
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a631

EVALUATING THE EFFECTIVENESS OF

SOFTWARE TESTING DEFECT PREDICTION

METHODS
1M.MANI MEKALAI, 2DR.S.VYDEHI

1Research scholar, 2Associate Professor, Department of Computer Science,
1,2Dr.S.N.S.Rajalakshmi College of Arts and Science,

1,2Chinnavedampatti Post, Coimbatore, Tamilnadu, India.

Abstract- This literature survey explores the significance and methods of effectively

utilizing historical data in software testing defect prediction. With the growing complexity of

software systems, predicting and preventing defects has become paramount in ensuring

software quality. Leveraging historical data, such as past defects and testing outcomes, can

provide valuable insights into potential vulnerabilities and areas of improvement. The

abstract delves into various approaches and techniques employed in harnessing historical data

for defect prediction, including machine learning algorithms, statistical analysis, and data

mining methodologies. Furthermore, it investigates the challenges and limitations associated

with utilizing historical data in software testing, such as data quality issues, feature selection,

and model validation. By synthesizing existing research findings and methodologies, this

literature survey aims to provide a comprehensive understanding of how historical data can

be effectively leveraged to enhance software testing defect prediction strategies, ultimately

leading to improved software quality and reliability.

Keywords: Software testing, Defect prediction, Software maintenance, data analysis,

Regression analysis, Predictive modeling, Feature selection, Data mining.

1. Introduction

Software testing defect prediction is a crucial

aspect of software quality assurance, aiming to

identify potential defects in software systems before

the manifest in production environments. Historical

data, accumulated from past software development

projects, holds significant promise for enhancing the

accuracy and effectiveness of defect prediction

models. Leveraging this historical data enables

organizations to anticipate and mitigate potential

risks, allocate resources efficiently, and ultimately

deliver higher-quality software products. The

utilization of historical data in software testing

defect prediction is a multifaceted endeavor,

encompassing various techniques, methodologies,

and tools. The literature on this subject presents a

rich tapestry of research efforts, empirical studies,

and practical applications aimed at harnessing the

power of historical data to improve defect prediction

accuracy and reliability. In figure 1 the types of

software testing that have been described.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a632

Figure 1.Types of Software Testing

One of the fundamental approaches in

utilizing historical data for defect prediction is the

application of machine learning algorithms. These

algorithms analyze historical data sets, extracting

patterns, trends, and relationships between various

software metrics and defect occurrences. By training

predictive models on this data, organizations can

identify factors indicative of potential defects,

enabling proactive intervention during the software

development lifecycle. Furthermore, researchers

have explored the integration of diverse data sources

to enhance the predictive capabilities of defect

prediction models. Beyond traditional software

metrics, such as lines of code or complexity

measures, additional data sources, including version

control repositories, issue tracking systems, and

developer collaboration patterns, offer valuable

insights into software quality and defect proneness.

In addition to predictive modeling, the literature also

delves into the assessment of the effectiveness and

efficiency of utilizing historical data in defect

prediction.

Empirical studies evaluate the performance

of various prediction models in real-world software

development contexts, shedding light on the

strengths, limitations, and practical considerations

associated with leveraging historical data.

Moreover, advancements in data mining, statistical

analysis and artificial intelligence have spurred

innovative approaches to harnessing historical data

for defect prediction. Techniques such as ensemble

learning, deep learning, and hybrid models combine

multiple sources of historical data and employ

sophisticated algorithms to improve prediction

accuracy and robustness. In this survey, it explores

the diverse landscape of research and practices

surrounding the effective utilization of historical

data in software testing defect prediction. By

synthesizing existing knowledge and identifying

emerging trends, this survey aims to provide

insights that can inform future research directions

and guide practitioners in leveraging historical data

to enhance software quality and reliability.

2. Literature Survey

1. A. M. Khan (2021) et.al proposed AUTILE

Framework: An AUTOSAR Driven Agile

Development Methodology to Reduce Automotive

Software Defects. The AUTOSAR Driven Agile

Development (AUTILE) Framework is introduced

as an innovative methodology aimed at mitigating

defects and minimizing their severity in automotive

software development. The conventional approach

to developing automotive software, often requiring

complete rewrites for hardware modifications or the

addition of new features, poses significant

challenges. The evolving landscape of automotive

technology, characterized by megatrends like

connectivity, electrification, and autonomous

driving, intensifies the demand for complex

software functionalities. The lack of a standardized

approach exacerbates quality issues when

integrating additional features into no standardized

automotive software. In response to these

challenges, AUTILE advocates for the utilization of

the automotive open system architecture standard as

the foundational framework, promoting modular and

open software architecture. This approach aligns

with the need for standardized solutions in the

industry. Utilizing agile approaches, AUTILE

incorporates modular architecture into their software

development process to maximize its benefits.

