
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407643 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f632

Classification Of Human Written Text And

Artificial Intelligence Generated Text Using

Machine Learning

Azmat Rashid1, Dr. Gurinder Kaur Sodhi 2

1M. Tech Scholar, Department of Electronics and Communications Engineering, Desh Bhagat University, Punjab, India
2 Assistant Professor, Department of Electronics and Communications, Desh Bhagat University, Punjab, India

Abstract: This study explores how machine learning

techniques can classify text data as either human-written or

AI-generated. The research uses a dataset containing 6,000

texts, evenly split between human and AI-generated samples.

Key objectives include preprocessing the data, conducting

exploratory data analysis (EDA), training models, and

thorough evaluation. Text data underwent detailed

preprocessing steps such as tokenization, removal of stop

words and punctuation, and lemmatization. EDA revealed

insights into distributions of text lengths and labels,

highlighting significant differences between human and AI-

generated texts. Two models, Naive Bayes and Logistic

Regression, were trained on the processed dataset. Logistic

Regression outperformed with 98% accuracy on a separate

test set. Metrics for AI-generated texts showed precision,

recall, and F1-score at 98%, 95%, and 97%, respectively,

showcasing its strong ability to distinguish between human

and AI-generated content. The results emphasize the

effectiveness of advanced text preprocessing and machine

learning models in accurately identifying text origins.

Logistic Regression emerged as the preferred model due to

its high accuracy and comprehensive performance metrics,

making it a dependable tool for distinguishing between

human and AI-generated content across various applications.

Keywords: Written text, text generation, Machine

learning

I. INTRODUCTION

The rise of artificial intelligence (AI) in digital

communication has transformed how content is generated,

especially with its ability to produce text that closely mimics

human writing. This capability, driven by advancements in

natural language processing (NLP), has revolutionized

content creation across online platforms. AI-generated text is

now pervasive, blurring the distinction between human and

machine-authored content, from automated news articles and

reviews to personalized chatbot responses and social media

posts.

While AI-driven content creation promises efficiency and

personalization benefits, it also presents significant

challenges. One major concern is the misuse of AI to spread

misinformation, manipulate public opinion, and undermine

the credibility of online information sources. Unlike

traditional content, AI-generated text can be crafted with

remarkable sophistication, making it difficult for users and

platforms to verify its authenticity. Therefore, accurately

identifying AI-generated text has become crucial to

safeguarding the integrity of digital content ecosystems. This

thesis tackles this critical issue by exploring advanced

machine learning techniques and computational methods to

develop robust detection models. These models aim to

distinguish between human and AI-generated text effectively,

enabling platforms to mitigate the risks associated with

deceptive or misleading content.

In recent years, advancements in NLP have empowered AI

models to produce coherent and contextually relevant text

across various domains, including news, social media, and

customer reviews. While these capabilities are

groundbreaking, they have also raised concerns about the

credibility and trustworthiness of digital content.

Differentiating between human-generated and AI-generated

content is now essential due to the potential for

misinformation and the challenges posed by the sheer volume

of content online. Traditional methods of content verification

struggle to keep up with the scale and speed of AI-generated

content dissemination. Thus, there is an urgent need for

automated tools that can accurately detect and flag AI-

generated text in real-time.

Technologically, addressing this challenge involves

leveraging advances in machine learning, NLP, and

computational linguistics. Techniques such as supervised

learning, deep learning, and ensemble methods are employed

to develop robust AI detection models. These models are

trained on large datasets encompassing both human and AI-

generated text to learn distinctive features that differentiate

between the two. Moreover, ethical considerations

surrounding the use of AI detection technologies are carefully

considered. Effective solutions must balance the imperative

of content moderation with the preservation of user privacy

and free expression. Transparency and accountability are

essential in the development and deployment of these

solutions to ensure ethical standards are upheld.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407643 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f633

II. LITERATURE REVIEW

Alamleh et al. [3] evaluated the performance of ML methods

in distinguishing AI-generated text from human-written text.

