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Abstract 

The incorporation of artificial intelligence (AI) into the field of prosthetics has resulted in a paradigm change, 

accelerating the development of advanced and intelligent bio-prostheses. This study investigates the design and 

development of an AI-enhanced bio-prosthetic arm with the goal of not only recovering lost limb functions but 

also increasing human potential through the seamless integration of human-machine interactions. The suggested 

bio-prosthetic arm combines cutting-edge technologies, such as advanced robotics, AI algorithms, and biofeedback 

mechanisms, to build a smart and adaptive prosthetic system.The fundamental goal of this research is to improve 

the user experience by offering a bio-prosthetic arm that closely resembles the complicated movements and 

sensory feedback of a genuine limb. The artificial intelligence component of the prosthetic arm is meant to analyse 

neural signals from the user's brain, enabling .  

 

The development of bio prosthetic arms enhanced by artificial intelligence (AI) represents a significant leap in the 

field of prosthetics, aiming to restore functional capability and improve the quality of life for individuals with 

upper limb loss. This review paper explores the evolution, current state-of-the-art, and future prospects of AI-

driven prosthetic limbs. 

The integration of AI technologies such as machine learning, neural networks, and computer vision has 

revolutionized prosthetic design by enabling advanced functionalities previously thought unattainable. AI 

algorithms facilitate real-time processing of sensory feedback from various sensors embedded within the prosthetic 

limb, allowing for natural and intuitive control. These sensors include electromyography (EMG), which detects 

muscle signals, and tactile sensors that provide sensory information crucial for grip strength and object 

manipulation. 

Moreover, AI enables adaptive learning capabilities, where the prosthetic arm learns and adjusts its movements 

based on the user's intentions and environmental cues. This adaptive feature not only enhances usability but also 

promotes user acceptance and satisfaction. 

Technological advancements in materials science have further complemented AI-driven prosthetic development, 

with the use of lightweight and durable materials improving comfort and reducing the burden on users. 

Additionally, developments in 3D printing have facilitated personalized prosthetic designs that optimize fit and 

functionality for individual users. 
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Ethical considerations surrounding AI in prosthetics, including data privacy, autonomy, and equitable access, are 

also critical areas of discussion. As AI technologies continue to evolve, addressing these ethical concerns becomes 

paramount to ensure safe and inclusive deployment. 

In conclusion, AI-driven bio prosthetic arms represent a promising frontier in medical technology, offering 

unprecedented capabilities to enhance limb functionality and integrate seamlessly into users' lives. This review 

paper aims to provide a comprehensive overview of the design principles, technological innovations, challenges, 

and future directions in AI-enhanced prosthetic arms, highlighting their transformative potential in rehabilitation 

and prosthetic care. 

Introduction 

 

Human is the most intelligent creature in the planet for their brain power and neural network. The human brain is 

extremely complex with more than 80 billion neurons and trillion of connections [1]. Simulation scales can array 

from molecular and genetic expressions to compartment models of subcellular volumes and individual neurons to 

local networks and system models [2]. Deep Neural Network nodes are an over simplification of how brain 

synapses work. Signal transmission in the brain is dominated by chemical synapses, which release chemical 

substances and neurotransmitters to convert electrical signals via voltage-gated ion channels at the presynaptic cleft 

into post-synaptic activity. The type of neurotransmitter characterizes whether a synapse facilitates signal 

transmission (excitatory role) or prevents it (inhibitory role). Currently, there are tenths of known 

neurotransmitters, whereas new ones continuously emerge with varying functional roles. Furthermore, dynamic 

synaptic adaptations, which affect the strength of a synapse, occur in response to the frequency and magnitude of 

the presynaptic signal and reflect complex learning/memory functions, (Spike time dependent plasticity) [3, 4]. 

Recently, evidence has found that surrounding cells, such as glia cells that are primarily involved in ‘feeding’ the 

neurons, can also affect their function via the release of neurotransmitters. This new vision of “tripartite synapses,” 

composed of perisynaptic glia in addition to pre- and postsynaptic terminals certainly makes this one of the most 

exciting discoveries in current neurobiology. 