Despite the potential advantages of agile

methodologies, their widespread adoption in

automotive software development remains limited.

The framework addresses the enablers and barriers

associated with implementing agile methodologies

in this context. Practical application of the AUTILE

Framework to automotive software projects

validates its effectiveness in defect reduction. By

following the recommended steps, this methodology

showcases its potential to enhance the quality and

efficiency of automotive software development,

marking a significant stride towards addressing

industry challenges.

2. H. GU (2021) et.al proposed Specification-

Driven Conformance Checking for Virtual/Silicon

Devices Using Mutation Testing. Modern software

systems, including both system and application

software, are increasingly built upon virtualized

software platforms. These platforms may be

designed to operate on virtual machines or have the

flexibility to transition to physical machines when

required. The essential aspect in either scenario is

that the devices, whether virtual or silicon-based,

within the target system must adhere strictly to the

Unit

ComponentIntegration

UI & API

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a633

specified standards upon which the software

systems are developed. Any deviation from these

specifications can potentially lead to catastrophic

failures in the software. This research introduces a

novel mutation-based framework designed for the

efficient and effective conformance checking

between virtual/silicon device implementations and

their specified requirements. The framework

employs mutation operators to automatically

instrument device specifications with weak mutant-

killing constraints, capturing potential erroneous

behaviours’. A cooperative symbolic execution

approach is used to automate test case development

and compliance testing for virtual and silicon

devices in order to assure thorough validation. The

approach properly determines the degree of

validation and finds discrepancies between device

specifications and implementations by symbolically

executing thetraces of virtual or silicon devices

combined with instrumented specifications obtained

from the cooperative execution.The efficacy of this

method in validating conformance for both silicon

and virtual devices is proven by extensive tests

performed on two industrial network adapters and

their virtual devices, indicating that it has the

potential to enhance the reliability and resilience of

modern software systems. Extensive tests conducted

on two industrial network adapters and their virtual

devices demonstrate the effectiveness of this method

in verifying conformity for both silicon and virtual

devices, confirming its potential to improve the

resilience and dependability of contemporary

software systems.

3. A. Núñez (2021) et.al proposed TEA-Cloud: A

Formal Framework for Testing Cloud Computing

Systems. Validating cloud systems poses challenges

due to their scale, concurrent user demands, and the

complexities introduced by virtualization.

Conventional testing methods struggle to address

these issues effectively. This article introduces the

TEA-Cloud framework, offering a novel approach

by integrating simulation and testing methodologies

for comprehensive validation of cloud system

designs. TEA-Cloud covers both functional and

non-functional aspects, including performance and

cost considerations. The framework facilitates the

modeling of both software and hardware

components, enabling automated testing to validate

cloud system integrity in a cost-effective manner.

TEA-Cloud employs metamorphic testing to address

the absence of a definitive oracle for verifying

observed behaviors during testing. This approach

relies on metamorphic relations (MRs) and

introduces three MR families targeting critical

aspects such as performance, resource provisioning,

and cost. Through an empirical research utilizing

fault seeding and ten MRs for various cloud

configurations, TEA-Cloud demonstrated promising

results by successfully identifying all seeded faults.

The framework's capability to navigate complex

cloud environments, simulate real-world scenarios,

and uncover potential vulnerabilities positions TEA-

Cloud as a valuable tool for enhancing the

validation processes associated with cloud system

development.

4. C. -A. Sun (2021) et.al proposed METRIC${+}

$+: A Metamorphic Relation Identification

Technique Based on Input plus Output Domains.

Metamorphic testing, renowned for mitigating the

oracle problem in software testing, operates by

verifying identified metamorphic relations (MRs)

across multiple the way a software system is

executed. The crucial task of MR identification

prompted the development of METRIC

(METamorphic Relation Identification based on

Category-choice framework). However, METRIC

primarily emphasizes the input domain, neglecting

the output domain, which hampers its effectiveness.

In response, it extended METRIC into METRIC+

by incorporating output domain information for

enhanced MR identification. METRIC+ was

implemented as a tool, and two rounds of

experiments involving real-life specifications were

conducted. The results affirm METRIC+'s high

effectiveness and efficiency in MR identification.