To achieve this objective, the authors gathered responses

from computer science students to essay and programming

assignments. Then, based on the data, the authors evaluated

and trained numerous ML methods such as SVM, LR, NN,

RF, and DT.

 Chen et al. [4] introduced an innovative method to

differentiate human-written and ChatGPT-generated texts

with the help of language methods. The authors gathered and

released the pre-processed data called Open GPTText, which

contained rephrased content generated utilizing ChatGPT.

Pardos and Bhandari [5] conducted an initial learning gain

assessment of ChatGPT by comparing the efficiency of its

hints to hints presented by human tutors on two different

algebra topics such as intermediate and elementary algebra.

III. OBJECTIVES

 Develop and evaluate machine learning models capable

of accurately detecting AI-generated content in online

platforms.

 Explore and compare different feature extraction

techniques to identify effective indicators of AI-

generated text.

 Investigate the impact of linguistic features, syntactic

patterns, and semantic cues on the performance of AI

detection models.

 Assess the accuracy and generalizability of the

developed models across diverse genres and languages.

 Provide insights into ethical considerations and

implications for the responsible deployment of AI

detection technologies in digital environments.

IV. METHODOLOGY

The process commenced with loading and exploring the

dataset through exploratory data analysis (EDA). Using

pandas functions, the dataset containing AI-generated and

human-written texts was thoroughly examined. Count plots

visualized the class distribution, revealing insights into the

dataset's structure and potential anomalies like class

imbalances or missing values. This initial analysis guided

subsequent preprocessing and modeling efforts. Data

preprocessing involved removing duplicates and handling

null values to ensure data integrity. Text was tokenized into

individual words, converted to lowercase, and cleaned by

removing special characters, punctuation, and stopwords.

These steps ensured uniform and clean text data, laying a

strong foundation for further analysis.

With prepared text data, vectorization using TF-IDF (Term

Frequency-Inverse Document Frequency) transformed text

into numerical features that captured word importance across

the dataset. A logistic regression model, chosen for its

simplicity and effectiveness in binary classification tasks,

was trained using the transformed data. The model's

performance was evaluated using metrics such as precision,

recall, F1-score, and accuracy on the test data. Once

validated, the model was used to predict new text inputs,

determining whether they were AI-generated or human-

written. This final step confirmed the model's reliability and

accuracy in real-world predictions, validating the entire

process from data preparation to model deployment.

.

Figure 1 Flow diagram of the system

The process began with a clear objective: developing a

machine learning model to differentiate between AI-

generated and human-written text. This phase included

setting up the environment by importing essential libraries

like pandas, NumPy, matplotlib, seaborn, and scikit-learn.

Ensuring all dependencies were properly installed and

configured was vital for seamless progress in the following

stages. A defined overarching goal guided the

methodological approach, ensuring alignment with the

project's end objectives.

A. Load Dataset

The dataset, containing both AI-generated and human-written

text examples, was loaded into the working environment,

serving as the foundation for the entire analysis and model-

building process. Initially, the correct dataset file, typically in

a structured format like CSV (Comma Separated Values),

was identified. This format is chosen for its simplicity and

compatibility with various data processing tools. Using the

pandas library, which is a robust Python data analysis toolkit,

the dataset was read into a DataFrame—a two-dimensional,

size-mutable, and potentially heterogeneous tabular data

structure with labeled axes (rows and columns).

Following data loading, the next step involved identifying

and addressing any discrepancies or anomalies in the dataset.

The presence of missing values was determined using the

df.isnull().sum() function, which provided a count of null

values for each column. Depending on the extent and

distribution of these missing values, appropriate strategies

were implemented to handle them. For instance, rows with

significant missing values may have been removed using the

df.dropna() function, or missing values could have been filled

with suitable replacements such as the mean, median, or

mode of the respective columns using the df.fillna() function.

