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Abstract: A robotic vision system is a technology that enables a robot to “see.” These systems enable the machine to be able to
identify, navigate, inspect or handle parts or tasks. To interact with the real world, robots require various sensory inputs from their
surroundings, and the use of vision is rapidly increasing nowadays, as vision is unquestionably a rich source of information for a
robotic system. In recent years, robotic manipulators have made significant progress towards achieving human-like abilities. There
is still a large gap between human and robot dexterity.. The development of deep learning methods for vision applications has
become a hot research topic. Given that deep learning has already attracted the attention of the robot vision community, the main
purpose of this survey is to address the use of deep learning in robot vision.

Index Terms — Robotic Vision System, Deep Learning

. INTRODUCTION

A robotic vision system consists of one or more cameras connected to a computer. The computer contains-a processing software
program that helps the robot interpret what it sees. Then, the robot follows the program’s instructions to complete the specified task.
Additional elements, such as lighting, image sensors, communications devices or other components, can be incorporated to add to
the machine’s overall capabilities. There are different modules to build a vision-guided system namely perception, localization, path
planning, and control. As far as robot planning is concerned it is difficult for a robot to react to sudden environmental changes or
avoid any kind of obstacles whereas humans can easily achieve these tasks. In robot planning, a sequence of actions is planned from
start to goal point by using planning algorithms simultaneously avoiding obstacles. However, designing an efficient navigation
strategy is the most important issue in creating intelligent robots. Therefore, the robot planning problem using vision sensors is one
of the most interesting and wide research areas where the ultimate goal is to achieve a safe and optimal route for robot navigation.
In general, vision-based robotic systems can be applied to several industrial applications like spray painting, pick and place,
assembly task in the optical industry, automotive, robotic welding like pipe and spot welding , payload identification and much
more where efficient planning and control are of prime importance. The modules involved in vision-based autonomous robotic
systems are illustrated in Figure 1.
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Figurel: Process flow diagram of vision-based autonomous robots.
I1. VISION SENSORS USED FOR ROBOT PLANNING
Table 2.1: List of Vision Sensors used for Robot Planning
Sr.No Sensor Type Resolution Frame Advantages Disadvantages
' yp Rate(fps) 9 g
Cannot operate
' fully
Less expensive,
o autonomously and
1 2D Sensing 1920x1080 30 : y poor working
to integrate and
highly reliable gler
' low light
conditions
Adaptable to More expensive,
i g
2 RGBD Camera Depth = 15-30 : - .
12801024 hlg_hly flexible, like GP_Us for
increases point
productivity. cloud processing
Simulate human
binocular vision,
works better for Needs powerful
3840x1080, long proc'zssor
3 Stereo 2560720, 15-100 dlstanc_e and CPU intensive
4416x1242, moving due to
1280 x 720 objects,
. two cameras.
works better in
outdoor
applications.
Good Pixel to .
pixel . Expensn:je,
795x596, - ow to readout,
4 ccb 4096x4112 20 reproducibility, Needs more
Has high quality circuitr
ADC y
12-bit ADC
reduces
Less expensive the image quality,
5 CMOS 2592x1944 14-53 P ' Linearity and
Faster read speed 7
sensitivity
variations
are high.
Longer and wider Poor in defining
range, not affected d fected b
Ultrasonic by light conditions edges, aftected by
6 1280x800 125 temperature,
Camera dust, colors, -
humidity, and
transparency, or
the pressure

IJCRT2406684 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | g57


http://www.ijcrt.org/

www.ijcrt.org

© 2024 1IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

reflective
properties
or surface texture
of
the object.

7 Infrared Camera

Good in capturing
9 edges,
Cost effective

160x120,
1080p,720p

Sensitive to IR
light
and sunlight

I11. DEEP LEARNING METHODS FOR ROBOT VISION

The use of the deep learning paradigm has facilitated addressing several computer vision problems in a more successful way
than with traditional approaches. In fact, in several computer vision benchmarks, such as the ones addressing image classification,
object detection and recognition, semantic segmentation, and action recognition, just to name a few, most of the competitive methods
are now based on the use of deep learning techniques

The main motivation of this survey is to address the use of deep learning in robot vision. Table 3.1shows a summary of relevant
work in deep learning for computer vision.