To further assess METRIC+'s performance, it

conducted experiments comparing its fault detection

capability with that of µMT, another MR

identification technique. The comparative results

validate METRIC+'s MRs as highly effective in

fault detection. The extension of METRIC into

METRIC+ addresses the input-output domain

imbalance, fortifying its applicability and

demonstrating its superior effectiveness in

identifying robust metamorphic relations. The

development of METRIC+ contributes significantly

to advancing the field of metamorphic testing,

providing testers with a comprehensive tool that

incorporates both input and output domain

considerations for more accurate and efficient MR

identification.

5. N. Aljawabrah (2021) et.al proposed Automated

Recovery and Visualization of Test-to-Code

Traceability (TCT) Links: An Evaluation. Because

of unclear documentation, maintaining traceability

links between unit tests and code in the software

development process often necessitates manual

dependency identification. This manual effort

during the comprehension process results in a

significant time and resource investment. While

various methods exist for inferring these links based

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a634

on different phenomena, it tends to generate diverse

sets of traceability links. By combining a number of

traceability recovery techniques, this research

expands on earlier research on traceability link

recovery and visualization. These methods

automatically retrieve links and visualize them,

providing developers with an overview of links

inferred by various recovery techniques. The

approach aims to facilitate the selection of

appropriate relations for analysis. The usability

research findings show that the visualization model

that is being given facilitates Test-to-Code

Traceability (TCT) link browsing, comprehension,

and maintenance in a system in an efficient manner.

Additionally, visualizing TCT links from multiple

sources proves to be more advantageous than

visualizing links from a single source, contributing

to a more comprehensive understanding of the

interconnected relationships between tests and code.

6. Y. Huang (2021) et.al proposed A Learn-to-Rank

Method for Model-Based Regression Test Case

Prioritization. Regression testing is a pivotal

component of software maintenance, involving the

retesting of modified software to identify potential

introduction of new faults. Despite its significance a

high fault detection rate in regression testing

demands substantial effort. To tackle this challenge,

the adoption of test case prioritization techniques

becomes imperative, allowing the adjustment of test

case execution order to enhance fault detection.

Existing approaches in model-based regression test

case prioritization often focus on single aspects of

model-related information derived from previously

executed test cases. In this research, it propose a

novel learn-to-rank technique aimed at prioritizing

test cases by integrating multidimensional features

extracted from the Extended Finite State Machine

(EFSM) under test, thus improving fault detection

rates. It method employs the random forest

algorithm to amalgamate various heuristic

prioritization methods. It noticed promising findings

through comprehensive trials assessing the

performance of the suggested technique, especially

in terms of Average Percentage Fault Detected

(APFD). The mean APFD value achieved by it

method is 0.884 across five subject EFSMs,

representing a noteworthy 33.9% improvement

compared to existing methods. This innovative

approach showcases the efficacy of leveraging

multidimensional features in EFSMs for regression

test case prioritization, contributing to more efficient

fault detection in software maintenance.

7. J. Caba (2021) et.al proposed Towards Test-

Driven Development for FPGA-Based Modules

across Abstraction Levels. High-Level Synthesis

(HLS) tools serve as invaluable aids for engineers

grappling with the intricacies of constructing

heterogeneous embedded systems that leverage

reconfigurable technology. While HLS facilitates

the integration of well-established software industry

practices such as Test-Driven Development (TDD)

into the development flow of custom hardware

components, its support for verification activities

remains constrained, typically focusing on the initial

design stages. In order to expedite component on-

board verification, this research presents a novel

hardware testing framework that enables TDD on

reconfigurable hardware and implements the Unit

Testing Paradigm. The proposed solution

encompasses a hardware/software introspection

infrastructure, facilitating the verification of system

modules at various stages and across multiple

abstraction levels without necessitating additional

effort or component redesign. The CHStone

Benchmark uses the framework, which was created

for the Xilinx ZynQ FPGA-SoC architecture, to

validate C-kernels. Integration into the Xilinx

Vivado design flow is seamless, supported by

automatic generation scripts tailored for this

purpose. Experimental results highlight a significant

acceleration in verification time and expose

disparities between the on-board latency measured

by it framework and the co-simulation estimations

provided by Xilinx tools. This research contributes

to enhancing the efficiency of HLS tools by

addressing limitations in verification support,

ultimately advancing the reliability and accuracy of

reconfigurable hardware design.