Ensuring the dataset was devoid of null values was crucial to

maintain the accuracy and reliability of subsequent data

analysis and model training phases..

B. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) played a crucial role in

comprehending the dataset's underlying structure and

patterns. The phase began by utilizing the df.info() function

to gather essential details such as the number of entries,

column names, non-null counts, and data types. This initial

assessment was pivotal for identifying immediate issues like

missing values or incorrect data types, offering insights into

the dataset's size and layout.

Statistical properties were explored using df.describe(),

which provided descriptive statistics on numeric columns.

Metrics such as mean, standard deviation, and percentiles

revealed central tendencies and data distribution

characteristics, including potential outliers.

Data visualization techniques, including histograms, box

plots, and scatter plots, were then employed to uncover

hidden patterns and relationships within the data. Histograms

depicted numerical feature distributions, while box plots

identified outliers and showcased data spread across

quartiles. Scatter plots were instrumental in exploring

relationships between numeric features. These visualizations

Load
Dataset
Explorat
ory Data
Analysis

(EDA)
Data

Preproc
essingRemove

Stopwor
ds and

Punctua
tion

Clean
Text

Train-
Test
Split

Define X
and y

Split
Data

Vectoriz
e Text
Build
and

Train
Model
Logistic
Regressi

on

Train
Model

Evaluate
Model

Classific
ation

Report

Accurac
y Score

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407643 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f634

enhanced understanding of the dataset's nature and guided

subsequent data preprocessing steps.

Additionally, a correlation matrix generated with df.corr()

examined pairwise relationships between numeric features,

quantifying the strength and direction of correlations. This

analysis provided further insights into feature interactions,

aiding in the preparation and refinement of the dataset for

modeling.

1. Data Analysis

Exploratory Data Analysis (EDA): EDA serves as the

cornerstone of this project, unraveling intricate patterns

within the data. It involves identifying users with unique

characteristics, such as those engaged in online gaming with

minimal bandwidth requirements. Insights are derived from

average signal strength, latency, and resource allocation

across different application types and timestamps.

Visualizations, including box plots, bar plots, count plots, and

histograms, effectively communicate trends and distributions.

Figure 2 EDA for machine learning

Correlation Analysis: Correlation studies unveil relationships

between variables. In this context, understanding the

correlation between signal strength and allocated bandwidth

is vital. The distribution of resource allocation percentages

and the nuanced interplay between allocated and required

bandwidth provide valuable information. The dataset is then

partitioned into training and testing sets, setting the stage for

model development and evaluation.

C. Data Preprocessing

Data preprocessing was an essential step in preparing the

dataset for machine learning modeling. This phase began

with handling duplicates and null values, which could

adversely affect model performance. Duplicate records were

identified using the df.duplicated() function, and

subsequently removed with the df.drop_duplicates() function

to ensure each data entry was unique. Handling null values

involved identifying columns with missing data using

df.isnull().sum(). Various strategies were employed to

address these gaps: numerical columns were imputed with

their mean or median values, while categorical columns had

missing values filled with the most frequent category using

the df.fillna() function. In cases where missing values were

substantial, affected rows or columns were dropped using

df.dropna(), ensuring the dataset's integrity.

Figure 3 Data Preprocessing

Tokenization was the next step, where the text data was

broken down into individual words or tokens. This was

accomplished using libraries such as NLTK or SpaCy. The

nltk.word_tokenize() function was used to split the text into

words, transforming each sentence into a list of tokens. This

granularity enabled the model to process and understand the

text at a more fundamental level. Tokenization was crucial

for subsequent steps like vectorization and feature extraction,

as it converted the raw text into a format suitable for machine

learning algorithms.

Special characters and punctuation were removed to further

clean the text data. This involved stripping out characters

such as punctuation marks, which do not contribute

meaningful information to the text's context. Regular

expressions, implemented via Python's re module, were used

to identify and remove these characters. For example,

re.sub(r'\W', ' ', text) was employed to replace non-word

characters with spaces. This step helped in reducing noise

within the text, ensuring that the focus remained on

meaningful words.

