision of the instrument; it could offer an effective device for differentiating with small differences in molecular weight.

3. SEPARATION METHOD:

The following separation methods can be used

1. Thin-layer chromatography (TLC)
2. Gas chromatography (GC)
3. High-pressure liquid chromatography (HPLC)
4. Capillary electrophoresis (CE)
5. Supercritical fluid chromatography (SFC)

The primary difficulties related to this method are limited resolution, detection, and ease of quantification. The greatest advantages are the ease of use and low cost. Gas chromatography is a very useful technique for quantification. [21-23]

4. ISOLATION METHOD:-[24-33]

It is often vital to isolate Impurities Generally, chromatographic and non-chromatographic techniques are used for isolation of impurities previous its characterization. The term 'chromatographic reactor' refers to using an analytical-scale column as both a go with the flow-thru reactor, and concurrently, as separation medium for the reactant(s) and product(s). By the usage of an HPLC, chromatographic reactor method, the solution-section hydrolysis kinetics of the Aprepitant (EmendTM) prodrug, dimeglumine, had been investigated. In loratadine, impurity determined became ofloratidine.

A list of strategies that may be used for isolation of impurities is given beneath.

- Solid-segment extraction strategies
- Liquid-liquid extraction techniques
- Accelerated solvent extraction strategies
- Supercritical fluid extraction
- Column chromatography
- Flash chromatography fosaprepitant
- TLC• Gas chromatography
- HPLC

Solid-Phase Extraction Methods

Solid phase extraction (SPE) is an increasingly useful sample education technique. With SPE, a few of the problems related to liquid – liquid extraction may be avoided, inclusive of incomplete segment separation, less-than-quantitative recoveries, use of high-priced, breakable area of expertise glassware, and disposal of massive portions of natural solvents. SPE is greater green than liquid – liquid extraction, yields quantitative extractions which are smooth to perform, is rapid, and can be computerized. Solvent use and laboratory time are decreased. SPE is used very regularly to put together liquid samples and extract semi-unstable or nonvolatile analytes, and can also be used with solids which might be pre-extracted into solvents. SPE products are superb for pattern extraction, awareness, and cleanup. They are available in a huge kind of chemistries, adsorbents, and sizes. Selecting the most appropriate product for each software and sample is crucial. [30]

JLiquid – Liquid Extraction Methods

Liquid – liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds based on their relative solubilities in two different immiscible liquids, usually water and an organic solvent. It is an extraction of a substance from one liquid phase into another liquid phase. Liquid – liquid extraction is a basic technique in chemical laboratories, where it is performed using a separating funnel. This type of process is commonly performed after a chemical reaction as part of the workup. [29]

• Accelerated solvent extraction methods

Accelerated Solvent Extraction (ASE) is a technique used to extract analytes from solid and semi-solid samples with the help of solvents at elevated temperatures and pressures. This method is particularly useful in the impurity profiling of pharmaceuticals, food products, environmental samples, and other complex matrices. Here's a brief overview of the process and its application in impurity profiling:

• Supercritical fluid extraction

Supercritical Fluid Extraction (SFE) is the process of separating one component (the extractant) from another (the matrix), using supercritical fluids as the extracting solvent. Extraction is usually from a solid matrix, but can also be from liquids. SFE can be used as a sample preparation step for analytical purposes, or on a larger scale to either strip unwanted material from a product (e.g., decaffeination) or collect a desired product (e.g., essential oils). Carbon dioxide (CO₂) is the most used supercritical fluid, sometimes modified by co-solvents such as ethanol or methanol. Extraction conditions for supercritical CO₂ are above the critical temperature of 31°C and critical pressure of 72 bar. Addition of modifiers may slightly alter this. [29]

Column Chromatography

Column chromatography in chemistry is a way used to purify individual chemicals from combos of compounds. It is frequently used for preparative packages on scales from micrograms to kilograms. The classical preparative chromatography column is a glass tube with a diameter of fifty mm and a top of fifty cm to 1 m with a faucet **at** the bottom. Two methods are commonly used to prepare a column; the dry approach and the moist method. The person additives are retained by means of the desk bound section differently and cut loose every other while they may be jogging at different speeds thru the column with the eluent. At the quit of the column they elute one at a time. During the complete chromatography method the eluent is amassed in a chain of fractions. The composition of the eluent waft can be monitored and each fraction is analyzed for dissolved compounds, for instance, by way of analytical chromatography, UV absorption or fluorescence. Colored compounds (or fluorescent compounds, with the useful resource of an UV lamp) can be visible through the glass wall as shifting bands.[29]