Table 3.1 Summary of Relevant Work in Deep Learning for Computer Vision

Paper

Contribution

Model/Algorithm

Fukushima, 1980 [4]

The Neocognitron network is proposed.

Neocognitron

LeCunetal., 1998 [19]

LeNet-5, the first widely known convolutional neural
network, is proposed. Previous versions of this networkwere

proposed in 1989-1990. [17][18].

LeNet-5

Hochreiter & Schmidhuber, 1997 [68]

LSTM recurrent networks are introduced.

LSTM (Long Short-Term Memory)

Nair & Hinton, 2010 [5]

The paper introduced the ReLU activation functions.

ReLU (Rectified linear unit)

Glorot, Bordes, & Bengio, 2010 [7]

The paper demonstrated that the training of a network ismuch

faster when ReLU activation functions are used.

ReLU (Rectified linear unit)

Bottou, 2010 [67]

The Stochastic Gradient Descent is proposed as a learning

algorithm for large-scale networks.

Stochastic Gradient Descent

Hinton et al. 2012 [62] Dropout, a simple and effective method to preventoverfitting,| Dropout
is proposed.
Krizhevsky et al., 2012 [20] AlexNet is proposed and, thanks to its outstanding AlexNet
performance in the ILSVRC 2012 benchmark [69], the boom
of deep learning in the computer vision communitystarted.
AlexNet has 8 layers.
Simonyan & Zisserman, 2014 [21] The VGG network is proposed. It has 16/18 layers. VGG
Girshick et al., 2014 [27] The Regions with CNN features network is proposed. R-CNN
Szegedy et al., 2015 [22] The GoogleNet network is proposed. It has 22 layers. GoogleNet
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He et al., 2015 [23][24]

The ResNet network is proposed. It is based on the use of

residuals and is able to use up to 1001 layers.

ResNet

Badrinarayanan et al., 2015 [31]

applications, is proposed.

SegNet, a fully convolutional network for imagesegmentation

SegNet

Van de Sande et al., 2016 [235]

The DenseNet network is proposed. It includes skip

connections between every layer and its previous layers.

DenseNet

Hu et al [221]

The Squeeze-and-excitation network is proposed. It
introduces squeeze-and-excitation blocks used for

representing contextual information.

SENet

1V. DESIGNING DEEP-LEARNING BASED VISION APPLICATIONS

For designers of a deep-learning based vision system, it is important to know which learning frameworks and databases are available

to be used in the design process, which DNN models are best suited for their application, whether an already trained DNN can be

adapted to the new application, and how to approach the learning process. All these issues are addressed in this section. These

guidelines can be used in the design process of any kind of vision system, including robot vision systems.

Given the complexity in the design and training of DNNs, special learning frameworks/tools are used for these tasks. There is a wide

variety of frameworks available for training and using deep neural networks, as well as several public databases suited to various

applications and used for training. Table 4.1 presents some of these frameworks, showing the DNN models included in each case.

Table 4.1 Tools for Designing and Developing deep learning based Vision Applications.

Tool

Description

Included DNN models

Caffe [60]

Deep learning framework, written in C++ and
able to use CUDA/CuDNN for multi-GPU,
Support for Python and MATLAB.

Caffe Model Zoo @ includes pre-trained reference models of CaffeNet,
AlexNet, R-CNN, GoogLeNet, NiN, VGG, Places-CNN, FCN,
ParseNet, SegNet, among others.

Torch [130]

Scientific computing framework, written in C
and able to use CUDA/CuDNN for multi- GPU,
Support for LualJIT.

Torch Model Zoo-includes pre-trained models of OverFeat,

DeepCompare, and models loaded from Caffe into Torch.

Theano [131][132]

Python library for large-scale computing, able to|
use CUDA/CUDNN. It has started experimental
multi-GPU support.