D. Train-Test Split

The process of splitting the dataset into training and testing

sets was a critical step in the machine learning workflow,

ensuring that the model's performance could be reliably

evaluated on unseen data. This step began with defining the

features (X) and the target variable (y) from the dataset.

Typically, the features included all the relevant columns that

would be used to make predictions, while the target variable

was the outcome that the model aimed to predict. For text

data, the feature set (X) often comprised the preprocessed

text, while the target variable (y) represented the class labels.

Vectorizing the text data was the next critical step before

feeding it into the machine learning model. This process

involved converting the textual data into numerical form,

which could be processed by machine learning algorithms.

The TF-IDF (Term Frequency-Inverse Document Frequency)

vectorizer was a popular choice for this purpose. It

transformed the text into a matrix of TF-IDF features, where

each term's weight reflected its importance in the document

relative to its frequency across all documents. This step

converted the training and testing text data into numerical

vectors, capturing the relevance of each word in the context

of the entire dataset.

Throughout the train-test split process, maintaining the

integrity and representativeness of the data was paramount.

This was ensured by using stratified sampling when dealing

with imbalanced datasets, where the class distribution was

preserved in both training and testing sets.

E. Vectorize Text

Vectorizing text data was a pivotal step in the machine

learning pipeline, transforming textual information into a

format that machine learning algorithms could process

effectively. This process was crucial because most machine

learning models operated on numerical data, requiring text to

be converted into a numerical representation without losing

its semantic meaning. The chosen method for vectorizing text

data in this context was TF-IDF (Term Frequency-Inverse

Document Frequency). TF-IDF was a statistical measure used

to evaluate how important a word was to a document within a

collection or corpus. It was calculated by multiplying two

metrics: the term frequency (TF), which measures how

frequently a term occurs in a document, and the inverse

document frequency (IDF), which measures how important a

term is across documents.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407643 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f635

Figure 3 Vectorization Technique

During the vectorization process, several important

considerations were considered to ensure the quality and

usefulness of the numerical representation:

The vectorizer analyzed and learned the vocabulary from the

training data. This included identifying unique terms (words

or n-grams) and assigning them unique indices for future

reference.

For each term in the vocabulary, the vectorizer computed its

TF-IDF score based on its frequency in the current document

(TF) and its inverse document frequency (IDF) across the

entire dataset. This calculation emphasized terms that were

frequent in a specific document but rare across other

documents, thereby highlighting their importance.

Vectorizing text ensured that the machine learning model

could interpret and learn from textual data, facilitating tasks

such as classification, clustering, or regression based on

textual inputs. By converting text into meaningful numerical

features while preserving semantic information through TF-

IDF weighting, the vectorization process played a critical role

in enhancing the model's accuracy and interpretability. This

step bridged the gap between raw text data and numerical

inputs, enabling the subsequent stages of model training,

evaluation, and deployment to proceed effectively in the

context of natural language processing and text analytics

tasks.

F. Build and Train Model

Building and training the machine learning model was a

pivotal stage in the project, where the transformed data from

previous preprocessing steps were used to create a predictive

model. This phase involved selecting an appropriate

algorithm, configuring it with the preprocessed data, and

training it to learn patterns and relationships within the

dataset. The chosen algorithm for this task was Logistic

Regression, a well-established and interpretable classification

algorithm suitable for binary and multiclass classification

problems. Logistic Regression works by modeling the

probability of a certain class or outcome based on input

features. In the context of this project, Logistic Regression

was selected due to its simplicity, efficiency, and ability to

provide insights into feature importance.

Training the model involved fitting it to the preprocessed

training data (X_train_tfidf and y_train). This step was

executed by calling the fit method on the model object:

model.fit(X_train_tfidf, y_train). During training, the model

adjusted its parameters to minimize the prediction error and

maximize its ability to generalize to unseen data.