8. Z. Q. Zhou et.al proposed Metamorphic

Robustness Testing: Exposing Hidden Defects in

Citation Statistics and Journal Impact Factors. It

proposed robustness testing approach addresses

software systems handling extensive data volumes,

utilizing metamorphic relations to assess output

reliability without a concrete test oracle. It applied

this method to scrutinize two prominent citation

databases, Scopus and the Web of Science,

uncovering an unexpected discovery related to

hyphens in research titles impacting citation counts.

This revelation underscores the vulnerability of

citation database systems in managing hyphenated

research titles, a finding with broad applicability

across diverse fields, including chemistry. Notably,

it examined journals such as IEEE Transactions on

Software Engineering (TSE) and ACM Transactions

on Software Engineering and Methodology, and

found a significant inverse relationship between the

percentage of hyphenated research titles and journal

impact factor (JIF). Surprisingly, higher-ranked JIF

journals, including TSE, exhibited a lower

percentage of papers with hyphenated titles,

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a635

challenging the widely-held belief that citation

counts and JIFs reliably measure research and

journal impact. It research prompts a reconsideration

of the perceived accuracy of these metrics,

demonstrating their susceptibility to distortion due

to the presence of hyphens in research titles,

emphasizing the need for a more nuanced evaluation

of scholarly impact in the domain of software

engineering.

9. A. Agrawal (2021) et.al proposed How to

“DODGE” Complex Software Analytics. Enhancing

the efficiency of machine learning techniques

applied to software engineering tasks is a key focus,

and one avenue for improvement lays in

hyperparameter optimization automatic tools that

seek optimal settings for a learner's control

parameters. Within this context, it present the

DODGE (Dynamic Optimization of Decision Tree

enGinE) approach, specifically DODGE (E), a

tuning tool designed to expedite the hyperparameter

optimization process. Notably, DODGE (E)

addresses the issue of unnecessary slowness

encountered in traditional hyperparameter

optimization, particularly when optimizers spend

time exploring "redundant tunings." These

redundancies refer to pairs of tunings that lead to

indistinguishable results. Operating orders of

magnitude quicker than previous state-of-the-art

methods, DODGE (E) achieves a tremendous

acceleration by deliberately avoiding such

superfluous tunings. Despite its accelerated pace,

DODGE (E) not only expedites the optimization

process but also outperforms previous methods by

generating learners with more accurate predictions.

The focus on eliminating redundant tunings

underscores the significance of optimization

efficiency in the context of hyperparameter tuning,

making a significant contribution to the complicated

software analytics discipline. The results highlight

DODGE (E) as a promising tool for practitioners

seeking improved performance and precision in

machine learning applications within the realm of

software engineering.

10. G. K. Rajbahadur (2021) et.al proposed Impact

of Discretization Noise of the Dependent Variable

on Machine Learning Classifiers in Software

Engineering. In the realm of research, the common

practice of discretizing a continuous dependent

variable into two target classes, often through the

introduction of an artificial threshold like the

median, presents a potential challenge. This

discretization, while facilitating analysis, may

introduce noise, specifically discretization noise,

arising from the ambiguous loyalty of data points

near the artificial threshold. Regretfully, current

research does not provide a clear guide on how

discretization noise affects classifiers and how to

deal with it. This research addresses this gap by

proposing a comprehensive framework to

systematically assess the impact of discretization

noise on classifiers. The framework evaluates its

effects on various performance measures and the

interpretation of classifiers, offering valuable

insights for researchers and practitioners. Through a

case research involving seven software engineering

datasets, the findings underscore the nuanced impact

of discretization noise on classifier performance

across different datasets. Notably, the research

reveals that while discretization noise affects

various performance measures disparately, the

interpretation of classifiers, on the whole, is

influenced. However, crucially, the top three most

important features remain unaffected by

discretization noise. Consequently, the research

recommends the adoption of this framework to

enable practitioners and researchers to discern and

quantify the impact of discretization noise on

classifier performance. Furthermore, it advocates for

the strategic elimination of precise amounts of

discretization noise from datasets to mitigate

potential adverse effects. This approach ensures a

more informed and nuanced understanding of the

impact of discretization noise, thereby enhancing the

robustness and reliability of classifiers in practical

applications.

