IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Relatively Prime Edge Detour Domination Number Of Graphs

¹A. MAHALAKSHMI, ²K. RAMALAKSHMI, ³V. AMMACHAR ¹Assistant Professor, ²Assistant Professor, ³M.Phil. Scholar Department of Mathematics Sri Sarada College for Women (Autonomous), Tirunelveli, India.

Abstract: In this paper, we introduce the new concept relatively prime edge detour domination number of a graph and obtain the relatively prime edge detour domination number for some well known graphs.

Key words: Domination, Edge detour domination, Relatively prime detour domination, Relatively prime edge detour domination.

I.Introduction

The concept of domination was introduced by Ore and Berge [5]. Let G be a finite, undirected connected graph with neither loops nor multiple edges. A subset D of V(G) is a dominating set of G if every vertex in V - D is adjacent to at least one vertex in D. The minimum cardinality among all dominating sets of G is called the domination number $\gamma(G)$ of G. For basic definitions and terminologies, we refer Harary [1].

For vertices u and v in a connected graph G, the detour distance D(u, v) is the length of longest u - v path in G. A u - v path of length D(u, v) is called a u - v detour. A subset S of V is called a detour set if every vertex in G lies on a detour joining a pair of vertices of S. The detour number dn(G) of G is the minimum order of a detour set and any detour set of order dn(G) is called a detour basis of G. These concepts were studied by chartrand [2].

A subset S of V is called an edge detour set if every edge in G lies on a detour joining a pair of vertices of S. The edge detour number $dn_1(G)$ of G is the minimum order of its edge detour set and any edge detour set of order dn_1 is an edge detour basis. A graph G is called an edge detour graph if it has an edge detour set. Edge detour graphs were introduced and studied by Santhakumaran and Athisayanathan [6].

A set $S \subseteq V$ is said be relatively prime detour dominating set of a graph G if it is a detour set and a dominating set with at least two elements and for every pair of vertices u and v such that $(\deg(u), \deg(v)) = 1$. The minimum cardinality of a relatively prime detour dominating set is called the relatively prime detour domination number of a graph G and is denoted by $\gamma_{rpdn}(G)$. This concept were introduced by C. Jayasekaran and L.G. Binoja [3].

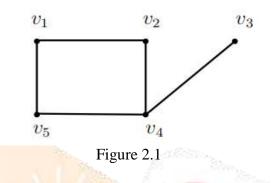
The helm graph H_n is a graph obtained from wheel W_n by attaching a pendent edge to each rim vertex. It contains three types of vertices, the vertex of degree n called apex, n pendant vertices and n vertices of degree four.

The complete bipartite graph $K_{1,p}$ is called a Star. The vertex of degree p - 1 in $K_{1,p-1}$ is called its Center.

II.Relatively Prime Edge Detour Domination Number of Graphs

Definition 2.1: A set $S \subseteq V$ is said to be relatively prime edge detour dominating set of a graph G if it is a edge detour set and a dominating set with at least two elements and for every pair of vertices u and v such that $(\deg(u), \deg(v)) = 1$. The minimum cardinality of relatively prime edge detour dominating set is called the relatively prime edge detour domination number of a graph G and is denoted by $\gamma_{rped}(G)$. If the relatively prime edge detour dominating sets does not exist then the relatively prime edge detour domination number is zero.

Example 2.2: $S = \{v_1, v_3\}$ is a edge detour dominating set. Also, $(\deg(v_1), \deg(v_3)) = 1$. Therefore, S is a relatively prime edge detour dominating set. Hence, $\gamma_{rped}(G) = 2$.



Theorem 2.3:

Every end vertex of a graph G belong to every relatively prime edge detour dominating set of G. **Proof:**

Every relatively prime edge detour dominating set is a dominating set of G. Therefore, every end vertex of a graph G belongs to every relatively prime edge detour dominating set of G.

Theorem 2.4:

If G is a Path
$$P_n$$
 of order $n \ge 2$, then $\gamma_{rped}(P_n) = \begin{cases} 2 & \text{if } 2 \le n \le 4 \\ 3 & \text{if } 5 \le n \le 7 \\ 0 & \text{otherwise} \end{cases}$

Proof:

Let v_1, v_2, \ldots, v_n be a path P_n .

Case 1: $2 \le n \le 4$

Let S be an edge detour dominating set of P_n . By theorem 2.3, $\{v_1, v_n\} \subseteq S$. Clearly $\{v_1, v_n\}$ is a minimum edge detour dominating set of P_n and $(\deg(v_1), \deg(v_n)) = 1$. Therefore, $S = \{v_1, v_n\}$ is a minimum relatively prime edge detour dominating set. Hence, $\gamma_{rped}(P_n) = 2$.