Auto-encoders, RBMs (through Pylearn2), CNN, LSTM (through
Theano Lights), models from Caffe Zoo (through Lasagne)

TensorFlow [137]

Framework for computation using data flo
graphs, written in C++ with Python APIs. Able
to use CUDA/CUDNN for multi- GPU/multi-

machine.

It has examples of small CNNs and RNN with LSTM in its tutorial.

Can load models from Caffe Zoo.

MXNet [138]

Deep learning framework. It is portable, allows|
multi-GPU/multi-machine use, and has bindings
for Python, R, C++ and Julia.

Includes three pre-trained models: Inception-BN Network, Inception-
V3 Network, and Full ImageNet Network.

Deeplearning4j [139]

Deep learning library written in Java and Scala.,
Has multi-GPU/multi-machine support.

Examples of RBM, DBM, LSTM. Its Model Zoo includes AlexNet,
LeNet, VGGNetA, VGGNetD.
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Chainer [140]

Deep Learning Framework written in Python.

Implements CuPy for multi-GPU support.

AlexNet, GoogLeNet, NiN, MLP. Can import some pre-trained
models from the Caffe Zoo.

No support for GPUs.

CNTK [141] Computational  Network Toolkit.  Allows It has no pre-trained models.
efficient multi-GPU/multi-machine use.
OverFeat [142] Feature extractor and classifier based on CNNs.| OverFeat Network (pre-trained on ImageNet)

SINGA [143][144]

Distributed deep learning platform written in
C++, Has support for multi-GPU/multi-
machine.

It has no pre-trained models.

ConvNetJS [145]

Javascript library for training deep learning
models entirely in a web browser. No support for|
GPUs.

Browser demos of CNNs

Cuda-convnet? [146]

A fast C++/CUDA implementation of
convolutional neural networks. Has support for|
multi-GPU.

It has no pre-trained models.

MatConvNet [147]

MATLAB toolbox implementing CNNs. Able
to use CUDA/CuDNN on multi-GPU.

Pre-trained models of VGG-Face, FCNs, ResNet, GoogLeNet,
VGG-VD [21], VGG-S,M,F [74] CaffeNet, AlexNet.

CUDAJ/CuDNN on multi-GPU/multi-machine.
Written in Python.

Neon [148] Python based Deep Learning framework. Able| Pre-trained models of VGG, Reinforcement learning, ResNet, Image
to use CUDA for multi-GPU. Captioning, Sentiment analysis, and more.
Veles [149] Distributed ~ platform,  able to  use AlexNet, FCNs, CNNs, auto-encoders.

The availability of training data is also a crucial issue. There are several datasets available for popular computer vision tasks such
as image classification, object detection and recognition, semantic segmentation, and action recognition (see Table 4.2).

Table 4. 2Training Databases used in some selected Computer Vision Applications.

Application

Selected databases

Image classification

images) [162]

MNIST (70,000 images, handwritten digits) [171], CIFAR-10 (60,000 tiny images) [172], CIFAR-

100 (60,000 tiny images) [172], ImageNet [163] (14M+ images), SUN (scene classification, 130,519

recognition

Object detection and

Pascal VOC 2012 (11,540 train/val images) [154], KITTI (7,481 train images, car/pedestrian/cyclist)

[157], MS COCO (300,000+ images) [158], LabelMe (2,920 train images) [159]

Semantic segmentation

NYU2 (RGBD, 1,449 images) [155]

Cityscapes (5,000 fine + 20,000 coarse images) [160], Pascal VOC 2012 (2,913 images) [154],

Action recognition

MPII (25,000+ images) [156], Pascal VOC 2012 (5,888 images) [154]
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V. SELECTION OF THE DNN MODEL

The selection of the network model to be used must consider a trade-off between classification performance, computational

requirements, and processing speed.

