IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A STUDY ON CONSUMER PERCEPTIONS TOWARDS SERVICE QUALITY AND WAITING LINE IN AHMEDABAD'S BRTS NETWORK

¹Anjali Patel, ²Ravi Gor

¹Research scholar, Department of Applied Mathematical Science, Actuarial Science and Analytics, Gujarat University ²Department of Mathematics, Gujarat University

Abstract: This research paper investigates consumer attitudes towards Bus Rapid Transit Systems (BRTS) networks in Ahmedabad, India, employing factor analysis and discriminant analysis techniques. The study relies on primary data collected manually from a diverse sample of respondents. Through factor analysis, underlying dimensions influencing consumer attitudes are explored, providing insights into the factors driving perceptions of BRTS networks. Furthermore, discriminant analysis is employed to classify consumers based on their attitudes towards BRTS networks, facilitating a deeper understanding of the determinants of favourable and unfavourable perceptions. The findings of this study contribute to the literature on public transportation and urban mobility, offering valuable implications for policymakers, transit authorities and urban planners aiming to enhance the acceptance and effectiveness of BRTS systems.

Key words: Factor analysis, Discriminant analysis, Waiting line

I. INTRODUCTION

Bus Rapid Transit (BRT) systems are being set up in Indian cities with the goal of providing high-quality, contemporary rapid transit systems that offer quick, pleasant, cost-effective, and safe journeys to urban residents. Janmarg, commonly known as Ahmedabad BRTS, is a bus rapid transit system in Ahmedabad, Gujarat, India, established in 2009. Ahmedabad Janmarg Ltd operates 160 km of routes with 380 buses, serving approximately 2.20 lakh passengers daily^[5].

Since its inception, the Ahmedabad BRTS has garnered attention for its innovative approach and effectiveness. However, the success of such systems is heavily dependent on the attitudes and perceptions of the consumers who use them. The state's job is not only to provide public transport services but also to assure their quality, resulting in passenger overall satisfaction.

This study aims to explore and analyse consumer attitudes towards the BRTS networks in Ahmedabad. By understanding the factors that influence user satisfaction, preferences and overall perceptions. Policymakers and planners can make informed decisions to enhance the service quality and encourage greater usage of BRTS. Through a comprehensive survey and analysis, this paper seeks to identify key determinants of consumer attitudes and provide actionable insights for the improvement of BRTS networks in Ahmedabad.

In this paper, we will examine various dimensions of consumer attitudes, including available of seats in the bus, crowd at station during peak hours, waiting line near ticket window, routes of buses, cleanliness at station, availability of buses, time it takes to reach the bus station and overall satisfaction. The findings from this study will contribute to the broader discourse on urban transportation planning and the role of BRTS in fostering sustainable urban mobility.

II. LITERATURE REVIEW

Tao, S. ^[8] (2015) presented three empirical investigations of interrelated travel behaviour dynamics of BRT passengers, providing an enhanced evidence base on which future BRT-related policy can be founded. Drawing on Brisbane (Australia) as the case study coupled with three distinct datasets (i.e., census, smart card and primary survey data). BRT passenger travel behaviour was investigated from three complementary perspectives, namely, modal share patterns of BRT catchments, spatial-temporal dynamics of current BRT usage and behavioural intentions of BRT passengers. Examinations from these three perspectives captured a broad spectrum of travel behaviour dynamics that collectively render a more holistic understanding of BRT usage.

Fahma, MR. ^[4] (2016) concluded that the current performance of BRT Trans Mamminasata affects its user satisfaction, in which time has the most significant effect to its user's satisfaction (Regression analysis). Furthermore, the variables used in the research, particularly the independent ones had been proved statistically as reliable ones. It was also aligned with the theories by Islam, et al. (Islam, Chowdhury, et al., 2014) who emphasized service, accessibility, and time as the underlying variables to measure the user's satisfaction of a bus service.

