INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
An International Dpen Access, Peer-reviewed, Refereed Journal

Smarandachely product cordial labeling of Triangular graph with Truth Table

Dibya Gulab Minj
Assistant Professor, Department of Mathematics, Holy Cross Women’s College Ambikapur-497001, Chhattisgarh, India

Abstract

In this paper the researcher investigates the labeling of N -Triangular Graph ($\mathrm{N}-\mathrm{T}_{3}$) by admitting the condition of Smarandachely product cordial labeling by preparing the truth table.

Smarandachely product cordial labeling on G is such a labeling $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$ with induced labeling $\mathrm{f}(\mathrm{u}) \mathrm{f}(\mathrm{v})$ on edge $u \mathrm{v} \in E(G)$ that $\mathrm{v}_{\mathrm{f}}(0)-\mathrm{v}_{\mathrm{f}}(1) \mid \geq 2$ and $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \geq 2$.

Key Words- Cordial labeling, Smarandachely product cordial labeling, Triangular Graph
Introduction- Graph labeling is a vast growing research area, which has many applications to the science and technology. Graph labeling is used in radio-astronomy, development of radar and missile guidance codes, spectral characterization of material using x-ray crystallography, communication networks and transportation network. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. Labeling helps to distinguish between any two adjacent vertices or edges. Graph labeling was first introduced in the year 1967 by Rosa [1].

Smarandachely Product Cordial Labeling, introduced by Florentin Smarandache [2] in 1996, explores the cordiality of graphs under a product operation. Smarandachley product cordial labeling was defined in 2018 by S.K.Patel, U.M.Prajapati and A.N. Kansagara [3] on Product cordial labeling of extensions of Barbell Graph. They dealt with study of the product cordial labeling of graphs that obtained by applying various graph operations on barbell graph.

Now the researcher is going to work on a different kind of graph which is known as Triangular graph. Graphs can be used to model interconnection networks in which vertices correspond to processors of the network and the edges correspond to communication links. A new interconnection network topology which is called the triangular graph has been introduced by truth table, which satisfies the condition of SmaranDachely Product Cordial labeling.

Theorem- The N -Triangular Graph $\left(\mathrm{N}-\mathrm{T}_{3}\right)$ admits Smarandachely Product Cordial Labeling $\mathrm{N} \geq 3$.
Proof- Case 1- When N is odd Number- All the vertices (V1, V2, V3, V4, V5, and V6) are labeled with (1, $1,0,1,1,0)$ respectively.

Triangular Graph-

$3 \mathrm{~T}_{3}$

$v(0)=6, v(1)=10$
$\left|\sum v(0)-\sum v(1)\right| \geq 2$
$|6-10| \geq 2$
$4 \geq 2$
$e(0)=9, e(1)=18$
$\left|\sum e(0)-\sum e(1)\right| \geq 2$
$|9-18| \geq 2$
$9 \geq 2$
$5 \mathrm{~T}_{3}$

$v(0)=10 v(1)=16$
$\left|\sum v(0)-\sum v(1)\right| \geq 2$
$|10-16| \geq 2$
$6 \geq 2$
$e(0)=30, e(1)=15$
$\left|\sum e(0)-\sum e(1)\right| \geq 2$
$|30-15| \geq 2$
$15 \geq 2$

Truth Table -When \mathbf{N} is odd-

$\mathrm{N}-\mathrm{T}_{3}$	$\mathrm{~V}(0)$	$\mathrm{V}(1)$	$\left\|\sum \nu(\mathbf{O})-\sum v(\mathbf{1})\right\| \geq 2$	$\mathrm{e}(0)$	$\mathrm{e}(1)$	$\left\|\sum e(0)-\sum e(1)\right\| \geq 2$
$3-\mathrm{T}_{3}$	6	10	4	18	9	9
$5-\mathrm{T}_{3}$	10	16	6	30	15	15
$7-\mathrm{T}_{3}$	14	22	8	42	21	21
$9-\mathrm{T}_{3}$	18	28	10	54	27	27
$11-\mathrm{T}_{3}$	22	34	12	66	33	33
$13-\mathrm{T}_{3}$	26	40	14	78	39	39
$15-\mathrm{T}_{3}$	30	46	16	90	45	45
$17-\mathrm{T}_{3}$	34	52	18	102	51	51
$19-\mathrm{T}_{3}$	40	58	18	114	57	57
$21-\mathrm{T}_{3}$	44	64	20	126	63	63
$23-\mathrm{T}_{3}$	48	70	22	138	69	69
$25-\mathrm{T}_{3}$	52	76	24	150	75	75
$27-\mathrm{T}_{3}$	56	82	26	162	81	81
$29-\mathrm{T}_{3}$	60	88	28	174	87	87
$31-\mathrm{T}_{3}$	64	94	30	186	93	93
$33-\mathrm{T}_{3}$	68	100	32	198	99	99
$35-\mathrm{T}_{3}$	72	106	34	210	105	105
$37-\mathrm{T}_{3}$	76	112	36	222	111	111
$39-\mathrm{T}_{3}$	80	118	38	234	117	117
$41-\mathrm{T}_{3}$	84	124	40	246	123	123
$43-\mathrm{T}_{3}$	88	130	42	258	129	129
$45-\mathrm{T}_{3}$	92	136	44	270	135	135
$47-\mathrm{T}_{3}$	96	142	46	282	141	141
$49-\mathrm{T}_{3}$	100	148	48	294	147	147
$51-\mathrm{T}_{3}$	104	154	50	306	153	153