Flash chromatography

Distillation, recrystallization, extraction are all vital techniques for the purification of organic compounds. However, the approach used maximum normally in present day natural studies is 'flash' chromatography. In traditional column chromatography the pattern to be purified is placed on pinnacle of a column containing a few stable assist, often silica gel. The rest of the column is then packed with a solvent (or a aggregate of solvents), which then runs via the stable guide under the pressure of gravity. The numerous components to be separated travel via the column at one-of-a-kind rates and are then collected separately as they emerge from the bottom of the column. Unfortunately, the price at which the solvent percolates via the column is slow. In flash chromatography, but, air pressure is used to hurry up the float of the solvent, dramatically lowering the time needed to purify the sample.[31]

Thin Layer Chromatography (TLC)

Thin layer chromatography (TLC) is a chromatography approach used to separate combos. Thin layer cellulose. This layer of adsorbent is called the stationary section. After the pattern has been implemented on the plate, a solvent or solvent mixture (known as the mobile segment) is drawn up the plate via capillary action. As one-of-a-kind analytes ascend the TLC plate at distinctive charges, separation is executed.

Thin layer chromatography finds many packages to determine the components which might be contained in plants. It is also used for tracking organic reactions and studying ceramides and fatty acids; for the detection of insecticides or insecticides in food and water; for analyzing the dye composition of fibers in forensics and identifying compounds found in a given substance, and for assaying the radiochemical purity of radiopharmaceuticals. A wide variety of enhancements may be made to the original approach, to automate the different steps, to boom the decision executed with TLC, and to allow extra correct quantization. This technique is referred to as HPTLC or 'excessive overall performance TLC'. Separation of various chemical components by means of TLC. [29]Gas chromatography:

Gas-liquid chromatography (GLC) or simply gas chromatography (GC), is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance or separating the different components of a mixture (the relative amounts of such components can also be determined). In some situations, GC may help in identifying a compound. In preparative chromatography, GC can be used to prepare pure compounds from a mixture. [34]

HPLC: High Performance Liquid Chromatography

High Performance Liquid Chromatography High performance liquid chromatography (or excessive strain liquid chromatography, HPLC) is a form of column chromatography used frequently in biochemistry and analytical chemistry, to separate, perceive, and quantify compounds, based on their idiosyncratic polarities and interactions with the column's stationary phase.[35-36] HPLC makes use of different styles of stationary stages (commonly, hydrophobic saturated carbon chains), a pump that moves the cellular section(s) and analyte via the column, and a detector that offers a characteristic retention time for the analyte. The detector can also provide other characteristic facts (i.E., UV / Vis spectroscopic data for the analyte in that case prepared).[29] Analyte retention time varies relying on the electricity of its interactions with the stationary section, the ratio / composition of the solvent(s) used, and the waft rate of the Mobile segment. [29,33]

5. Characterization methods:

Highly sophisticated instrumentation, such as MS attached to a GC or HPLC, are inevitable tools in the identification of minor components (drugs, impurities, degradation products, metabolites) in various matrices. [24-28]

Limits for Impurity :

According to the ICH guidelines on impurities in new drug products, identification of impurities below 0.1% level is not considered to be necessary, unless potential impurities are expected to be unusually potent or toxic. [37]

According to the ICH, the maximum daily dose qualification threshold to be considered is as follows; [38,39]

Maximum Daily Dose	Reporting threshold
$\leq 1 \text{ g}$	>1g
0.1%	0.05%
Maximum Daily Dose	Identification threshold
<1 mg	1.0% or $5\mu\text{g}$ TDI, Whichever is lower
1 mg – 10 mg	0.5% or $20\mu\text{g}$ TDI, Whichever is lower
>10mg-2g	0.2% or 2mg TDI, Whichever is lower
>2g	0.10%
Maximum Daily Dose	Qualification Threshold
<10 mg	1.0% or $50\mu\text{g}$ TDI, Whichever is lower
10mg-100mg	0.5% or $200\mu\text{g}$ TDI, Whichever is lower
>100mg-2g	0.2% or 3mg TDI, Whichever is lower
>2g	0.15%