Building and training the model often involved an iterative

process of experimentation and refinement. This iterative

approach included adjusting hyperparameters, exploring

different algorithms, or incorporating additional features or

preprocessing techniques to enhance model performance.

Building and training the model was a foundational step that

leveraged the transformed textual data to create a predictive

tool capable of classifying or predicting outcomes based on

input features. This process integrated statistical learning

with computational techniques, enabling the model to learn

patterns and make informed decisions in real-world

applications of natural language processing and text

analytics.

V. EXPERIMENTAL SETUP

A. Logistic Regression

Logistic regression is a fundamental statistical technique used

primarily for binary classification tasks, where the objective

is to predict the probability that an observation belongs to one

of two possible classes. Unlike linear regression, which

predicts continuous numeric values, logistic regression

models the probability of the default class (often coded as 1)

using a logistic (sigmoid) function. This function maps any

real-valued input to a value between 0 and 1, which can be

interpreted as the probability of the observation being in the

positive class.

Figure 5 Logistic Regression

The output of logistic regression, therefore, is a probability

score that indicates the likelihood of an observation

belonging to a particular class. By default, predictions are

converted into discrete class labels based on a chosen

threshold, typically 0.5. This threshold can be adjusted

depending on the specific needs of the classification problem.

For instance, in medical diagnostics, a higher threshold might

be chosen to minimize false positives, whereas in fraud

detection, a lower threshold could be more appropriate to

capture more cases.

In practical applications, logistic regression's probabilistic

predictions allow for ranking instances by their likelihood of

belonging to a certain class. This capability is essential in

scenarios where decision-making involves prioritizing

actions based on risk assessment or resource allocation.

Extensions of logistic regression, such as multinomial logistic

regression for multi-class problems and ordinal logistic

regression for ordered categories, further enhance its utility

across diverse classification tasks. Overall, logistic regression

serves as a foundational tool in the fields of machine learning

and statistics, supporting a broad spectrum of applications

that require reliable binary classification capabilities.

B. Naïve Bayes

Naive Bayes is a probabilistic machine learning algorithm

based on Bayes' theorem, with a "naive" assumption of

independence among predictors (features). It's particularly

well-suited for classification tasks, especially when dealing

with large datasets. Despite its simplicity, Naive Bayes often

performs surprisingly well in many real-world applications.

The algorithm calculates the probability of a given data point

belonging to each class based on the feature values. It

assumes that the presence of a particular feature in a class is

independent of the presence of other features, which is where

the "naive" assumption arises. This simplification allows

Naive Bayes to handle a large number of features efficiently.

Figure 6 Naive Bayes

Naive Bayes comes in several variants, such as Gaussian

Naive Bayes (for continuous numerical data assuming a

Gaussian distribution), Multinomial Naive Bayes (for

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407643 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f636

discrete counts, like text classification with word counts), and

Bernoulli Naive Bayes (for binary/boolean features).

In practice, Naive Bayes is computationally efficient and can

be trained quickly even with large datasets. It's robust to

irrelevant features and performs well in multi-class prediction

tasks. However, the independence assumption may not hold

true in some cases, affecting its accuracy, especially when

features are highly correlated.

Naive Bayes is valued for its simplicity, efficiency, and good

performance in many classification problems, making it a

popular choice in various domains, including text

classification, spam filtering, sentiment analysis, and medical

diagnosis.

VI. RESULTS AND DISCUSSION

Firstly, some essential libraries are imported for data

processing, visualization, and machine learning, such as

numpy, pandas, matplotlib.pyplot, seaborn, nltk, and sklearn.

It sets up a workflow to load a dataset, split it into training

and testing sets, transform text data into numerical values

using TfidfVectorizer, build and train a logistic regression

model, and evaluate its performance using metrics like

accuracy, precision, recall, and F1 score, along with

visualizing the results using scikitplot.

