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Abstract 

As more and more DNA sequences are becoming available day by day, storing and transmitting them may require a huge amount 

of space. This paper introduces a new DNA sequence compression programme which is based on  Huffman Technique of 

compression routine. DNA and RNA sequences can be considered as tests over a four letter alphabet, namely {a,t,g and c} ( note 

that t is replaced with u in the case of the RNA). For complete genomes, these texts can be very long. Huffman’s code also fails 

badly on DNA sequences both in the static and adaptive model, because there are only four kind symbols in DNA sequences and 

the probabilities of occurrence of the symbols are not very different[1]. Huffman coding is known to compress not very efficiently 

[2].This program is developed mainly to merge with dynamic Look up Table method, where sixty eight kind symbols are present. 

This merge techniques are developed  to increase the compression rate/bases. This algorithm can approach a compression rate of 

2.1 bits /base and even lower. This compression rate is defined as the compressed file size divided by base number[3]. This 

algorithm can approach a compression ratio is better than other method. The definition of the compression ratio is the same as in 

[4] i.e.,1− (|O|/2| I|), where |I| is number of bases in the input DNA sequence and |O| is the length (number of bits) of the output 

sequence. Compression of these genome sequences will help us increase the efficiency of their use. We use Huffman coding to 

encode the nucleotide genome sequence , a greedy algorithm that constructs an optimal prefix code called a Huffman code. The 

algorithm builds the tree T corresponding to the optimal code in a bottom-up manner. It begins with a set of |c| leaves and perform 

|c|-1 “merging” operations to create the final tree. The total running time of Huffman on the set of n characters is O( n log n). We 

tested the program on standard benchmark data used in[4]. The greatest advantage of this progrmme is fast execution, small 

memory occupation and easy implementation. Since this program have been written both  in the C language, (Windows platform, 

and TC compiler) and MATLAB, it is possible to run in other microcomputers with small changes (depending on platform and 

Compiler used). The program runs on the IBM personal computer, requires 512K, without additional hardware except for disk 

drives and printer. The execution is quite fast, all the operations are carried out in fraction of seconds, depending on the required 

task and on the sequence length. 

Keywords : Huffman algorithm, Biology and genetics, Data  Compression. 

 

1. INTRODUCTION 

With more and more complete genomes of prokaryotes and eukaryotes becoming available and the completion of Human Genome 

Project on the horizon, fundamental questions regarding the characteristics of these sequences arise. Life represents order. It is not 

chaotic or random [5]. Thus, we expect the DNA sequences that encode life to be nonrandom. In other words, they should be very 

compressible. There is also strong  biological evidence that supports this claim. It is well known that DNA sequences only consist 

of four nucleotide bases {a, c,g, t}, and one byte  are enough to store each base. All this evidence gives more concrete support that 

the DNA sequences should be reasonably compressible. It is well recognized that the compression of DNA sequences is a very 

difficult task [6-12]. However, if one applies standard compression tools such as the Unix “compress” and “compact” or the MS-

DOS archive programs “pkzip” and “arj”, they all expand the file. These tools are designed for text compression [6], while the 

regularities in DNA sequences are much subtler. It means that DNA sequences do not have the same properties for the traditional 

compression algorithms to be counted on. This requires a better model for computing the DNA content such that better data 

compression results can be  achieved. Some experiments indicate that the compression ratio is 2.6 bits/base. 

 

 

2. METHOD 

The first optimal code was developed by David Huffman. Before suggesting an algorithm for generating an optimal code, he 

pointed out that an optimal code has some characteristics which are summarized in the following theorem that uses a source 

alphabet S = {x1……xn), a set of associated probabilities p = {p
I……pn} and code-words {c1….. cn} with corresponding lengths 

{l1,. . ., ln}. 
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HuffmanAlgorithm( ) 

 for each letter create a tree with a single root node and order  all trees according to the probability of letter occurrence; 

while more than one tree is left  

take the two trees tl, t2 with the lowest probabilities p1,p3 and create a tree with probability in its root equal to pI + p2 and with  tl 

and t2 as its subtrees; associate 0 with each left branch and 1 with each right branch; 

create a unique codeword for each letter by traversing the tree from the root to 

the leaf containing the probability corresponding to this letter and putting all encountered 0s and Is together; 

The resulting tree has a probability of 1 in its root. 