11. M. W. Call (2021) et.al proposed Gamifying

Software Engineering Tools to Motivate Computer

Science Students to Start and Finish Programming

Assignments Earlier. This gamification strategy

employs a custom Leaderboards plugin within the

Moodle Learning Management System (LMS) to

incentivize computer science students in a data

structures course (N = 50) to initiate and complete

challenging programming assignments (PAs)

promptly. The notable outcomes reveal a positive

impact, with students demonstrating increased

motivation to complete assignments ahead of

schedule. Additionally, there was a notable rise in

code commits to Github, adherence to version

control best practices, and active participation in the

class Q&A forum, showcasing a multifaceted

improvement in students' engagement and

collaboration. The application of self-determination

theory to these findings indicates that integrating

team-based leaderboards with an automated unit

testing system, offering immediate feedback upon

task accomplishment, can effectively cater to

students' autonomy, competency, and relatedness

needs. However, this research acknowledges

limitations, particularly the evaluation occurring

within a single semester disrupted by the COVID-19

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a636

emergency remote learning transition. Future

endeavors aim to validate the Leaderboards' efficacy

across diverse classes, explore online development

environments with auto-grading for nuanced

tracking of students' progress, and investigate

alternative incentivization methods. In summary, the

gamification approach not only introduced students

to essential software engineering tools but also

fostered excitement in overcoming unit test

challenges, fostering increased dedication to the

course.

12. G. Jahangirova (2021) et.al proposed An

Empirical Validation of Oracle Improvement. It

proposed methodology introduces a human-in-the-

loop approach aimed at enhancing oracle quality and

assesses its impact on developers' ability to create

more effective oracles. In conducting two

comprehensive human studies involving a total of

68 participants, it focused on both oracle assessment

and improvement. The results of it research reveal a

significant challenge in manually assessing assertion

oracles, with developers demonstrating mere 29%

accuracy in distinguishing false positives, false

negatives, or the absence of both. This underscores

the need for automated tools to detect and address

such deficiencies, providing valuable assistance to

developers. To address this gap, it present OASIs

(Oracle Assessment and Improvement), a tool

designed to elevate the quality of assertions. In the

improvement research, participants utilizing OASIs

achieved notable improvements, with 33% attaining

full correctness and 67% reaching partial

correctness. In contrast, participants without the tool

achieved lower levels of correctness, with only 21%

reaching full correctness and 43% attaining partial

correctness. These findings underscore the efficacy

of it human-in-the-loop approach, demonstrating its

potential to significantly enhance the accuracy and

quality of assertion oracles in developing software.

13. R. Verdecchia (2021) et.al proposed Know You

Neighbor: Fast Static Prediction of Test Flakiness.

Proposing an innovative approach under the motto

"knows your neighbor," it introduce FLAST, a

method for predicting flaky tests by leveraging the

similarity in test code. FLAST effectively identifies

test methods likely to expose flakiness based on

their proximity to known flaky tests. Notably,

FLAST demonstrates its efficacy as a predictor with

minimal time and storage overhead, offering a

valuable solution in the realm of test flakiness. A

distinctive feature of FLAST is its ability to detect

flaky tests fully automatically, even before their

execution, preventing wasted testing efforts and

minimizing delays in code velocity. While the

research focus on test flakiness is relatively recent, a

qualitative comparison of existing approaches

positions FLAST as a promising avenue for

addressing this challenge. The potential for FLAST

extends beyond its current implementation; future

work could explore embedding FLAST within

Integrated Development Environments (IDEs) or

Continuous Integration (CI) platforms. This

integration could guide dynamic tools or

automatically alert developers about the risk of

introducing flaky tests during the test case or

method creation process. Importantly, FLAST is not

proposed as an alternative to existing dynamic

solutions; rather, its synergy with dynamic

approaches is emphasized. FLAST's static analysis

efficiently filters out potential flaky tests, allowing

dynamic methods like DeFlaker or Rerun to focus

on a reduced set, optimizing resource utilization.

The collaborative integration of FLAST and

dynamic approaches presents a compelling objective

for future research endeavors in the domain of

software testing.