Cao, J. et al. ^[2] (2016) explored transit riders' satisfaction with bus rapid transit (BRT) and compared BRT with conventional bus and metro services using revealed preference data from Guangzhou, China. A tri-variate ordered probit model were developed to examine the effects of various service attributes on riders' overall satisfactions with the three types of transit. They found that the top-three influential attributes for satisfaction with BRT are ease of use, safety while riding, and comfort while waiting. Moreover, transit riders were most satisfied with metro, followed by BRT and conventional bus. The top-five attributes that contributed to the difference in the overall satisfaction between BRT and metro were ease of use, comfort while riding, convenience of service, travel time, and comfort while waiting. Based on the findings, they proposed specific strategies that can be used to enhance BRT quality of service.

Yanik, S. et al. ^[9] (2017) investigated the interrelationships among traveller satisfaction, travel and traveller characteristics, and service performance in a multimodal network that comprises of a trunk line and its feeder lines. They analysed the factors influencing the choices of access to rail transit stations and the satisfaction of transit travellers with the rapid rail transit systems and quantitatively studied these relationships and demonstrated the complexity of evaluating transit service performance. Since the interrelationships among variables affecting this system were mainly stochastic, they analysed the satisfaction with transit system problem using a Bayesian Belief Network (BBN), which helps capture the causality among variables with inherent uncertainty. Using the case of Istanbul, they employed the BBN as a decision support tool for policy makers to analyse the rapid rail transit services and determine policies for improving the quality and the level of service to increase the satisfaction with transit system.

Inturri et al. ^[6] (2021) propose to investigate the correlation among public transport (PT) use, user satisfaction, and PT accessibility using a spatial and statistical approach. They aim to find useful and simple indicators for sustainable mobility planning, focusing on a case study in Catania, Italy, with a specific emphasis on the mobility of university students. The authors highlight the implementation of fare-free PT for students from 2018 to 2020 as a collaboration between the University and urban PT operators. Their analysis is based on a database of approximately 4000 responses collected between 2018 and 2019, providing insights into the spatial and statistical correlations between user satisfaction, transit ridership, and accessibility.

Javida, M.^[7] (2023) revealed that low satisfaction with transit modes has a negative impact on customers' behavioural intentions using factor analysis and structural equation. Also, he found that most of the respondents said that cost, travel time, air conditioning, travel time reliability, comfort, and ability to make stops on the way are very important attributes of the BRT services, moreover users believed that it will reduce air pollution, provide better accessibility, and would be safe for female travellers, customers' perceived level of importance significantly and positively influences their intentions towards BRT service.

III. DATA PREPARATION

3.1 Variables

Independent Variables: Availability of seats in the bus, Crowd at station during Peak hours, Waiting line near ticket window, Routes of bus, Cleanliness at station, Availability of bus, Time it takes to reach the Bus station.

Dependent Variable: Overall Satisfaction

Controlled Variable: Ahmedabad City

3.2 Hypothesis

Null Hypothesis:	The correlation matrix of Independent Variables is not suitable for factor					
	analysis. (KMO Test)					
Null Hypothesis:	The correlation matrix of Independent Variables is an Identity matrix,					
	indicating that there is no significance correlation between all					
	independent variables under study. (Bartlett Test)					
Null Hypothesis:	There is no significant difference between overall satisfaction of					
	travellers due to independent variables taken under study. (Wilks'					
1	Lambda)					
Null Hypothesis:	The covariance matrix is equal across overall satisfaction of travellers					
	due to independent variables taken under study. (Box's M Test)					

3.3 Data Collection

Primary data has been collected through questionnaire from consumers who at least travel once through BRTS in route of Naroda to ISKCON BRTS station of Ahmedabad, Gujarat, India.

3.4 Sampling Technique

Non-probabilistic convenient sampling has been used to collect primary data where 300 observations were taken.

IV. METHODOLOGY

Factor Analysis: Factor analysis is a statistical method used to explore the underlying structure of a set of variables. It's commonly used in fields like psychology, sociology, and market research to identify patterns among observed variables and to reduce the complexity of data.