CONCLUSION:

In summary, impurity profiling represents a crucial element of drug improvement as a comprehensive stock of all impurities present in pills or pharmaceutical products. This profile no longer most effective demonstrates the best and dedication in drug development, however is likewise an essential issue in ensuring that the drug is secure, powerful and green. This review outlines methods and techniques for identifying, measuring and controlling impurities, highlighting the significance of the evaluation process and guidance advanced through regulatory our bodies. Impurity characterization is critical in assessing the health risks associated with prescribed drugs and enables set up first-rate manipulate at some point of the pharmaceutical production system. In addition, this assessment demonstrates the role of impurity profiles in knowledge the balance of medication, allowing prediction of degradation pathways and the development of balance pathways. This facts is important for improving drug formulations and garage conditions, accordingly extending the shelf existence, integrity and protection of clinical products. More importantly, the integration of impurity profiling into drug layout, manufacturing and first-class manage is an ongoing strive. As enterprise advances, the technique of impurity evaluation must also improve, developing the want for non-forestall improvement in analytical strategies, first-class manage standards and administrative tactics. In precis, impurity profiling is a changing and evolving procedure and is crucial for enhancing drug high-quality. It represents a commitment to safety, performance and compliance, and its significance can't be overstated. Future studies must recognition on enhancing the accuracy and performance of impurity evaluation strategies, thereby selling the advancement of the pharmaceutical industry and the improvement of secure, powerful, and efficient pills for the global population.

REFERENCE:-

1. S. Ahuja, K. M. Alsante. *Handbook of Isolation and Characterization of Impurities in Pharmaceuticals*, Vol. 5, *Separation Science and Technology*, Academic press, 2003.
2. S. Ahuja. *Impurities Evaluation of Pharmaceuticals*, Marcel Dekker, Inc. New York, 2006.
3. S. Ahuja, S. Scypinski. *Handbook of Modern Pharmaceutical Analysis*, Vol. 3, *Separation Science and Technology*, Academic press, 2003
4. J. Roy. *Pharmaceutical Impurities—a mini review*, AAPS PharmSciTech 3(2): 1-8 (2002). ICH Harmonized TriPLICATE Guideline: Impurities in New Drug Substances Q3A (R2), ICH Steering Committee, step 4 of ICH process, 25th Oct. 2006.
5. Ayre A., Varpe D., Nayak R., Vasa N., *Impurity profiling of Pharmaceuticals*. Advance Research in Pharmaceutical and Biologicals 2011; 1(2): 76-90
6. International Conference on Harmonization (1999) Specifications, Q6A: Test Procedures and Acceptance Criterial for New Drug Substances and New Drug Products. Chemical substances 65 (146):67488.
7. Ahuja, S., & Alsante, K. M. (Eds.). (2003). *Handbook of isolation and characterization of impurities in pharmaceuticals* (Vol. 5). Academic press.
8. Medicinal Products, Q3A, 1995:1-11
9. Federal Register, International Conferences on Harmonization, Impurities in New Drug Products, European Medicines Agency, Q3B (R2), 2006: 3-14.
10. Federal Register, International Conferences on Harmonization. Impurities in New Medicinal Products, 3AQ12a, 1996: 95-105.
11. Roy J., *Pharmaceutical Impurities-A Mini review*. AAPS Pharm Sci Tech. 2002; 3(2) article 6:1-8. 13. Patil P., Dr. Vaidya I., *Overview on Impurity Profiling*. International
12. Journal for Pharmaceutical Research Scholars, 2013; 2(2):54-65.
13. Solanki R., *Impurity profiling of Active Pharmaceutical Ingredients and Finished drug products*. International Journal of Research and Technology. 2012; 2(3): 231-238.
14. Lakshmana Prabu S., Suriyaprakash T.N.K., *Impurities and Its Importance in Pharmacy*. International Journal of Pharmaceutical Sciences Review and Research, 3(2), July – August
15. Krimpen, P.C., Bennekom, W.P., Bult, A., *Pharm Weekbl [Sci]*. 1987, 9, 1-23.
16. Roy, J., Mohammad, G., Banu, A., *Indian Drugs*. 1993, 5(30), 211-218.
17. Ahuja S, (1997) *Chiral Separations by Chromatography*, Oxford University Press, NY, p 365
18. Ahuja S (1992) *Chromatography of Pharmaceuticals: Natural, Synthetic and Recombinant Products*. ACS Symposium Series #512, Ame Chem Soc, Washington, DC, p. 14.
19. Ahuja S, *Trace and Ultra trace Analysis by HPLC*, Wiley, New York, 1992
20. Ahuja S (1998) *Impurities Evaluation of Pharmaceuticals*. Marcel Dekker, New York, p. 142.
21. Ahuja S, *Chromatography and Separation Science*, Academic, San Diego, CA, 2003.
22. Ahuja S., Scypinski S., *Handbook of Modern Pharmaceutical Analysis*, Academic, New York, NY, 2001.
23. Ahuja S., Dong M., *Handbook of Pharmaceutical Analysis by HPLC*, Academic, San Diego, CA, 2005.