14. Y. Wang (2021) et.al proposed Research on the

Chamber Pressure Test Method of Small Caliber

Weapons Based on a Double-Layer and Double-

Grid Structure Strain Tester. Addressing the

challenging issue of chamber pressure testing in

internal ballistics, a novel method introduces a

double-layer and double-grid structure strain tester

for small caliber weapons. With its streamlined

design and capacity to record the whole pressure test

curve without jeopardizing the barrel structure, this

novel method streamlines the conventional chamber

pressure test procedure. Unlike conventional

methods, this novel technique does not require

destructive measures. The proposed method

achieves high test accuracy at a low cost, ensuring

reliability and an extended operational lifespan,

coupled with excellent electromagnetic

compatibility (EMC). The basic idea is to use the

double-layer and double-grid strain tester to

measure the strain on the outer barrel wall. This

allows the chamber pressure to be calculated using

thick-walled cylinder theory. The fourth-order

Runge-Kutta algorithm was used to build a

simulation model of chamber pressure after the

mechanism was examined. Strain tester sensitivity

was determined through system calibration.

Comparative analysis with lead wire electronic

manometer tests and simulation modeling methods

demonstrated the method's accuracy and feasibility.

Both simulations and experiments affirmed the new

test method's effectiveness, highlighting its robust

electromagnetic compatibility. This approach

presents a significant advancement in chamber

pressure testing, offering an efficient, cost-effective,

and reliable solution for small caliber weapons.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a637

15. S. Jiang (2021) et.al proposed An Integration

Test Order Strategy to Consider Control Coupling.

Integration testing stands as a pivotal phase in

software testing, ensuring the seamless collaboration

of individual components within a system. The

primary focus of current methods for assessing

stubbing costs in class integration test orders is on

direct links between classes, like inheritance,

aggregation, and association. However, the often

neglect the influence of interclass indirect

relationships introduced by control coupling.

Control coupling can substantially impact both test

orders and stubbing costs. In this research, it present

an innovative integration test order strategy that

incorporates control coupling considerations. It

introduce the concept of a transitive relationship to

characterize this interclass dependency and propose

a novel measurement method to gauge the

complexity of control coupling, specifically the

intricacy of stubs generated for a transitive

relationship. It evaluation of this integration test

order strategy spans 10 programs of varying scales.

The findings demonstrate that accounting for

transitive relationships during the generation of

class integration test orders significantly diminishes

stubbing costs across most programs. Moreover, it

proposed strategy yields satisfactory results more

expeditiously compared to alternative methods. This

research underscores the importance of recognizing

and addressing control coupling in integration

testing, offering a valuable contribution to the

optimization of software testing processes and

resource allocation.

3. Proposed Methods, Merits and Demerits

Authors Proposed Method Merits Demerits

A. M. Khan (2021)
AUTILE Framework:

An AUTOSAR Driven

Agile Development

Methodology to Reduce

Automotive Software

Defects.

AUTILE enhances agility

in automotive software

development, reducing

defects through

AUTOSAR-driven

methodologies.

Requires specialized

AUTOSAR knowledge;

potential initial learning

curve for development

teams.

H. GU (2021) Specification-Driven

Conformance Checking

for Virtual/Silicon

Devices Using Mutation

Testing.

Specification-driven

conformance checking

enhances accuracy by

systematically validating

virtual/silicon devices

against predefined

specifications using

mutation testing.

Complexity may increase

due to extensive

specifications, potentially

leading to longer

development cycles.

A. Núñez (2021) TEA-Cloud: A Formal

Framework for Testing

Cloud Computing

Systems.

TEA-Cloud ensures

rigorous testing of cloud

systems, enhancing

reliability and security in

cloud computing

environments.

Potential complexity may

require specialized

expertise, potentially

leading to resource-

intensive implementation

challenges.

C. -A. Sun (2021) METRIC${+} $+: A

Metamorphic Relation

Identification Technique

Based on Input plus

Output Domains.

Enhances software testing

by robustly identifying

metamorphic relations,

ensuring comprehensive

test coverage.

Potential complexity in

implementing and

managing input plus output

domains for diverse

applications.

N. Aljawabrah (2021) Automated Recovery

and Visualization of

Test-to-Code

Traceability (TCT)

Links: An Evaluation.

Automated TCT enhances

efficiency, ensuring

accurate traceability,

streamlining

development.

Potential complexity and

resource requirements,

necessitating skilled

implementation for optimal

results.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a638

Y. Huang (2021) A Learn-to-Rank

Method for Model-

Based Regression Test

Case Prioritization.

Enhances regression

testing efficiency through

prioritization, optimizing

resource allocation for

improved software

reliability.

Complexity may impede

straightforward

implementation, requiring

careful consideration for

effective application.

J. Caba (2021) Towards Test-Driven

Development for FPGA-

Based Modules across

Abstraction Levels.

Enhances reliability

through rigorous testing,

ensures functionality

alignment, and promotes

systematic development

for FPGA-based modules.