 

 

Functional loss from amputation, spinal cord damage, brachial plexus injury, or traumatic brain injury causes a 

loss of brain-to-extremity link, resulting in weakened extremities that cannot function as well as the healthy limb.  

 

Prosthetics, orthotic devices, and rehabilitation aids were used to replace lost structure and function in the 

extremities. Conventional prostheses are mechanical devices that only perform basic functions. Orthosis supports 

weaker portions without fully replicating the deleted area. Biomechatronics is a sub-discipline within 

mechatronics. The development of mechatronic systems to aid or repair the human body has taken the concept of 

prosthetics and orthotics to a new level. The biomechatronic system comprises four units: 

 

Biosensors sense human intents through biological reactions in the neurological and muscle systems. 

The controller works as a translator between biological and electrical structures,  

 

monitors the operations of the biomechatronic device. Mechanical sensors collect data about the biomechatronic 

device and send it to the biosensor or controller. The actuator is a robot mechanism that generates force or 

movement to support or replace human bodily functions. Biomechatronics applications include orthotics, 

prostheses, exoskeletons, rehabilitation robots, and neuroprostheses. Robots are intelligent gadgets that can 

perform cyclic movements in rehabilitation, control introduced forces, duplicate required forces in repeating 

exercises, and provide more precision in various conditions.  
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Basic concept of AI and machine learning (ML) 

 

 

A. Machine learning   

Machine learning, which combines mathematics, statistics, and computer science, is advancing the field of 

artificial intelligence. It is the study of computer algorithms that grow and develop via experience. This is 

a subset of AI, as illustrated in Figure 1. ML algorithm methods Generally classified into two types: 

supervised and uncontrolled learning.  

 

B. Supervised instruction 
  

The process of forecasting a model using a learning function to map the known output onto a trained range of 

inputs and identify patterns in fresh data sets. 

Example 1: To forecast the trained model for the microprocessor knee joint Using multiple input or labelled data 

of the knee angle change in various subphases of the gait cycle and applying the phase-dependent pattern 

recognition approach to fresh amputees to forecast new data.  

 

Pattern recognition is an automatically recognition of pattern applied in data analysis, signal processing etc. when 

the pattern of algorithm trained from labeled data that is supervised learning. When the model of algorithm is 

fruitfully trained, the model can be used for the prediction of a new data. The ultimate goal of this ML is to develop 

a successful predictor function. The models of discrete or categorical categories of dependent variables are known 

as classification algorithm and with continuous value known as regression algorithm. Three basic steps followed 

to finalize a model are training, validating and application of algorithm to new data. Algorithm used for supervised 

learning are support vector machines, linear regression, linear discriminant analysis 

(LDA)etc.Thisiserrorbaslearning. 

 

 

 
 

 

- Relationship between artificial intelligence (AI), machine learning (ML) and deep learning (DL). 

 

 

 
 

 

Schematic diagram of flow of information with bento arm 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                               © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882 

IJCRT2407377 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d199 
 

The artificial intelligence is rewarded or penalised based on the actions that the agent takes. The environment 

instantly returns to evaluate the previous action as the reward. An agent's objective is to maximise the reward 

given the collection of acts. The agent uses the exploration and exploitation principle to determine the best course 

of action and potential rewards. Exploitation makes use of previously discovered information to obtain rewards, 

whereas exploration seeks for and gathers additional information from the environment.  

This type of machine learning combines AI and supervised and unsupervised learning techniques. It makes use of 

representation learning in conjunction with artificial neural networks (ANNs). Inspired by the neural network of 

the human brain, ANN system of networks whether the ANN is static and symbolic while the human brain network 

is dynamic (Plastic) and analogue. It is capable of learning, remembering, extrapolating, and modelling the 

biological nervous system on cue. When it comes to solving issues with pattern recognition, matching, clustering, 

and classification, ANNs work better. The input layer of an ANN can serve as the input layer for a subsequent 

output of a simple network of neural systems. The ANN is composed of three conventional layers: input, output, 

and hidden.  