24. Peter J S, Ahmed A and Yan W (2006) An HPLC chromatographic reactor approach for investigating the hydrolytic stability of a pharmaceutical compound. *J Pharm Biomed Anal* 41: 883.

25. Radhakrishna T, Satynarayana J and Satynarayana A (2002) Determination of Loratadine and its Related Impurities by HPLC. *Indian Drugs* 39 (6): 342.

26. Radhakrishna T, Satynarayana J and Satynarayana A (2002) HPLC method for the Degradation of Celecoxib and its Related Impurities. *Indian Drugs* 40(3): 166.

27. Zawilla N H, Li B, Hoogmartens J and Adams E (2006) Improved RP-LC method combined with pulsed electrochemical detection for the analysis of amikacin. *J Pharm Biomed Anal* 42: 114.

28. Nisha M, Ismail M, Ismail R, Duncan F, Maili L, Jeremy K N and John C L (1999) Impurity profiling in bulk pharmaceutical batches using ¹⁹F NMR spectroscopy and distinction between monomeric and dimeric impurities by NMR-based diffusion measurements. *J Pharm Biomed Anal* 19:511.

29) Gurudeep Chatwal and Sham Anand. Instrumental method of chemical analysis, 5th edition, Himalaya publishing house, New Delhi,2002. Radhakrishna T, Satynarayana J, Satynarayana A. HPLC method for the Degradation of Celecoxib and its Related Impurities. *Indian Drugs*. 2002;40:166.

30) Zwig- Ferenc A and Biziuk M. Solid phase Extraction Techniques- Trends, opportunities and applications. *Polish Journal of Environmental Studies* 2006;15(5):677-690.

31) Still WC, Kahn M, Mitra A. Flash chromatography. *J Org Chem*. 1978;43:2923–5.

32) Peter JS, Ahmed A, Yan W. An HPLC chromatographic reactor approach for investigating the hydrolytic stability of a pharmaceutical compound. *J Pharm Biomed Anal*. 2006;41:883–90.

33) Zawilla NH, Li B, Hoogmartens J. Improved RP-LC method combined with pulsed electrochemical detection for the analysis of amikacin. *J Pharm Biomed Anal*. 2006;42:114.

34) Qui, F., Norwood, D.L., *Journal of liquid chromatography & related technologies*. 2007, 30, 877-935.

35) Ryan, Timothy W. HPLC impurity profile analysis of Pharmaceutical substances using UV photodiode array detection. *Anal.Lett* 1998; 31(4): 651-58.

36) Gorog S, Herenyi B. The use of high performance liquid chromatography with diode-array UV detection for estimating impurity profiles of steroid drugs. *Journal of Chromatography*.1987; 400: 177-86.

37) Roy J, Bhuiyan K, Faruque A. Injectable ergometrine: Stability and packaging for developing countries. *Indian Drugs*. 1997;34:634–6.

38) Gorog S., *identification and determination of impurities in drugs*, Elsevier, Amsterdam, 2000

39) Gimeno P, Besacier F, Bottex M, Dujourdy L, Chaudron-Thozet H. A study of impurities in intermediates and 3, 4 methylenedioxymethamphetamine (MDMA) samples produced via reductive amination routes. *Forensic Sci Int*. 2005;155:141–57. [PubMed]