Discriminant Analysis: Discriminant analysis is a statistical technique used to classify observations into groups based on their characteristics or variables. It identifies which variables discriminate between the groups and creates a predictive model to assign new observations to the appropriate group. Basic factor and discriminant analysis typically involve the following steps:

Factor Analysis	Discriminant Analysis
Data Collection : Gather data on a set of variables. These variables can be questionnaire items, test scores, or any other measurable quantities.	Data Collection : Gather data on predictor variables (also called independent variables or features) and the corresponding group or category each observation belongs to (the dependent variable).
Correlation Matrix : Compute the correlation matrix of the variables. This matrix shows how each variable is related to every other variable in the dataset.	Data Preprocessing : Check for missing values, outliers, and ensure that the data meet the assumptions of discriminant analysis, such as normality and homogeneity of
Factor Extraction : Use a factor extraction method to identify the underlying factors in	variance.

www.ijcrt.org

	the data. The most common method is principal component analysis (PCA) or methods like maximum likelihood estimation (MLE). These methods aim to summarize the variation in the data with a smaller number of factors.	Variable Selection: If you have many predictor variables, you may need to select a subset of variables that are most relevant for classification. Techniques such as feature selection or dimensionality reduction (e.g., PCA) can be used for this purpose.
	Factor Rotation : After extracting factors, it's often helpful to rotate them to make them easier to interpret. Rotation methods like Varimax or Promax can be used to achieve this.	Discriminant Function Estimation : Estimate the discriminant functions that best separate the groups or categories in the data. These functions are linear combinations of the predictor variables and are determined based on the differences in mean vectors and
	Factor Interpretation : Examine the factor loadings to understand the relationship between variables and factors. Factor loadings represent the strength and direction of the relationship between variables and factors.	covariance matrices between groups.ModelAssessment:Evaluatetheperformance of the discriminant model usingtechniquessuch as cross-validation, ROCcurves, or confusion matrices.This helpsensure that the model generalizes well to new
1	Factor Naming : Based on the interpretation of factor loadings, assign names or labels to the factors that capture the underlying meaning or concept they represent.	Prediction : Once the discriminant functions are estimated and the model is assessed, you can use them to classify new chaptering.
- 415 - 415	Assessment of Model Fit: Evaluate the overall fit of the factor model to the data using various fit indices. Common fit indices include the Kaiser-Meyer-Olkin (KMO) measure and the Bartlett's test of sphericity.	into the appropriate groups or categories based on their values of the predictor variables. Interpretation and Reporting: Interpret the results of the discriminant analysis, including
	Interpretation and Reporting: Finally, interpret the results of the factor analysis and report findings. This may involve discussing the identified factors, their interpretation, and implications for the underlying structure of the data.	the discriminant functions, classification accuracy, and any insights gained from the analysis. Report findings in a clear and understandable manner.

Factor analysis is a powerful technique for understanding complex data structures and identifying underlying patterns or dimensions. However, it requires careful consideration and interpretation of results to ensure meaningful conclusions.

Discriminant analysis can be performed using various software packages (e.g., R, Python, SPSS), each offering different functions and capabilities for analysis and interpretation. It's a powerful tool for classification tasks, such as predicting customer preferences, diagnosing medical conditions, or identifying patterns in market research data.

V. STATISTICAL ANALYSIS

5.1 Factor Analysis

Correlation Matrix								
Correlation	Time it Takes to Reach the Bus Station	Behavio ur of Staff	Availabili ty of Bus	Cleanline ss at Station	Routes of Buses	Waitin g Line Near Ticket Windo w	Crowd at Station during peak hours	Availabilit y of Seats in the Bus
Time it Takes to	1.000	.686	.471	.422	.551	.180	.042	007
Reach the Bus								
Station								
Behaviour of Staff	.686	1.000	.580	.434	.503	.183	.045	.003
Availability of Bus	.471	.580	1.000	.428	.420	.162	024	051
Cleanliness at	.422	.434	.428	1.000	.327	.128	.005	.005
Station						1.0		
Routes of Bus	.551	.503	.420	.327	1.000	.154	.003	036
Waiting Line Near	.180	.183	.1 <mark>62</mark>	.128	.154	1.000	.747	.720
Ticket Window								
Crowd at Station	.042	.045	024	.005	.003	.747	1.000	.914
during peak hours		20		and the second se				
Availability of	007	.003	051	.005	036	.720	.914	1.000
Sea <mark>ts in the Bu</mark> s					X			

Table 5.1.1: Correlation Matrix

The values of each correlation between different independent variables should be greater than or equal to 0.3 which can be seen from the derived correlation matrix. One can see that the first five variables are highly correlated to each other and so are the last three variables.