When selecting a DNN model, there are two main options: using a pre-existing model, or using a novel one. But, the use of a fully
novel DNN model is not recommended because of the difficulties in predicting its behavior, unless the purpose of the developer is to
propose a new optimized neural model. When using a pre-existing model there are three options: (i) using a pre- trained neural model
for solving the task directly, (ii) fine-tuning the parameters of a pre-trained model for adapting it to the new task, or (iii) training the
model from scratch. In cases (ii) and (iii), the dimensionality of the network output can be different from the dimensionality required
by the task. In that case, the last fully-connected layers of the network in charge of the classification can be replaced by new ones, or
by statistical classifiers such as SVMs or random forests.

Table 5.1 shows popular DNNSs, the number of layers and parameters used in each case, the main applications in which the DNNs
have been used, and the sizes of the datasets that have been used for training.

Table 5.1 Popular CNN-based Architectures used in Computer-vision Applications. The dataset size does not consider data
augmentation.

Name Layers Parameters Application Dataset size used for

training (# images)

Le-Net5 2 conv, 2 fc, 1 Gaussian | 60 K Image classification 70K

AlexNet [20] 5 conv, 3 fc 60 M Image classification 1.2M
VGG-Fast/Medium/Slow 5 conv, 3 fc 77M [ 102M / 102M Image classification 12M
VGG16 13 conv, 3 fc 138 M Image classification 1.2M
VGG19 16 conv, 3 fc 144 M Image classification 1.2M
GoogleNet 22 layers 7™ Image classification 12M
ResNet-50 [23] 49 res-conv + 1 fc 0.75 M* Image classification (also 1.2M

used in other applications)

DenseNet [235] 1 conv + 1 pooling + N 0.8M —27.2M Image classification 1.2M

dense blocks + 1 fc

SENet [221] 1 conv + 1 pooling + N 103MB - 137MB Image Classification 1.2M
squeeze-and-excitation
blocks + 1 fc

Faster R-CNN (ZF) [29] 5 conv shared, 2 conv 54 M Object detection and 200 K
RPN, 1 fc reg, 1 fc cls recognition

Faster R-CNN (VGG16) [29] 13 conv shared, 2 conv 138 M Object detection and 200 K
RPN, 1 fcreg, 1 fc cls recognition

Faster R-CNN (ResNet-50) [23]| 49 res-conv shared, 2 conv| 0.75 M4 Object detection and 200K
RPN, 1 fc reg, 1 fc cls recognition

SegNet [31] 13 conv encoder, 13 conv | 29.45 M Semantic segmentation 200 K
decoder
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Adelaide_context [166] VGG-16 based, unary and | Not available Semantic segmentation 200 K
pairwise nets

DeepLabv3 [208] ResNet based, atrous Not available Semantic segmentation 200 K
convolution

Pyramid Scene Parsing network | Pyramid pooling modules | 188 MB Semantic segmentation 200K

[209]

Stacked hourglass networks 42 layers, multiscale 166 MB Action Recognition 24 K

[167] skipping connections

R*CNN [168] 5 conv shared, 2 fc for 500 MB Action Recognition 24 K
main object, 2 fc for
secondary object

V1. DEEP NEURAL NETWORKS IN ROBOT VISION
Deep learning has already attracted the attention of the robot vision community, and during the last couple of years studies

addressing the use of deep learning in robots have been published in robotics conferences. Table 6.1 shows some of the recently

published papers on robot vision applications based on DNN.

Table 6. Selected Papers on Robot Vision Applications based on DNN.

Paper

DNN Model and Distinctive Methods

Application

Pasquale et al., 2015 [38]

Use of CaffeNet in humanoid robots for recognizing objects.

Object Detection and Categorization

Bogun et al., 2015 [39]

DNN with LSTM for recognizing objects in videos.

Object Detection and Categorization

LCDF as person proposal.

Hosang at al., 2015 [40] AlexNet-based R-CNN for pedestrian detection with Object  Detection and  Categorization
SquaresChnFtrs as person proposal. (Pedestrian detection)
Tome et al., 2016 [42] CNN (Alexnet v/s GoogleNet) for pedestrian detection with | Object  Detection® and  Categorization

(Pedestrian detection)

Lenz at al., 2013 [45]

CNN trained on hand-labeled data, two-stage with two hidden

layers each.