 

 
 

 

The methods or techniques used for the AI are classifier and prediction. Classifier is an algorithm that implements 

classification; the classifiers are Perceptron, Naïve Bayes, Decision trees, Logistic regression, K nearest Neighbor, 

AANN/DL and support vector machine [24]. Perceptron is the basic building block of the neural network it 

breakdown the complex network to smaller and simpler pieces. The classifier used in the myoelectric prosthetic 

hand is LDA classifier, Quadratic discriminant classifier and Multilayer perceptron neural network with linear 

activation functions etc. LDA (linear discriminant classifier) is a simple one that helps to reduce the dimension of 

the algorithm for application of neuralnetwork model. Prediction is a method to predict a pattern an output noise 

free data with a model from input data in hidden layer. Examples: EMG CNN based prosthetic hand, EGG based 

Mind controlled prosthesis with sensory feedback, robotic arm, exoskeleton Orthosis. 

 

The use of artificial intelligence in prosthesis control has grown significantly, allowing amputees to use their 

devices in more convenient ways. 

A system could operate more in line with the intended output with the help of adaptive controlling.  

 

by using a feedback mechanism to modify the input. The most recent development in the artificial intelligence-

assisted control system was the introduction of a mind-controlled limb, which is a form of myoelectric controlling. 

A prosthetic limb that is modular in nature and can be fully controlled by brain implants has been developed 

through a collaborative effort between the Pentagon and Johns Hopkins Applied Physics Laboratory (APL). The 

prosthetic would even allow for the restoration of tactile sensation by returning electrical impulses from the limb 

to the sensory cortex.  

A multilayer artificial neural network (ANN)-based model was suggested by Chang et al. (2009) to determine the 

critical association between the intrinsic impaired neuromuscular  activities and extrinsic gait behaviours of 

individuals with spina bifida (SB) [26].  The application of AI in orthotics and prosthetics is broken down into 

different subparts based on the affected region, such as upper and lower extremity orthoses and prostheses, 

rehabilitation aids such motorised mobility devices, and lower extremity prostheses and orthoses.  

 

Artificial intelligence is employed in upper limb prosthetics through a variety of signals, sensors, controllers, and 

algorithms to provide both direct and indirect control from a neural network. The two forms of humans are the 

source of the control signals.  

to perform electromyography (EMG) and electroencephalograms (EEG) in order to operate the upper extremity 

prosthesis. Previous attempts to control prosthetic elements voluntarily have centred around the use of 

electromyography (EMG) signals from voluntary muscle groups. The majority of this work has been focused on 

upper extremity prosthetic control systems. The USSR unveiled the first powered hand myoelectric prosthesis for 

sale in 1960 [27]. By using an EMG pattern recognition based control technique, myoelectric prosthesis with EMG 
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control has advanced. This approach allows the user to control the prosthesis with multiple degrees of freedom. 

The most advanced and developed neural machine interface technology was TMR or targeted muscle 

reinnervation. To obtain sufficient myoelectric pattern information for pattern recognition control in a 

multifunctional prosthesis, multi-channel myoelectric recordings are required. The quantity and arrangement of 

electrodes in a multifunctional prosthesis would mostly depend on the number of movement classes required and 

the number of An amputee's remaining muscles can be used for myoelectric control. In the case of myoelectric 

transradial prostheses, the EMG signals are obtained from the residual muscles using a set of bipolar electrodes 

(8–16). Eight of the electrodes are evenly distributed around the proximal part of the forearm, while the remaining 

four electrodes are positioned on the distal end. The severed arm's elbow was fitted with a sizable round electrode 

as a ground. For acquisition of EMG signal 50 Hz-60 Hz can be used to remove or reduce more low-frequency to 

increase the control stability of a multifunctional myoelectric prosthesis [32]. EMG feature extraction is performed 

on windowed EMG data, all EMG recordings channels are segmented into a series of analysis windows either with 

or without time overlap (WL (window length) is 100-250 ms) 

 

 
 

Process of EMG pattern recognition control. 

 

 
 

 

(Windowing techniques, time to process each window analysis is ‘t’ and decisions (d1, d2, d3). In adjacent 

windows the processing time is less and the classifier is idle most of the time but in overlapping windows increase 

frequency of class decision because the analysis window slides with small increment (inc), the amount of overlap 

is equal to processing time which help the controller to process next class decision before the previous decission 

has been completed) 

 

feature matrix (L × C × W, where L, C, and W are the number of features, the number of channels, and the number 

of analysis windows, respectively) from the training set is provided to a classifier for training shown in Figure 7. 