Case 2: $5 \le n \le 7$

Sub case i): If n = 5 and 6. In this case, $S = \{v_1, v_3, v_n\}$ is a minimum edge detour dominating set. Also, $(\deg(v_1), \deg(v_3)) = (\deg(v_3), \deg(v_n)) = (\deg(v_1), \deg(v_n)) = 1$. Therefore, S is a minimum relatively prime edge detour dominating set. Hence, $\gamma_{rped}(P_n) = 3$.

Sub case ii): If n = 7. $S = \{v_1, v_4, v_7\}$ is a minimum edge detour dominating set. Also, $(\deg(v_1), \deg(v_7)) = (\deg(v_1), \deg(v_4)) = (\deg(v_4), \deg(v_7)) = 1$. Therefore, S is a minimum relatively prime edge detour dominating set. Hence, $\gamma_{rped}(P_7) = 3$.

Case 3: $n \ge 3$

Since the dominating set of P_n containing at least any two internal vertices v_i, v_j ; $3 \le i \ne j \le n - 2$ and $(\deg(v_i), \deg(v_j)) = 2$. Therefore, relatively prime edge detour dominating set does not exist. Hence, $\gamma_{rped}(P_n) = 0$.

Theorem 2.5:

If G is a Star $K_{1,n-1}$ ($n \ge 3$), then $\gamma_{rped}(G) = n - 1$.

Proof:

Let G be the Star $K_{1,n-1}$ with $V(K_{1,n-1}) = \{v, v_i : 1 \le i \le n-1\}$ and $E(K_{1,n-1}) = \{vv_i : 1 \le i \le n-1\}$.

Let S be the edge detour dominating set of G. By theorem 2.3, $\{v_1, v_2, ..., v_{n-1}\} \subseteq S$. Also, $\{v_1, v_2, ..., v_{n-1}\}$ is a minimum edge detour dominating set of G and $(\deg(v_i), \deg(v_j)) = 1$ for $i \le i \ne j \le n-1$. Therefore, $S = \{v_1, v_2, ..., v_{n-1}\}$ is a minimum relatively prime edge detour dominating set. Hence, $\gamma_{rped}(G) = n-1$.

Theorem 2.6:

If G is a Bistar $B_{m,n}$, then $\gamma_{rped}(G) = m + n$.

Proof:

Let $G = B_{m,n}$ with $V(G) = \{v, v_i, u, u_j : 1 \le i \le m, 1 \le j \le n\}$ and $E(G) = \{uv, uu_j, vv_i : 1 \le i \le m, 1 \le j \le n\}$. Therefore, |V(G)| = m + n. Let S be a edge detour dominating set of G. By theorem 2.3, $\{v_i, u_j : 1 \le i \le m, 1 \le j \le n\} \subseteq S$. Clearly, $\{v_1, v_2, \dots, v_m, u_1, u_2, \dots, u_n\}$ itself is a minimum edge detour dominating set of G. Also, $(\deg(v_i), \deg(v_j)) = (\deg(u_x), \deg(u_y)) = (\deg(v_i), \deg(u_x)) = 1; 1 \le i \ne j \le m, 1 \le x \ne y \le n$. Therefore, $S = \{v_1, v_2, \dots, v_m, u_1, u_2, \dots, u_n\}$ is a relatively prime edge detour dominating set. Hence, $\gamma_{rped}(G) = m + n$.

Theorem 2.7:

If G is a Complete graph $K_p(p \ge 2)$, then $\gamma_{rped}(G) = \begin{cases} 2 & if \ p = 2 \\ 0 & otherwise \end{cases}$.

Proof:

Case 1: If p = 2.

Then, $\{v_1, v_2\}$ is the relatively prime edge detour dominating set and $\gamma_{rped}(G) = 2$.

Case 2: If p > 2.

Every three element subset of V(K_p) is an edge detour dominating set. Let $S = \{v_i, v_j, v_k\}$. Since, any two vertices in K_p is adjacent and deg(v_i) = p - 1 for all *i*. Also, $(deg(v_i), deg(v_j)) = (p - 1, p - 1) = p - 1 = (deg(v_i), deg(v_k)) = (deg(v_j), deg(v_k))$. Therefore, $\{v_i, v_j, v_k\}$ is not a relatively prime edge detour dominating set. Hence, $\gamma_{rped}(G) = 0$.

Theorem 2.8: If G is the complete bipartite graph $K_{m,n}$ then,

 $\gamma_{rped}(G) = \begin{cases} 2 & if \ m = n = 1 \ and \ (m, n) = 1 \ where \ m, n \ge 2 \\ n & if \ m = 1 \ ; \ n \ge 2 \ (or) \ m \ if \ n = 1 \ ; \ m \ge 2 \\ 0 & if \ (m, n) \ne 1 \ and \ m, n \ge 2 \end{cases}$

Proof:

Let $G = K_{m,n}$ with bi-partition $V_1 = \{a_1, a_2, ..., a_m\}$ and $V_2 = \{b_1, b_2, ..., b_n\}$ and |V(G)| = m + n.