A. Loading Dataset

The panda’s library is used to read a CSV file located on the

user's desktop. The file named AI_Human.csv is loaded into

a pandas DataFrame called df, which allows for easy

manipulation and analysis of the data contained in the CSV

file. This is a crucial step for preparing the data for further

processing and analysis in the machine learning workflow.

B. EDA

The df.head() function is used to display the first few rows of

the DataFrame df. This function is very useful for quickly

inspecting the structure of your dataset, including the column

names and the initial values.

 Text Generated

0
Cars. Cars have been around since they

became
0.0

1 Transportation is a large necessity in most 0.0

2 "America's love affair with its vehicles seem 0.0

3 How often do you ride in a car? Do you drive 0.0

4 Cars are a wonderful thing. They are perhaps. 0.0

The df.info() function was used to provide a summary of the

DataFrame df, revealing it contained 487,235 entries with

two columns: text and generated. It was noted that both

columns were fully populated with no missing values. The

df.shape function was utilized to confirm the dimensions of

the DataFrame, indicating it had 487,235 rows and 2

columns. The df.describe() function was applied to generate

descriptive statistics for the numeric generated column,

summarizing metrics such as count, mean, standard

deviation, minimum, maximum, and quartile values.

 generated

count 487235.000000

mean 0.372383

std 0.483440

min 0.000000

25% 0.000000

50% 0.000000

75% 1.000000

max 1.000000

a pie chart visualizing the distribution of values in the

generated column of the DataFrame df. The value_counts()

function was employed to count the occurrences of each

unique value in the generated column. A pie chart was then

plotted using matplotlib.pyplot. The pie chart's size was set to

8x6 inches, and the slices were colored in light green and sky

blue. Labels were applied to the slices to show the percentage

of each class, formatted to one decimal place.

Figure 7 Pie chart showing dataframe

Statistics about the generated column in DataFrame df were

printed. The total number of texts was reported as 487,235. It

was noted that 305,797 texts were identified as human-

written (0.0), while 181,438 texts were identified as AI-

generated (1.0).

 text generated

0
Cars. Cars have been around since
they became

0.0

1
Transportation is a large necessity

in most
0.0

2
"America's love affair with it's
vehicles seem.

0.0

3 How often do you ride in a car? 0.0

4
Cars are a wonderful thing. They

are perhaps o...
0.0

...

5998
\nOlder students within a school

system have t...
1.0

5999
\nPlaying a sport in a community
park is a gre...

1.0

6000 rows × 2 columns

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407643 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f637

C. Text Preprocessing

a histogram was plotted to visualize the distribution of scores

in the generated column of the DataFrame df. The plot was

created with sns.histplot() from the Seaborn library,

specifying 20 bins for granularity and including a kernel

density estimation (KDE) curve for smoothness. The figure

size was set to 10x6 inches using plt.figure(figsize=(10, 6)).

Finally, the plot was displayed using plt.show(), providing an

overview of how scores are distributed across the dataset.

Figure 8 Distribution of Generated Scores

a histogram was plotted to visualize the distribution of text

lengths. The plot was created using sns.histplot() from the

Seaborn library, specifying 20 bins for granularity and

including a kernel density estimation (KDE) curve for

smoothness. The figure size was set to 10x6 inches with

plt.figure(figsize=(10, 6)). The plot was titled "Distribution

of Text Lengths"

Figure 9 Distribution of text lengths

Figure 10 Confusion Matrix

D. Tokenization

The function process_text was designed to preprocess text by

converting it to lowercase using txt.lower(). Punctuation

marks were removed using str.maketrans('', '',

string.punctuation) and translate(translator). Additionally,

newline characters (\n) were eliminated with. replace('\n', '').

This method effectively cleaned the text, ensuring uniform

casing and removing special characters, preparing it for

subsequent analysis or modeling tasks. For instance, when

applied to the text at index 100 in DataFrame df, it

successfully transformed the text by lowering its case,

stripping away punctuation, and eliminating newline

characters.