So on

Case2- When \mathbf{N} is even - Here vertices (V1,V2,V3,V4,V5,V6) are labeled with $(0,1,1,1,0,1)$ respectively.

Triangular Graph-

$|16-20| \geq 2$
$4 \geq 2$
$6 T_{3}$

$v(0)=12 v(1)=24$
$\left|\sum v(0)-\sum v(1)\right| \geq 2$
$|12-24| \geq 2$
$12 \geq 2$
$e(0)=24, e(1)=30$
$\left|\sum e(0)-\sum e(1)\right| \geq 2$
$|24-30| \geq 2$
$6 \geq 2$

Truth Table - When \mathbf{N} is even-

$\mathrm{N}-\mathrm{T}_{\mathrm{n}}$	$\mathrm{V}(0)$	$\mathrm{V}(1)$	$\left\|\sum v(0)-\sum v(1)\right\| \geq 2$	$\mathrm{e}(0)$	$\mathrm{e}(1)$	$\left\|\sum e(0)-\sum e(1)\right\| \geq 2$
$4-\mathrm{T}_{3}$	8	16	8	16	20	4
$6-\mathrm{T}_{3}$	12	24	12	24	30	6
$8-\mathrm{T}_{3}$	16	32	16	32	40	8
$10-\mathrm{T}_{3}$	20	40	20	40	50	10
$12-\mathrm{T}_{3}$	24	48	24	48	60	12
$14-\mathrm{T}_{3}$	28	56	28	56	70	14
$16-\mathrm{T}_{3}$	32	64	32	64	80	16
$18-\mathrm{T}_{3}$	36	72	36	72	90	18
$20-\mathrm{T}_{3}$	40	80	40	80	100	20
$22-\mathrm{T}_{3}$	44	88	44	88	110	22
$24-\mathrm{T}_{3}$	48	96	48	96	120	24
$26-\mathrm{T}_{3}$	52	104	52	104	130	26
$28-\mathrm{T}_{3}$	56	112	56	112	140	28
$30-\mathrm{T}_{3}$	60	120	60	120	150	30
$32-\mathrm{T}_{3}$	64	128	64	128	160	32
$34-\mathrm{T}_{3}$	68	136	68	136	170	34
$36-\mathrm{T}_{3}$	72	144	72	144	180	36
$38-\mathrm{T}_{3}$	76	152	76	152	190	38
$40-\mathrm{T}_{3}$	80	160	80	160	200	40
$42-\mathrm{T}_{3}$	84	168	84	168	210	42
$44-\mathrm{T}_{3}$	88	176	88	176	220	44
$46-\mathrm{T}_{3}$	92	184	92	184	230	46
$48-\mathrm{T}_{3}$	96	192	96	192	240	48
$50-\mathrm{T}_{3}$	100	200	100	200	250	50

So on......
Conclusion- Smarandachely product techniques, researchers have delved into the structural properties of graphs, unraveling new patterns and relationships for the Triangular Graph. This research contributes to the broader landscape of graph theory, fostering a deeper comprehension of the intricate interplay within graphs. It leaves open avenues for future research and invites scholars to build upon these foundations.

Here we labeled the Triangular Graph which satisfies the condition of Smarandachely product cordial labeling on G that is $f: E(G) \rightarrow\{0,1\}$ with induced labelling $f(u) f(v)$ on edge $u v \in E(G)$ that $\left|v_{f}(0)-v_{f}(1)\right| \geq 2$ and $\left|e_{f}(0)-e_{f}(1)\right| \geq 2$.

References-

[1] A.Rosa, On Certain Valuations of the vertices of a Graph, Theory of Graphs (International Symposium, Rome, July 1966) ,Gordon and Breach,N. Y. and Dunod Paris,(1967), 349-355
[2] Florentin Smarandache, "Smarandachley Product Cordial Labeling" Smarandache Notions Journal, Vol7, No. 1-2-3, 1996
[3] Patel S.K, Prajapati U.M and Kansagara, "Product Cordial Labelling of Extensions of Barbell Graph", International Journal of Mathematical Combinatorics.Vol. 4 (2018), (146-159),