Example: The features extracted from four channels of surface EMG in each window is 44 and the data analyzed 

for the three windowed length, the EMG feature matrix for this situation (L × C × W = 44 × 4 × 3 i.e. L = 44, 

C = 4, W = 3). 

The aim of pattern recognition based classifier is to discriminate the intended movements from the EMG 

recordings as accurately as possible. Many classification techniques have been investigated, including linear 
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discriminate analysis, Bayesian statistical methods, artificial neural networks, and fuzzy logic [34, 35]. The LDA 

classifier is much simpler to implement and much faster to train without compromising the accuracy (>93%). Then 

the performance of a trained classifier in identifying a movement is evaluated using the testing data set and 

measured by the classification accuracy, which is defined as: 

 

 

Number correctly classified samples x100% 

 Total number of testing samples × 

 

 

 
 

 

EMG windowing in continuous feature extraction. Size of successive window for analysis is L, the sEMG data for 

classification is divided into C segments for every L that is the length of integrated samples as a feature extraction 

and the start point is shifted every S. 

 

 

 
a. Pattern recognition is able to classify different movement patterns, but only in sequence, which limits 

multifunctional control. b. Regression control is able to identify different movements at the same time, leading to 

more intuitive prosthetic control 

 

 
 

Targeted muscle reinnervation (TMR) 

 

 

Another advanced technique to control the multifunctional limb is Virtual reality (VR) based platforms have been 

developed for the purposes of development and performance quantification of multifunctional myoelectric 

prosthesis control system These VR platforms are designed to create an efficient, flexible, and userfriendly 

environment for prosthetic control algorithm development in the laboratory, application in a clinical setting, and 

eventual use in an embedded system. The major function modules of this platform include multi-electrode EMG 
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recording (up to 16 channels), classifier training and testing in offline, virtual and physical prosthesis control in 

real time to regulate performance Apart from EMG signal the Electroencephalography (EEG) is the widely used 

non-invasive method by placing the electrode on the scalp for picking brain signal that has been utilized in brain 

machine interface (BCI/BMI) applications. It has high temporal resolution (about 1 ms) in comparison with other 

brainwave measurements such as electrocorticograms (ECoGs), magneto encephalograms functional magnetic 

resonance imaging (fMRI) and near-infrared spectroscopy (fNIRS). The advanced prostheses may best control by 

EEG signal with BCI, connected by ANN. The neural signals associated with arm movements as control signals 

of artificial neuroprosthesis collected from either the cortex of brain directly or from residual nerves. The diagram 

of EEG based control and EMG pattern recognition based control in utilized in upper extremity prosthesis is shown 

in schematic. 

 
Virtual reality system (VR), subjects can operate a simulated prosthetic arm to interact with virtual objects. 

Multiple input modalities such as motion tracking systems and EMG/EEG electrodes provide maximum flexibility 

when evaluating different control approaches. Figure shows a subject operating a prosthetic arm prototype in VR 

(right side). Subject controls the arm via real-time motion tracking (left side), and 3-D visual feedback is provided 

via stereoscopic goggles for closed loop operation 

 
Brain computer Interface (BCI), controlling prosthetic and orthotics devices. 

 

 

Applying electrical stimulation to a paralysed nerve or muscle in order to restore or achieve function is known as 

functional electrical stimulation, or FES. FES is most frequently used with task-specific practice in neuro 

rehabilitation.  

 

One typical orthotic substitution example is the neuroprosthesis [45]. Adaptive control can be used to both feed 

forward and feed backward controllers. A control system can be open loop, also known as feed forward control, 

closed loop, or feed backward control. In closed-loop FES, joint or muscle position sensors are used to enable 

increased reactivity to muscle fatigue or to abnormalities in the surroundings. In open-loop controlled FES, the 

electrical stimulator regulates the output.  