E. Machine Learning

To assess the performance of the text classification model,

predictions (y_pred) were generated on the testing data

(X_test) using pipeline.predict(X_test). The accuracy and

effectiveness of the model were evaluated using

classification_report from sklearn.metrics, which provided

detailed metrics such as precision, recall, F1-score, and

support for each class (0.0 and 1.0), along with an overall

accuracy score. These metrics offered insights into how well

the model distinguished between human-written and AI-

generated texts, helping to gauge its reliability and suitability

for the intended application.

F. Loading Dataset

In the provided code snippet, the CSV file AI_Human.csv

located on the user's desktop was read using pd.read_csv()

from the pandas library. The data contained in the CSV file

was loaded into a pandas DataFrame df. the.head() function

was applied to the DataFrame df, which displayed the first

few rows of the dataset. This action allowed for a quick

inspection of the structure of the data, including column

names and initial values within each column. This initial

exploration provided an immediate overview of the dataset's

content and layout, facilitating early insights into its

characteristics before further analytical procedures were

undertaken.

 text generated

0
Cars. Cars have been around since they

became ...
0.0

1
Transportation is a large necessity in
most co...

0.0

2
"America's love affair with it's vehicles

seem...
0.0

3
How often do you ride in a car? Do you

drive a...
0.0

4
Cars are a wonderful thing. They are

perhaps o...
0.0

In [3], the shape of the DataFrame df was inspected using the

shape attribute, revealing that it contained 487,235 rows and

2 columns. This provided an immediate understanding of the

dataset's size and structure.

Figure 11 Count vs generated

G. Text Preprocessing

The Natural Language Toolkit (NLTK) library was imported,

along with specific modules for text preprocessing tasks. This

included importing stopwords from NLTK's corpus,

tokenizing words, and importing the WordNet Lemmatizer

for word normalization.

The WordNet dataset was downloaded using

nltk.download('wordnet'), confirming that the WordNet

package was already up-to-date. An attempt was made to

unzip the WordNet corpus file, which is typically not

necessary for regular NLTK operations. However, the

command was not recognized, indicating it might be specific

to certain environments or configurations.

A function text_preprocess was defined to preprocess text

data. The function removed punctuation and stopwords,

tokenized the text into words, and applied lemmatization to

normalize words. It returned the cleaned text as a joined

string of tokens, ready for further analysis or modeling.

The dataset df was shuffled using df.sample() with frac=1 to

randomize the order of rows, ensuring a varied distribution

for training and testing. The shuffled dataset was then

subsetted to select the first 20,000 rows (df_subset),

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407643 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f638

facilitating manageable data processing and quicker iterations

during development. we checked that our dataset df_subset

had 20,000 rows and included columns for original text,

cleaned text (clean_text), and whether each text was human-

written or AI-generated (generated). We imported necessary

tools from sklearn to help us turn text into numbers that a

computer can understand, train a model to make predictions,

and then evaluate how well our model performs. We set aside

the cleaned text as X and the information about whether texts

were human-written or AI-generated as y. We used a tool

called TfidfVectorizer to convert the cleaned text into a form

that our model can use. This transformation turns words into

numbers so the computer can analyze them. we divided our

dataset into two parts: one for teaching our model (X_train,

y_train) and one for testing how well it learned (X_test,

y_test).

VII. CONCLUSION

This study conducted a thorough investigation into

classifying text data, specifically distinguishing between

human-written and AI-generated content using machine

learning methods. The research commenced with rigorous

data preprocessing, encompassing tokenization, removal of

stopwords, punctuation, and lemmatization to refine the

dataset for analysis. Exploratory data analysis (EDA)

illuminated distinct patterns in text length distributions and

category labels, revealing significant differences between

human and AI-generated texts. Two primary classification

models, Naive Bayes and Logistic Regression, were

extensively trained and evaluated on a balanced dataset of

6,000 samples evenly split between the two categories.