Object.Grasping and Manipulation

Redmon et al., 2015 [46]

CNN based on AlexNet trained on hand-labeled data,rectangle

regression.

Object Grasping and Manipulation

Sung et al., 2016 [47]

Transfer manipulation strategy in embedding space by using a

deep neural network.

Object Grasping and Manipulation

Levine at al., 2016 [48]

Learn hand-eye coordination independently of camera

calibration or robot pose, visual/motor DNN.

Object Grasping and Manipulation

Zhou 2014 et al., [50]

CNNSs for place recognition based on CaffeNet.

Scene Representation and Classification

(Place recognition)

Gomez-Ojeda et al., 2015 [49]

CNN for appearance-invariant place recognition, based on
CaffeNet.

Scene Representation and Classification

(Place recognition)
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Hou et al., 2015 [51]

CNN for loop closing, based on CaffeNet.

Scene Representation and Classification

(Place recognition)

Sundehauf et al., 2015 [52]

Place categorization and semantic mapping, based on
CaffeNet.

Scene Representation and Classification

(Scene categorization)

Ye et al., 2016 [53]

R-CNN for functional scene understanding, based on
Selective Search and VGG.

Scene Representation and Classification

(Scene categorization)

Cadena et al., 2016 [97]

Multi-modal auto-encoders for semantic segmentation. The
inputs are RGB-D, LIDAR and stereo data. It uses inverse

depth parametrization.

Scene  Representation and  Classification
(Semantic  segmentation, Scene  Depth
Estimation)

Lietal., 2016 [98]

FCN for vehicle detection. Input is a point map generatedusing
a LIDAR.

Object Detection and Categorization

Alcantarilla et al., 2016 [99]

Deconvolutional Networks for Street-View ChangeDetection.

Scene Representation and Classification

(Street-View Change Detection)

Sunderhauf et al., 2015 [100]

R-CNN used for creating region landmarks for describing an
image. AlexNet (up to conv3) as feature extractor.

Scene Representation and Classification

(Place Recognition)

Albani et al., 2016 [101]

CNN as a validating step for humanoid robot detection.

Object  Detection  and

(humanoid soccer robot detection)

Categorization

Speck et al., 2016 [102]

CNN:s for ball localization in robotics soccer.

Object  Detection and

(humanoid soccer ball detection)

Categorization

Finnetal., 2016 [103]

Deep Spatial Auto-encoder for learning state representation.

Used for reinforcement learning.

Object Grasping and Manipulation

Gao et al., 2016 [104]

Visual CNN and Haptic CNN combined for haptic
classification.

Spatiotemporal Vision (Object Understanding)

Husain et al., 2016 [105]

Temporal concatenation of the output of pre-trained VGG-16

into a 3D convolutional layer.

Spatiotemporal Vision (Action Recognition)

Oliveira et al., 2016 [106]

FCN-based architecture for human body part segmentation.

Object Detection and Categorization

Zaki et al. 2016 [107]

Convolutional Hypercube Pyramid based on VGG-f as feature
extractor for RGBD.

Object Detection and Categorization

Mendes et al., 2016 [108]

Network-in-Network converted into FCN for road

segmentation.

Scene Representation and Categorization

(Semantic Segmentation)

Pinto et al., 2016 [109]

AlexNet based architecture to predict grasp location and angle
from image patches, based on self-supervision.

Object Grasping and Manipulation
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Jain et al., 2016 [110]

Fusion RNN based on LSTM units fed by visual features.

Spatiotemporal ~ Vision (Human  Action

Prediction).

Schlosser et al., 2016 [111]

R-CNN for pedestrian detection by using RGB-D from camera
and LIDAR. The depth represented using HHA.RGB-D

deformable parts model as object proposals.

Object Detection and Recognition (Pedestrian
detection)

Costante et al., 2016 [112]

CNNs for learning feature representation and frame to frame
motion estimation from optical flow.

Spatiotemporal Vision (Visual Odometry)

Liao et al., 2016 [113]

AlexNet-based scene classifier with a semantic segmentation

branch.