Table 5.1.2. KWO and Bartlett's Test					
KMO and Bartlett's Test					
Kaiser-Meyer-Olkin	Kaiser-Meyer-Olkin Measure of Sampling 0.767				
Adeq					
Bartlett's Test of	Approx. Chi-Square	1351.503			
Sphericity	df	28			
	Sig.	.000			

Table 5.1.2: KMO and Bartlett's Test

A Kaiser-Meyer-Olkin (KMO) value of 0.6 or higher is considered as acceptable for factor analysis. In the given set of data KMO Measure is 0.767 which indicates the suitability of factor analysis. Here the probabilistic value for Bartlett's Test of Sphericity is also less than the significance level for 95% of confidence interval which also suggests the same as KMO Measure.

Table 5.1.3: Communalities						
Commun	alities					
		Extractio				
	Initial	n				
Time it Takes to 1 000 0 688						
Reach the Bus Station	1.000	0.088				
Behaviour of Staff	1.000	0.722				
Availability of Bus	1.000	0.576				
Cleanliness at Station	1.000	0.430				
Routes of Bus	1.000	0.531				
Waiting Line Near						
Ticket Window	1.000	0.797				
Crowd at Station						
during peak hours						
Availability of Seats in 1 000 0 911						
the Bus						
Extraction Method: Principal Component						
Analysis						

Table 5.1.3 gives information about the variation explained by each independent variables in the initial stage and after the extraction.

L									
Total Variance Explained									
	In	itial Eigany	values	Extracti	ion Sums c	of Squared	Rotati	ion Sums o	of Squared
Compo	111	itiai Eigenv	alues		Loadings	5		Loading	<u></u> s
nent	Total	% of	Cumulati	Total	% of	Cumulati	Total	% of	Cumulativ
	Total	Variance	ve %	Total	Variance	ve %	Total	Variance	e %
1	3.066	38.325	38.325	3.066	38.325	38.325	2.983	37.293	37.293
2	2.512	31.400	69.726	2.512	31.400	69.726	2.595	32.432	69.726
3	.707	8.833	78.558						
4	.564	7.046	85.604						
5	.497	6.217	91.821						
6	.298	3.727	95.548						
7	.273	3.413	98.961						
8	.083	1.039	100.000						
	Extraction Method: Principal Component Analysis.								

Table 5.1.4:	Total	Variance	Explained
--------------	-------	----------	-----------

Based on initial eigenvalues of each component, only two factors were extracted by the model. Total Variance explained by these two extracted factors is 69.726%.

www.ijcrt.org

Graphical visualisation of extracted two factors with respect to its eigenvalues can be seen in the given scree plot (Figure 5.1.1).

	Rotated Component Matrix ^a					
		Component				
		Transpo				
		rt	Crowd			
		Service Factor				
		Factor				
	Time it Takes to	878	052			
	Reach the Bus Station	.020	.032			
	Behaviour of Staff	.848	.056			
	Availability of Bus	.759	004			
	Cleanliness at Station	.655	.025			
	Routes of Bus	.729	.014			
and the second se	Waiting Line Near	105	971			
	Ticket Window	.195	.0/1			
	Crowd at Station	023	960			
	during peak hours	025	.900			
	Availability of Seats in	- 067	952			
	the Bus	007	.)52			
	Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser					
-64						
	Normalization.					
	a. Rotation converge	d in 3 itera	tions.			

-	Table 5.1.5: Rotated Component Matrix
---	---------------------------------------

The rotation of factors improves the analyst's educated guesses. Varimax rotation is a statistical technique used at one level of factor analysis as an attempt to clarify the relationship among factors. Generally, the process involves adjusting the coordinates of data that result from a principal components analysis. Varimax rotation uses a mathematical algorithm that maximizes high- and low-value factor loadings and minimizes mid-value factor loadings.

5.2 Discriminant Analysis

0 denotes Satisfaction

1 denotes Dissatisfaction

	Group Statistics						
0	ungell Catiofaction	Maan	Std.	Valid N (l	istwise)		
0	verall Satisfaction	Mean	Deviation	Unweighted	Weighted		
	Transport Service	-	1 00717752	124	124 000		
0	Factor Score	0.6613312	1.00/1//32	124	124.000		
	Crowd Factor	- 0.7626907	1.05844894	124	124.000		
1	Transport Service Factor Score	0.4659379	0.68362990	176	176.000		
	Crowd Factor	0.5373503	0.46752692	176	176.000		
Total	Transport Service Factor Score	0.0000000	1.00000000	300	300.000		
	Crowd Factor	0.0000000	1.00000000	300	300.000		

Table 5.2.1 Group statistics

Table 5.2.1 denotes mean and standard deviation of two extracted factors for both groups in which the data is divided.