Huffman saw the structure resulting from application of his algorithm as a net of tributary rivers eventually flowing into a large 

river. He thought associating Is and Os with branches was analogous to "the placing of signs by a water-borne insect at each of 

these junctions as he journeys downstream" with right turn posts (marked with I) and left turn posts (marked with 0), which would 

allow the insect to return back to the starting point. 

 

It should be noted that the algorithm is not deterministic in the sense of producing a unique tree because, for trees with equal 

probabilities in the roots, the algorithm does not prescribe their positions with respect to each other either at the beginning or 

during execution. If t1 with probability p
1 is in the sequence of trees and the new tree t2 is created with p1 = p2 , should t2 be 

positioned to the left of tl or to the right? Also, if there are three trees t1,t2  and t3 with the same lowest probability in the entire 

sequence, which two trees should be chosen to create a new tree? There are three possibilities for choosing two trees. As a result, 

different trees can be obtained depending on where the trees with equal probabilities are placed in the sequence with respect to 

each other. Interestingly, however, regardless of the shape of the tree, the average length of codeword remains the same. 

 

 
                                          Fig.-A      Fig.-B 

 

 
                               Fig.-C      Fig.-D 

 

Above Figure contain five letters A,B,C,D and E with probabilities .35, .17,.17,.16 and .15 , shows step-by step how a Huffman 

tree is generated 
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Data Structure used: Priority queue = Q 

Huffman I 

n = |c| 

Q = c 

for  i =1  to   n-1 

    do   z = Allocate-Node () 

             x = left[z] = EXTRACT_MIN(Q) 

             y = right[z] = EXTRACT_MIN(Q) 

            f[z] = f[x] + f[y] 

            INSERT (Q, z) 

return EXTRACT_MIN(Q) 

Pseudo code  for TC compiler: - 

(a) Encoding  -  

 

Procedure : 

Var 

I , r=0,j,sub,sos :Long Integer ; 

S[4],x[100],c[100] :Long Integer; 

Ch:  Character 

a[100],b[100],infilename[20],outfilename[20] : 

Character 

fp,fpt :File pointer 

time,time1:structure 

begin: 

display”Enter file name”; 

accept(infilename); 

    gettime(&t); 

display "The current time is: 

%2d:%02d:%02d.%02d\n”, 

    t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund; 

    fp:=fopen (infilename,"r"); 

if fp=NULL then 

begin: 

display "unable to open file"; 

exit(0); 

end:  

for(i=0;i<=3;i++) 

s[i]:=0; 

while   1 

 begin: 

 ch:=fgetc(fp); 

 if ch=EOF then 

   break; 

 switch(ch) 

   begin: 

    case 'a': 

      s[0]++; 

      break; 

    case 'c': 

      s[1]++; 

      break; 

    case 'g': 

      s[2]++; 

      break; 

    case 't': 

      s[3]++; 

      break; 

   end: 

end: 

fclose(fp); 

break; 

end:: 

 end: 

   else 

   begin 

   display"%d",c[y]; 

   break; 

 

   end: 

for(i=0;i<=3;i++) 

 r:=r+s[i]; 

 for(i=0;i<4;i++) 

display"\t%d",s[i] ; 

 display"\n\n\n\n"; 

for(i=0;i<=3;i++) 

 s[i]:=(s[i]*100)/r; 

  for(i=0;i<4;i++) 

 display"\t%d",s[i]; 

 display"\n\n\n\n"; 

for(i=0;i<=2;i++) 

  begin: 

  for(j=0;j<=2-i;j++) 

    begin: 

     if s[j]<s[j+1] then 

       begin: 

 temp:=s[j]; 

 s[j]:=s[j+1]; 

 s[j+1]:=temp; 

       end: 

    end: 

  end: 

  for(i=0;i<4;i++) 

display”t%d",s[i]; 

  display"\n\n\n\n"; 

/*tree const*/ 

for(i=0;i<=100;i++) 

begin: 

x[i]=0; 

end: 

y:0; 

x[0]:100; 

for(i=0;i<3;i++) 

begin: 

  x[2*y+1]:=s[i]; 

  x[2*y+2]:=x[y]-s[i]; 

  c[2*y+1]:=0; 

  c[2*y+2]:=1; 

  y:=2*y+2; 

end: 

for(y=0;y<=30;y++) 

display"\t%d",x[y]: 