Scene Representation and Classification (Place

Classification / Semantic Segmentation)

Mabhler et al., 2016 [114]

Multi-View Convolutional Neural Networks with Pre-trained
AlexNet as CNNs for computing shape descriptors for 3D
objects. Used for selecting object grasps.

Object Grasping and Manipulation

Guo et al., 2016 [115]

AlexNet-based CNN for detecting object and grasp by

regression on an image patch.

Object Grasping and Manipulation

Yinetal, 2016 [116]

Deep Autoencoder for nonlinear time alignment of human
skeleton representations.

Spatiotemporal ~ vision (Human  Action

Recognition)

Giusti et al., 2016 [117]

CNN that receives a trail image as input and classifies it asthe
kind of motion needed for remaining on the trail.

Scene Representation and Classification (Trail
Direction Classification)

Held et al., 2016 [118]

CaffeNet, pre-trained on ImageNet, fine-tuned for viewpoint

Object Detection and Categorization (Single-

invariance. view Object Recognition)
Yang et al., 2016 [119] FCN and DSN based Network with AlexNet as basis. Usedwith| Scene. - Representation = and  Classification
CRF for estimating 3D scene layout from monocular camera. | (Semantic.  Segmentation,  Scene  Depth
Estimation)
Ursic et al., 2016 [120] R-CNN used for generating histograms of part-based models. | Scene Representation and Classification

Places-CNN (CaffeNet trained on Places 205) as region feature

extractor.

(Place Classification)

Bunel et al., 2016 [121]

CNN architecture of 4 convolutional layers with PReLU as
activation function and 2 FC layers. Used for detecting

pedestrians at far distance.

Object  Detection  and

(Pedestrian Detection)

Categorization

Murali et al., 2016 [122]

VGG architecture as feature extractor for unsupervised
segmentation of image sequences.

Spatiotemporal  Vision (Segmentation of

trajectories in robot-assisted surgery).

Kendall et al., 2016 [123]

Bayesian PoseNet (Modified GoogLeNet) with poseregression,

use dropout for estimating uncertainty.

Scene Representation and Classification

(Camera re-localization)

Husain et al., 2016 [124]

CNN using layers from OverFeat Network with multiple
pooling sizes. RGB-D inputs. Use of HHA and distance-from-
wall for depth.

Scene Representation and Classification

(Semantic Segmentation)
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Hoffman et al., 2016 [125] R-CNN using RGB-D data, based on AlexNet and HHA. Object Detection and Categorization

Proposals are based on RGB-D Selective Search.

Sunderhauf et al., 2016 [126] Places-CNN as image classifier for building 2D grid semantic | Scene Representation and Classification

maps. LIDAR used for SLAM. Bayesian filtering over class (Place Classification)
labels.

Saxena et al., 2017 [189]

CNN used for image-based visual servoing. Inputs are Object Grasping and Manipulation (Visual
monocular images from current and desired poses. Outputsare | servoing)

velocity commands for reaching the desired pose.

Lei et al., [191] Robot exploration by using a CNN, trained first by supervised | Scene Representation and Classification

learning, later by using deep reinforcement learning. Tested on| (Scene Exploration)

simulated and real experiments.

Zhu et al., [192] Robot navigation by learning a scene-dependent Siamese Scene Representation and Classification

network, which receives images from two places as input, and | (Visual Navigation)

generates motion commands for travelling between them.

Mirowski et al., [193]

Robot navigation in complex maze-like environments from Scene Representation and Classification
raw monocular images and inertial information. Use of deep | (Visual Navigation)

reinforcement learning on a network composed of a CNN

followed by two LSTM layers. Multi-task loss considering
reward prediction and depth prediction improves learning.

VII. CONCLUSIONS

This survey provides a valuable guidance for the developers of robot vision systems, since it promotes understanding of the

basic concepts behind the application of deep-learning in vision applications, explains the tools and frameworks used in the

development process of vision systems, and shows current tendencies in the use of DNN models in-robot vision.
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