 

Electrodes act as interfaces between the electrical stimulator and the nervous system. The FES utilizes electrical 

current to stimulate muscle contraction so that the paralyzed muscles can start functioning again. The desired 

purpose is to stimulate a motor response (muscle contraction) through activation of a specific group of nerve fibers, 

typically using fibers of peripheral nerves. This may be achieved by the activation of motor efferent nerve fibers 

showed 
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DESIGN OF  EXTERNALLY POWERED     PROSTHETIC HANDS 

 
Several factors delayed progress toward creatinga multi-DOF, EMG-controlled hand. One common requirement 
for the creation of a hand prosthesis is that it must be roughly the same size and weight as the human hand. 
Ideally, all components would be contained inside the palm. This type of intrinsic actuation leads to a severe 
reduction in the allow- able DOF of the prosthesis; the size of the motors, sensors, and additional electrical 
components would exceed size and weight restrictions if more than one DOF were allowed.9 Currently, there are 
prosthetic hands controlled with EMG capable of moving with up to 20 DOF and a thumb with four DOF. The 
tradeoff is a large increase in the number of motors required (in this case, 11) and, consequently, the weight of the 
prosthesis.10 The most advanced, com- mercially available prosthesis operated by EMG is the i-LIMB Hand from 
Touch Bionics.11 The i- LIMB uses implantable EMG electrodes and allows each finger to be actuated 
independently to perform key, power, and precision grips as well as the index finger pointing motion. 

As design methods improved, researchers be- gan identifying the types of motion that would be most crucial for 

performing activities of daily living (ADL). Five grasp patterns were initially identified as the most important to 

the functional capabilities of a prosthetic hand: pinch grasp (used to hold small objects), lateral grasp (used to hold 

a key), hook grasp (used for carrying items such as books or briefcases), spherical grasp (thumb and fingers grasp 

a spherical object), and cylindrical grasp (thumb and fingers grasp a cylindrical object).6 Three additional important 

grasps were later identified: the flattened hand (for holding large surface objects), the central- ized grip (used to 

hold items such as eating utensils), and wrist flexion.14–17 The eight most important grip patterns for performing 

ADL are shown in Figure. 

 

 
 

- Mechanical Linkage Designs 

A common method for enhancing DOF in a prosthesis is to decrease the number of required actuators (thereby 

reducing the required space for motors and the weight of the prosthesis) by actuating multiple hand components 

at the same time. It is recognised that the finger joints function through linked rotation rather than separate motion. 

Mechanical linkage designs are the most popular way to actuate many joints concurrently. Researchers who utilise 

this technology recognise that the finger bends in a natural curling action and use a linking system to mimic the 
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finger's trajectory.18 Baek et al. (19) constructed a robotic finger. For use in prosthetic hand design, this device 

delivers flexion and extension for each of the three finger joints while using a single motor. A mechanical linkage 

system was employed to transmit the driving force. Although the created forces were tiny, the results demonstrated 

that they were adequate for retaining objects. The six-axis Southampton-Remedi hand employs a four-bar linkage 

system to reduce prosthesis weight while providing various degrees of freedom without increasing the user's 

physical or psychological strain.20 Mahmoud et al. proposed a novel design, the Osaka City University Hand.21 

The five-fingered hand uses planar bar connection mechanisms and has 19 degrees of freedom (DOF). Each fin- 

ger (except the middle finger) contains four DOF, and the thumb is designed with a maximum of 110 degrees of 

yaw, maximizing the thumb’s ability to orient to an object’s surface. 

 

SMA Actuators:- 

As an alternative to traditional motors, SMA ac- tuators have shown significant potential for use in upper extremity 

prostheses.45,46 SMA actuators are light, thin, metallic wires that deform (during grasp- ing, in the case of a 

prosthesis) when cooled and return to their predetermined shape when heated.47 Despite the advantage of reduced 

weight, SMA ac- tuators are less popular than traditional DC motors. 

because of their small strain capacity. In addition, the relaxation phase of the SMA wires is deter- mined by the 

cooling rate of the wire and is often too slow for practical use. Andrianesis and Tzes48 developed a five-fingered 

prosthetic hand with 16 joints and seven active DOF using SMA actuators. Results showed that the device was 

able to perform six of the canonical hand postures (cylindrical, tip, hook, palmar, spherical, and lateral grasps). 