Case 1: If m = n = 1, then $G \cong K_2$ and $\gamma_{rped}(G) = 2$.

Case 2: If m = 1 and $n \ge 2$ or n = 1 and $m \ge 2$, then $K_{m,n} = K_{1,n}$ or $K_{m,1}$. v_2 or v_1 is a minimum edge detour dominating set of G.

Hence, $\gamma_{rped}(G) = \begin{cases} n & \text{if } n \ge 2, \ m = 1 \\ m & \text{if } m \ge 2, \ n = 1 \end{cases}$

Case 3: $m = n \ge 2$. A minimum edge detour dominating set $S = \{u_i, u_{i+1}, v_j\}$; $(\deg(u_i), \deg(v_j)) = (\deg(u_{i+1}), \deg(v_j)) = (m, n)$ and $(\deg(u_i), \deg(u_{i+1})) = (m, m) \ne 1$. Therefore, S is not a relatively prime edge detour dominating set. Hence, $\gamma_{rped}(G) = 0$.

Theorem 2.9:

If G is a Helm graph H_n , then $\gamma_{rped}(G) = n$.

Proof:

Let $v_1, v_2, ..., v_{n-1}, v_1$ be the cycle C_n . Add a vertex v which is adjacent to v_i ; $1 \le i \le n-1$. The resultant graph is the Wheel W_p . For, $1 \le i \le n-1$ add u_i which is adjacent to v_i . The resultant graph is

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882 the Helm graph H_n . Also, |V(G)| = 2n - 1; deg(v) = n - 1; deg $(v_i) = 4$; deg $(u_i) = 1$ for each i = $1, 2, \ldots, n-1$.

Let $S = \{v, u_1, u_2, \dots, u_{n-1}\}$. Then, S is a minimum edge detour dominating set of H_n . Also, $(\deg(v), \deg(u_i)) = (n-1, 1) = 1; 1 \le i \le n-1$ and $(\deg(u_i), \deg(u_i)) = 1; 1 \le i \ne j \le n-1$. Therefore, S is a relatively prime edge detour dominating set. Hence, $\gamma_{rped}(G) = n$.

Theorem 2.10:

For $n \ge 2$, $C_n \odot K_1$, then $\gamma_{rped}(C_n \odot K_1) = n$.

Proof:

Let $v_1, v_2, \ldots, v_n, v_1$ be the cycle. For $1 \le i \le n$, add vertex u_i which is adjacent to v_i which is the graph $C_n \odot K_1$. Therefore, $|V(C_n \odot K_1)| = 2n$. Also, $\deg(u_i) = 1$ and $\deg(v_i) = 3$.

Let $S = \{u_1, u_2, \dots, u_n\}$. Then, S is a minimum edge detour dominating set of $C_n \odot K_1$. Also, $(\deg(u_i), \deg(u_i)) = 1$; $1 \le i, j \le n$. Therefore, S is a minimum relatively prime edge detour dominating set. Hence, $\gamma_{rped}(C_n \odot K_1) = n$.

Theorem 2.11:

For $n \ge 2$, $\gamma_{rned}(P_n \odot K_1) = n$.

Proof:

Let v_1, v_2, \ldots, v_n be the path P_n . Add a vertex u_i which is adjacent to v_i for $1 \le i \le n$. The resultant graph $P_n \odot K_1$, $|V(P_n \odot K_1)| = 2n$. Also, $\deg(v_1) = \deg(v_n) = \deg(u_i) = 2$; $1 \le i \le n$ and $\deg(v_i) = 2$ 3; $2 \le j \le n - 1$.

Let S be a edge dominating set of $P_n \odot K_1$. By theorem 2.3, the end vertices $\{u_1, u_2, \dots, u_n\}$ itself is a minimum relatively prime edge detour dominating set. Hence, $\gamma_{rped}(P_n \odot K_1) = n$.

REFERENCES

[1] Buckley. F and Harary. F, "Distance in Graphs" (Addision-Weseely, Reading MA, 1990).

[2] Chartrand, G, Johns, L and Zang, P "Detour Number of graph", Utilitas Mathematics, 64 (2003) 97-113.

[3] Javasekaran. C, Binoja. L. G, "Relatively Prime Detour Domination Number of a Graph", Mathematical Statistician and Engineering Applications, Vol. 70 No. 2, ISSN: 2094-0343 (2021), 758-763.

[4] Mahalakshmi. A, Palani. K and Somasundaram. S, "Edge Detour Domination Number of Graphs". Proceedings of International Conference on Recent Trends in Mathematical Modelling. ISBN 13-978-93-92592-00-06 (2016), 135-144.

[5] Ore and Berge "Theory of graphs", American Mathematical Soci-ety, Colloquim Publications Volume XXXVIII, 1962.

Santhakumaran. A. P and Athisayanathan. S "Edge detour graphs", Journal of Combinatorial [6] Mathematics and Combinatorial Com-puting 69 (2009) 191-204.