Potential increased initial

development time due to

testing overhead; requires a

comprehensive

understanding of testing

methodologies.

Z. Q. Zhou Metamorphic

Robustness Testing:

Exposing Hidden

Defects in Citation

Statistics and Journal

Impact Factors.

Metamorphic Robustness

Testing reveals latent

flaws in citation statistics,

enhancing the reliability

of impact factor

assessments.

Implementation complexity

may hinder widespread

adoption; requires

expertise for accurate

defect identification.

A. Agrawal (2021) How to “DODGE”

Complex Software

Analytics.

DODGE facilitates

intricate software

analysis, enhancing

decision-making;

streamlining complex

processes for efficient

software development.

Requires specialized

training; initial

implementation may pose a

learning curve for

development teams.

G. K. Rajbahadur

(2021)

Impact of Discretization

Noise of the Dependent

Variable on Machine

Learning Classifiers in

Software Engineering.

Discretization noise

analysis enhances

classifier robustness,

aiding accurate model

interpretation in software

engineering.

Overemphasis may lead to

excessive complexity;

context-specific effects on

diverse software datasets

require consideration.

M. W. Call (2021) Gamifying Software

Engineering Tools to

Motivate Computer

Science Students to Start

and Finish Programming

Assignments Earlier.

Gamifying software tools

enhances student

motivation, fostering early

engagement and

completion of

programming

assignments.

Potential distraction; must

ensure game elements align

with educational goals to

avoid undermining

learning.

G. Jahangirova

(2021)

An Empirical Validation

of Oracle Improvement.

Oracle Improvement"

enhances software

reliability; empirical

validation ensures

enhanced performance

and accurate error

identification.

Potential resource-

intensive process during

large-scale software; may

face challenges with

complex code structures.

R. Verdecchia (2021) Know You Neighbor:

Fast Static Prediction of

Test Flakiness.

Know Your Neighbor

offers rapid static

prediction for test

flakiness, enhancing

software reliability and

efficiency.

Limited adaptability to

dynamic testing

environments may lead to

occasional inaccuracies in

flakiness predictions.

Y. Wang (2021) Research on the The double-layer, double- Increased complexity may

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a639

Chamber Pressure Test

Method of Small Calibre

Weapons Based on a

Double-Layer and

Double-Grid Structure

Strain Tester.

grid strain tester improves

small calibre weapon

testing precision,

enhancing safety and

reliability.

raise costs; potential need

for specialized training in

operating intricate testing

equipment.

S. Jiang (2021) An Integration Test

Order Strategy to

Consider Control

Coupling.

Enhances system

reliability; ensures

effective communication

among integrated

components in a

controlled manner.

Potential increased

complexity; requires

meticulous planning to

avoid unintended

consequences in

integration testing.

4. Conclusion

In this research, the survey highlights the

significance of leveraging historical data in software

testing defect prediction. The findings underscore

the potential of historical data to enhance the

accuracy and efficiency of defect prediction models,

thereby aiding in proactive risk management and

resource allocation. Through various techniques

such as machine learning algorithms, statistical

analysis, and data mining, researchers have

demonstrated the feasibility of harnessing historical

data to anticipate and mitigate software defects.

However, challenges such as data quality, feature

selection, and model interpretability remain

prevalent and require further investigation.

Moreover, the diversity of software projects and

contexts necessitates tailored approaches for

effective utilization of historical data. Despite these

challenges, the literature surveyed provides valuable

insights and methodologies for integrating historical

data into software testing processes, ultimately

facilitating the development of more reliable and

robust software systems. Continued research in this

domain is crucial to advancing defect prediction

techniques and optimizing software quality

assurance practices.

Reference

1. A. M. Khan and T. D. Blackburn, "AUTILE

Framework: An AUTOSAR Driven Agile

Development Methodology to Reduce

Automotive Software Defects," in IEEE

Systems Journal, vol. 15, no. 3, pp. 3283-

3290, Sept. 2021, doi:

10.1109/JSYST.2020.2999587.

2. H. Gu, J. Zhang, M. Chen, T. Wei, L. Lei

and F. Xie, "Specification-Driven

Conformance Checking for Virtual/Silicon

Devices Using Mutation Testing," in IEEE

Transactions on Computers, vol. 70, no. 3,

pp. 400-413, 1 March 2021, doi:

10.1109/TC.2020.2988906.