 

/*traversal*/ 

for(i=0;i<4;i++) 

begin: 

display"\n%d=",s[i]; 

for(y=1;y<100;y=2*y+1) 

  begin: 

  if x[y]!=s[i] then 

   begin: 

 

  y:=y+1; 

  if x[y]!=s[i] then 

     begin: 

      display"%d",c[y]: 

     end: 

  else 

  begin 

  display"%d",c[y]; 
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  end: 

end:  

fclose(fp); 

gettime(&t1); 

    dispaly"The current time is: 

%2d:%02d:%02d.%02d\n",t1.ti_hour, t1.ti_min, 

t1.ti_sec, t1.ti_hund: 

    display"\n\tCOMPLETION 

TIME=%.1f",float((t1.ti_sec*100)+t1.ti_hund 

   -float((t.ti_sec*100)+t.ti_hund) 

end: 

Table-I 

3. Experimental Results 

We tested this progrmme on standard benchmark data used in [3]. These standard sequences come from a variety of sources 

and include the complete genomes of two mitochondria: MPOMTCG, PANMTPACGA (also called MIPACGA); two 

chloroplasts: CHNTXX and CHMPXX (also called MPOCPCG); five sequences from humans: HUMGHCSA, 

HUMHBB,HUMHDABCD, HUMDYSTROP,HUMHPRTB; and finally the complete genome from two viruses: VACCG 

and HEHCMVCG (also called HS5HCMVCG). 

These tests are performed on a computer whose CPU is  Intel P-IV 3.0 GHz core 2 duo(1024FSB), Intel 946 original mother 

board, IGB DDR2 Hynix, 160GB SATA HDD Segate. 

 

Sequence Base pair File 

Size 

(byte) 

Reduce 

file size 

(byte) 

Compressi

on ratio1 

  

compres

sion 

rate( 

bits 

/base) 

compar

e with 

gzip-9 

Improve

ment 

MTPACGA 100314 100314 24439 -2.54999 1.94900  

 

 

 

 

4.62605 

 

 

 

 

 

0.56877 

MPOMTCG 186608 186608 46719 -0.14361 2.00287 

CHNTXX 155844 155844 39028 -0.17196 2.00343 

CHMPXX 121024 121024 29274 -3.24563 1.93508 

HUMGHCSA 66495 66495 16691 -0.40454 2.00809 

HUMHBB 73308 73308 18394 -0.36558 2.00731 

HUMHDABCD 58864 58864 14783 -0.45528 2.00910 

HUMDYSTROP 38770 38770 9760 -0.69641 2.01392 

HUMHPRTB 56737 56737 14252 -0.47764 2.00955 

VACCG 191737 191737 48002 -0.14133 2.00282 

HEHCMVCG 229354 229354 57406 -0.00117 2.00235 

Average      1.99486   

Table-II 

 

 
Fig.-I 
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Fig.-II 

Compression ratio and Compression rate for the DNA sequences shown in Table II.  From top to bottom. Each row displays the 

result for this algorithm showing the compression ratio and rate for each sequence and the compression rate in bits per symbol. 

The last two columns show the compares of others compression techniques. Also presented the compression rate and ratio in 

fig.-I & II. 

 

4. Result Discussion: 

In Chen’s paper[8],you can feel the time of program running since they are in second level. Some ones even cost minutes or hours 

of time to run. But our algorithm runs almost 103 time faster than, our algorithm performances better than it in both compression 

ratio and elapsed time. By just using the Huffman technique, users can obtain original sequences in a time that can’t be felt. 

Additionally, our algorithm can be easily implemented while some of them will take you more time to program. 

 

5.Conclusion: 

We discussed a  DNA compression programming result using Huffman algorithm whose key idea is probabilities of occurrence of 

the symbols. This compression algorithm gives a good model for compressing DNA sequences that reveals the true characteristics 

of DNA sequences. This method is able to detect more regularities in DNA sequences, such as mutation and crossover, and 

achieve the best compression results by using this observation.  

 

6. Future work :  

We are trying to do more, such as combining our dynamic LUT  pre-coding routine with Huffman’s compression technique, 

whose key idea is probabilities of occurrence of the symbols, to revise our algorithm in order to improve its performance.  
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