Table 5. <mark>2.2: 1</mark>	Box's To	est of Equ	ality <mark>of Covaria</mark>	ance Matrices
		Test Re	esults	
	Bo	x's M	118.273	
		Approx.	39.126	
	Б	df1	3	
	Г	df2	5295501.887	
		Sig.	.000	11.18"
	Tests	null hypot	hesis of equal	- NO "
and the second second	ро	pulation c	ovariance	13
100		matric	ces.	

Box's M Test used to test the homogeneity of covariance matrices. Its null hypothesis states that the covariance matrices are equal across groups. Higher the values of Box's M Test statistics higher the value of discriminant score is.

Eigenvalues				
Function	Eigenvalue	% of	Cumulative	Canonical
		Variance	%	Correlation
1	2.576 ^a	100.0	100.0	0.849
a. First 1 canonical discriminant functions were used in the				
analysis.				

Eigenvalues represent the magnitude of the variability in the data along the principal components (linear combinations of the original variables). Eigenvectors represent the directions (or axes) of this variability. It tells about how much of the total variance in the data is accounted for by the discriminant function. Larger eigenvalues indicate more important discriminant functions, as they capture more of the variance in the data.

Table 5.2.4: Wilks' Lambda					
Wilks' Lambda					
Test of Function(s)	Wilks' Lambda	Chi-square	Degree of freedom	Significanc e	
1	0.280	378.466	2	0.000	

Wilks' Lambda tests to identify overall difference between the groups. Null hypothesis of Wilks' Lambda tells that there is no significant difference between groups.

	Table 5.2.5. Structure	Maurix	
	Structure Matrix		
		Function	
		1	
	Transport Service	0.417	
	Factor Score		
	Crowd Factor	0.521	
	Pooled within-groups co	orrelations	
All and a second se	between discriminating	variables	
	and standardized can	onical	TY.
dill and a second s	discriminant funct	ions	Barren Street
	Variables ordered by abs	solute size	the second
	of correlation within f	unction.	

Table 5.2.5: Structure Matrix

Structure Matrix displays the correlation between each selected variable and each discriminant function. High absolute values of function indicates that the variable is highly correlated with the discriminant function and contributes strongly to group separation.

Table 5.2.6	: Canonical Discriminant	Function C	Coefficients
	Canonical Discriminant		- C.V.
	Function Coefficients		1 N N
		Function	1 × 1
		1	China - Pittana
14 C	Transport Service	1.237	- 999900 m
	Factor		
	Crowd Factor	1.426	
	(Constant)	0.000	
	Unstandardized coeff	ficients	

It displays the coefficients for each of the selected variables in each of the discriminant functions. Here value of intercept is zero and values for slopes related to Transport Service Factor and Crowd Factor is 1.237 and 1.426 respectively which can be written as:

Overall Satisfaction = $1.237x_1 + 1.426x_2$

Here x_1 denotes Transport Service Factor and x_2 denotes Crowd Factor.

Now to represent the center of each group in the feature space, group centroids are derived which are the means of the predictor variables (features) within each group in discriminant analysis.

Table 5.2.7: Group Centroids		
Functions at Group		
Centroids		
Overall	Function	
Satisfaction	1	
0	-1.906	
1	1.343	
Unstandardized canonical		
discriminant functions		

These centroids of both groups can easily result into the threshold value to predict satisfaction level of new respondents. Here counts of respondents with no satisfaction and with satisfaction are 176 and 124 respectively and centroid values are given in above table. Threshold value calculated here is approximately

evaluated at group means

zero (Formula: T = $\frac{n_1C_1+n_2C_2}{n_1+n_2}$).