Evaluation metrics including accuracy, precision, recall, and

F1-score demonstrated Logistic Regression's superior

performance, achieving an accuracy of 98% on a separate test

set. High precision, recall, and F1-scores (98%, 95%, and

97%, respectively) for AI-generated texts underscored the

model's robustness in accurately identifying such content

with minimal misclassifications. Despite promising

outcomes, the study acknowledges challenges like dataset

bias and evolving AI technologies, suggesting future research

directions such as ensemble methods or neural networks to

enhance classification accuracy across diverse datasets and

text types. Overall, this research highlights the effectiveness

of advanced text preprocessing techniques and Logistic

Regression as a reliable model for classifying text into human

and AI-generated categories, with implications for improving

content moderation and combating misuse of AI-generated

content.

REFERENCES

[1]. P. Stone, R. Brooks, E. Brynjolfsson, R. Calo, O. Etzioni,

G. Hager, J. Hirschberg, S. Kalyanakrishnan, E. Kamar, S. Kraus et

al., “Artificial intelligence and life in 2030: the one-hundred-year

study on artificial intelligence,” arXiv preprint arXiv:2211.06318,
2022.

[2]. P. S. Park, S. Goldstein, A. O’Gara, M. Chen, and D.

Hendrycks, “Ai deception: A survey of examples, risks, and
potential solutions,” arXiv preprint arXiv:2308.14752, 2023

[3]. E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C.

Finn, “Detectgpt: Zero-shot machine-generated text detection using

probability curvature,” 2023.

[4]. N. Maloyan, , B. Nutfullin, E. Ilyshin, and and,

“DIALOG-22 RuATD generated text detection,” in Computational

Linguistics and Intellectual Technologies. RSUH, jun 2022.

[Online]. Available: https://doi.org/10.28995%2F2075-7182-2022-

21-394-401

[5]. N. Fairclough, “Discourse and text: Linguistic and

intertextual analysis within discourse analysis,” Discourse &
society, vol. 3, no. 2, pp. 193– 217, 1992.

[6]. G. Jawahar, M. Abdul-Mageed, and L. V. S. Lakshmanan,

“Automatic detection of machine generated text: A critical survey,”
2020

[7]. S. Gehrmann, H. Strobelt, and A. M. Rush, “Gltr:
Statistical detection and visualization of generated text,” 2019.

[8]. R. Goebel, A. Chander, K. Holzinger, F. Lecue, Z. Akata,

S. Stumpf, P. Kieseberg, and A. Holzinger, “Explainable ai: The

new 42?” in Machine Learning and Knowledge Extraction, A.

Holzinger, P. Kieseberg, A. M. Tjoa, and E. Weippl, Eds. Cham:
Springer International Publishing, 2018, pp. 295–303

[9]. H. Alamleh, A. A. S. AlQahtani, and A. ElSaid,

“Distinguishing humanwritten and chatgpt-generated text using

machine learning,” in 2023 Systems and Information Engineering
Design Symposium (SIEDS), 2023, pp. 154–158.

[10]. G. Gritsay, A. Grabovoy, and Y. Chekhovich, “Automatic

detection of machine generated texts: Need more tokens,” in 2022
Ivannikov Memorial Workshop (IVMEM), 2022, pp. 20–26.

[11]. C. H. Ng, H. S. Abuwala, and C. H. Lim, “Towards more

stable lime for explainable ai,” in 2022 International Symposium on

Intelligent Signal Processing and Communication Systems
(ISPACS), 2022, pp. 1–4.

[12]. C. Tantithamthavorn, J. Jiarpakdee, and J. Grundy,
“Explainable ai for software engineering,” 2020.

[13]. S. Chakraborty, A. S. Bedi, S. Zhu, B. An, D. Manocha,

and F. Huang, “On the possibilities of ai-generated text detection,”
2023.

http://www.ijcrt.org/