3. A. Núñez, P. C. Cañizares, M. Núñez and R.

M. Hierons, "TEA-Cloud: A Formal

Framework for Testing Cloud Computing

Systems," in IEEE Transactions on

Reliability, vol. 70, no. 1, pp. 261-284,

March 2021, doi:

10.1109/TR.2020.3011512.

4. C. -A. Sun, A. Fu, P. -L. Poon, X. Xie, H.

Liu and T. Y. Chen, "METRIC$^{+}$+: A

Metamorphic Relation Identification

Technique Based on Input Plus Output

Domains," in IEEE Transactions on

Software Engineering, vol. 47, no. 9, pp.

1764-1785, 1 Sept. 2021, doi:

10.1109/TSE.2019.2934848.

5. N. Aljawabrah, T. Gergely, S. Misra and L.

Fernandez-Sanz, "Automated Recovery and

Visualization of Test-to-Code Traceability

(TCT) Links: An Evaluation," in IEEE

Access, vol. 9, pp. 40111-40123, 2021, doi:

10.1109/ACCESS.2021.3063158.

6. Y. Huang, T. Shu and Z. Ding, "A Learn-to-

Rank Method for Model-Based Regression

Test Case Prioritization," in IEEE Access,

vol. 9, pp. 16365-16382, 2021, doi:

10.1109/ACCESS.2021.3053163.

7. J. Caba, F. Rincón, J. Barba, J. A. De La

Torre, J. Dondo and J. C. López, "Towards

Test-Driven Development for FPGA-Based

Modules Across Abstraction Levels," in

IEEE Access, vol. 9, pp. 31581-31594, 2021,

doi: 10.1109/ACCESS.2021.3059941.

8. Z. Q. Zhou, T. H. Tse and M. Witheridge,

"Metamorphic Robustness Testing:

Exposing Hidden Defects in Citation

Statistics and Journal Impact Factors," in

IEEE Transactions on Software Engineering,

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407081 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a640

vol. 47, no. 6, pp. 1164-1183, 1 June 2021,

doi: 10.1109/TSE.2019.2915065.

9. A. Agrawal, W. Fu, D. Chen, X. Shen and T.

Menzies, "How to “DODGE” Complex

Software Analytics," in IEEE Transactions

on Software Engineering, vol. 47, no. 10, pp.

2182-2194, 1 Oct. 2021, doi:

10.1109/TSE.2019.2945020.

10. G. K. Rajbahadur, S. Wang, Y. Kamei and

A. E. Hassan, "Impact of Discretization

Noise of the Dependent Variable on

Machine Learning Classifiers in Software

Engineering," in IEEE Transactions on

Software Engineering, vol. 47, no. 7, pp.

1414-1430, 1 July 2021, doi:

10.1109/TSE.2019.2924371.

11. M. W. Call, E. Fox and G. Sprint,

"Gamifying Software Engineering Tools to

Motivate Computer Science Students to Start

and Finish Programming Assignments

Earlier," in IEEE Transactions on Education,

vol. 64, no. 4, pp. 423-431, Nov. 2021, doi:

10.1109/TE.2021.3069945.

12. G. Jahangirova, D. Clark, M. Harman and P.

Tonella, "An Empirical Validation of Oracle

Improvement," in IEEE Transactions on

Software Engineering, vol. 47, no. 8, pp.

1708-1728, 1 Aug. 2021, doi:

10.1109/TSE.2019.2934409.

13. R. Verdecchia, E. Cruciani, B. Miranda and

A. Bertolino, "Know You Neighbor: Fast

Static Prediction of Test Flakiness," in IEEE

Access, vol. 9, pp. 76119-76134, 2021, doi:

10.1109/ACCESS.2021.3082424.

14. Y. Wang, T. Ma, D. Pei and C. Chen,

"Research on the Chamber Pressure Test

Method of Small Caliber Weapons Based on

a Double-Layer and Double-Grid Structure

Strain Tester," in IEEE Sensors Journal, vol.

21, no. 17, pp. 18554-18561, 1 Sept.1, 2021,

doi: 10.1109/JSEN.2021.3087615.

15. S. Jiang, M. Zhang, Y. Zhang, R. Wang, Q.

Yu and J. W. Keung, "An Integration Test

Order Strategy to Consider Control

Coupling," in IEEE Transactions on

Software Engineering, vol. 47, no. 7, pp.

1350-1367, 1 July 2021, doi:

10.1109/TSE.2019.2921965.

http://www.ijcrt.org/