VI. RESULT

6.1 Factor Analysis

Correlation between the variables Time It Takes to Reach the Bus Station, Behaviour of staff, Availability of buses, Cleanliness of station, Routes of buses are very high and give maximum variation into first factor extracted. In same manner the variables like Waiting line near ticket window, Crowd at station during peak hours and Availability of seats in the buses are highly correlated to each other and contributes towards second factor.

Moreover, from table 5.1.3 it is visible that variables Waiting line near ticket window, Crowd at station during peak hours and Availability of seats in the buses explains maximum variation after the extraction of factors. These two extracted factors explain 69.72% of variation combinedly.

6.2 Discriminant Analysis

Value of Box's M test is very high in discriminant analysis and results into rejection of null hypothesis. It suggests that the groups generated on the basis of satisfaction and dissatisfaction from services of BRTS have different opinions for all the seven variables.

From table 5.2.1 it can be shown that crowd factor has maximum difference when the values of both the groups are compared. Even wilks' lambda suggests that there is significant difference between these two groups as its null hypothesis has been rejected.

Crowd factor has high absolute values of function compared to other factor which indicates that this factor is highly correlated with the discriminant function and contributes strongly to group separation.

The value of canonical correlation is **0.849**. The square of the canonical correlation is $(0.849)^2 = 0.7208$. which means 72.08 % of the variance in the discriminating model between Satisfaction and dissatisfaction is due to the changes in the seven predictor variables, namely, Time It Takes to Reach the Bus Station, Behaviour of staff, Availability of buses, Cleanliness of station, Routes of buses, Waiting line near ticket window, Crowd at station during peak hours and Availability of seats.

VII. CONCLUSION AND FUTURE SCOPE

Factor analysis helps in extracting two factors where crowd factor includes three variables related to crowd and queuing issue. In this primary data these three variables contribute the maximum suggested by factor analysis.

On other side, Discriminant analysis helps to give information about maximum variation into two groups of satisfaction and dissatisfaction which is due to crowd factor clearly seen from structure matrix. This primary study exclusively suggests that the variables like Waiting line near ticket window, Crowd at station during peak hours and Availability of seats are major issues related to the BRTS networks in Ahmedabad.

C.R

This study relies on primary data so its outcomes are trustable but the pilot data taken over here is comparatively less which can be extended in nearer future to find more accurate results. Furthermore, many other variables can be introduced in the study.

As this study suggest crowd factor and queuing as a major issue for Transit systems, one can surely do some widespread work in the field of queuing theory using mathematical modelling to solve the issues related to transit systems.

VIII. REFERENCES

- 1. Allen, J., Muñoz, J. C., & de Dios Ortúzar, J. (2020). On the effect of operational service attributes on transit satisfaction. Transportation, 47(5), 2307-2336.
- Cao, J., Cao, X., Zhang, C., & Huang, X. (2016). The gaps in satisfaction with transit services among BRT, metro, and bus riders: Evidence from Guangzhou. Journal of Transport and Land Use, 9(3), 97-109.
- 3. Chaudhary, M. L. (2020). Commuters' perceptions on service quality of bus rapid transit systems: Evidence from the cities of Ahmedabad, Surat and Rajkot in India. Eur. Transp.-Trasp. Eur, 79.
- 4. Fahma, M. R., & Beenakker, I. BRT in Makassar (BRT Trans Mamminasata), Indonesia: Explaining the Effect of Current Performance to Its User's Satisfaction.
- 5. https://www.ahmedabadbrts.org/about-us/
- 6. Inturri, G., Giuffrida, N., Le Pira, M., Fazio, M., & Ignaccolo, M. (2021). Linking public transport user satisfaction with service accessibility for sustainable mobility planning. ISPRS International Journal of Geo-Information, 10(4), 235.
- 7. Javida, M. A., Tahirb, Q., Ammarb, M. M., Ahmad, B., Khanb, Y. M., & Alic, N. Customers' Satisfaction and Intentions with Public Transportation in Faisalabad, Pakistan: Implications for a Bus Rapid Transit Service.
- 8. Tao, S. (2015). Investigating the travel behaviour dynamics of bus rapid transit passengers.
- 9. Yanık, S., Aktas, E., & Topcu, Y. I. (2017). Traveler satisfaction in rapid rail systems: The case of Istanbul metro. International Journal of Sustainable Transportation, 11(9), 642-658.