O’Toole et al.45 designed a four-fingered artificial hand using SMA actuators, attempting to optimize the strain re- 

sponse of the SMAs by maximizing the heat transfer to and from the actuator. The authors recognized the 

disadvantage of a required cooling system that must be inexpensive, portable, and safe. Using heat sinks as a cooling 

strategy, the cooling time was reduced to 1.9 seconds (compared to 3.4 seconds with natu- ral cooling) but must 

still be significantly reduced for practical use in an artificial limb. Price et al.4 used SMA actuators to create an 

artificial muscle for use in anthropomorphic upper limb prostheses. To address the problem of limited strain 

capabilities, four strands of SMA ribbons were loosely braided together and twisted to ensure uniform tension, as 

shown in Figure 3. A maximum contractile strain of 31.6% was achieved (compared to a maximum of 10% for 

previous uses of SMA actuators). 

Materials use in bio- prosthetic arm :- 

1. Materials and Construction:  

1. Lightweight and durable materials such as carbon fiber, titanium, and medical-grade plastics are 

used to minimize weight and maximize strength. 

2. Using a Soft silicone or composite materials are used for the outer skin layer to provide a natural 

appearance and texture. 

3. Internal components are designed to withstand everyday use and potential impacts while 

maintaining reliability and performance. 

2. Control and Power System:  

1. The prosthetic arm is controlled through a combination of myoelectric sensors, electromyography 

(EMG), and/or neuromuscular control systems. 

2. Battery-powered actuators and motors drive the movement of the prosthetic joints, with sufficient 

battery life for a full day of typical use. Approx (4500MHZ) 

 

In conclusion, the design and development of an AI-enhanced bio-prosthetic arm represent a groundbreaking 

frontier in assistive technology with the potential to elevate human potential. Through the convergence of artificial 

intelligence, neuroscience, and biomechanics, this innovative prosthetic arm aims to provide users with a level of 

control, adaptability, and sensory feedback that was once considered beyond reach. 

The integration of AI brings forth a paradigm shift, enabling the prosthetic arm to transcend mere functionality 

and embrace a more intuitive and responsive interaction with its user. The marriage of advanced neural interfaces 

and machine learning algorithms allows for the decoding of intricate neural signals, translating intention into 

seamless, natural movements. This breakthrough not only restores lost motor abilities but also opens avenues for 
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users to engage in a wide spectrum of daily activities with newfound independence. 

The real-time adaptability of the AI-driven prosthetic arm is a testament to its continuous learning mechanisms. 

By dynamically adjusting to changes in the user's neural patterns and preferences, the prosthetic arm becomes a 

personalized extension of the individual, evolving over time to meet their evolving needs and capabilities. 

Sensory feedback, a cornerstone of this design, further blurs the boundary between the artificial and the natural. 

Haptic sensations and proprioceptive cues provide users with a tactile connection to their surroundings, fostering 

an enhanced sense of spatial awareness and control. This not only improves the functionality of the prosthetic arm 

but also contributes to a more immersive and integrated user experience. 

The ethical considerations woven into the fabric of this endeavor are paramount. From safeguarding user privacy 

to ensuring the responsible  

development and deployment of AI technologies, a commitment to ethical principles underscores the entire 

process. As we strive to push the boundaries of technological innovation, it is crucial to remain vigilant in 

addressing ethical implications and societal impact. 

As this AI-enhanced bio-prosthetic arm emerges as a beacon of progress, it signifies a collaborative effort between 

engineers, healthcare professionals, and users. The journey from concept to reality underscores the importance of 

iterative design, rigorous testing, and user feedback in refining a solution that genuinely meets the needs and 

aspirations of those it seeks to empower. 

In essence, "Elevating Human Potential: The Design and Development of an AI-Enhanced Bio-Prosthetic Arm" 

is not merely a technological achievement; it is a testament to our collective commitment to enhancing the quality 

of life for individuals with limb differences. It exemplifies the fusion of cutting-edge technology with a human-

centric approach, ultimately contributing to a future where assistive technologies redefine the boundaries of what 

is possible, one prosthetic arm at a time. 
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