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Abstract:  A robotic vision system is a technology that enables a robot to “see.” These systems enable the machine to be able to 

identify, navigate, inspect or handle parts or tasks. To interact with the real world, robots require various sensory inputs from their 

surroundings, and the use of vision is rapidly increasing nowadays, as vision is unquestionably a rich source of information for a 

robotic system. In recent years, robotic manipulators have made significant progress towards achieving human-like abilities. There 

is still a large gap between human and robot dexterity.. The development of deep learning methods for vision applications has 

become a hot research topic. Given that deep learning has already attracted the attention of the robot vision community, the main 

purpose of this survey is to address the use of deep learning in robot vision. 

 

Index Terms – Robotic Vision System, Deep Learning 

I. INTRODUCTION 

 

A robotic vision system consists of one or more cameras connected to a computer. The computer contains a processing software 

program that helps the robot interpret what it sees. Then, the robot follows the program’s instructions to complete the specified task. 

Additional elements, such as lighting, image sensors, communications devices or other components, can be incorporated to add to 

the machine’s overall capabilities.There are different modules to build a vision-guided system namely perception, localization, path 

planning, and control. As far as robot planning is concerned it is difficult for a robot to react to sudden environmental changes or 

avoid any kind of obstacles whereas humans can easily achieve these tasks. In robot planning, a sequence of actions is planned from 

start to goal point by using planning algorithms simultaneously avoiding obstacles. However, designing an efficient navigation 

strategy is the most important issue in creating intelligent robots. Therefore, the robot planning problem using vision sensors is one 

of the most interesting and wide research areas where the ultimate goal is to achieve a safe and optimal route for robot navigation. 

In general, vision-based robotic systems can be applied to several industrial applications like spray painting, pick and place, 

assembly task in the optical industry, automotive, robotic welding like pipe and spot welding , payload identification and much 

more where efficient planning and control are of prime importance. The modules involved in vision-based autonomous robotic 

systems are illustrated in Figure 1. 
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Figure1: Process flow diagram of vision-based autonomous robots. 

II. VISION SENSORS USED FOR ROBOT PLANNING 

Table 2.1: List of Vision Sensors used for Robot Planning 

 

Sr.No Sensor Type Resolution 
Frame 

Rate(fps) 
Advantages Disadvantages 

1 2D Sensing 1920x1080 30 

Less expensive, 

easy 

to integrate and 

highly reliable. 

Cannot operate 

fully 

autonomously and 

poor working 

under 

low light 

conditions 

2 RGBD Camera 

RGB = 640x480 

Depth = 

1280x1024 

15–30 

Adaptable to 

complex varying 

work conditions, 

highly flexible, 

increases 

productivity. 

More expensive, 

need proper 

system 

like GPUs for 

point 

cloud processing 

3 Stereo 

3840x1080, 

2560x720, 

4416x1242, 

1280 x 720 

15–100 

Simulate human 

binocular vision, 

works better for 

long 

distance and 

moving 

objects, 

works better in 

outdoor 

applications. 

Needs powerful 

processor, 

CPU intensive 

due to 

two cameras. 

4 CCD 
795x596, 

4096x4112 
20 

Good Pixel to 

pixel 

reproducibility, 

Has high quality 

ADC 

Expensive, 

Slow to readout, 

Needs more 

circuitry 

5 CMOS 2592x1944 14–53 
Less expensive, 

Faster read speed 

12-bit ADC 

reduces 

the image quality, 

Linearity and 

sensitivity 

variations 

are high. 

6 
Ultrasonic 

Camera 
1280x800 12.5 

Longer and wider 

range, not affected 

by light conditions 

dust, colors, 

transparency, or 

the 

Poor in defining 

edges, affected by 

temperature, 

humidity, and 

pressure 
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reflective 

properties 

or surface texture 

of 

the object. 

7 Infrared Camera 
160x120, 

1080p,720p 
9 

Good in capturing 

edges, 

Cost effective 

Sensitive to IR 

light 

and sunlight 

 

III. DEEP LEARNING METHODS FOR ROBOT VISION  

The use of the deep learning paradigm has facilitated addressing several computer vision problems in a more successful way 

than with traditional approaches. In fact, in several computer vision benchmarks, such as the ones addressing image classification, 

object detection and recognition, semantic segmentation, and action recognition, just to name a few, most of the competitive methods 

are now based on the use of deep learning techniques 

The main motivation of this survey is to address the use of deep learning in robot vision. Table 3.1shows a summary of relevant 

work in deep learning for computer vision. 

 

 

Table 3.1 Summary of Relevant Work in Deep Learning for Computer Vision 

 

Paper Contribution Model/Algorithm 

Fukushima, 1980 [4] The Neocognitron network is proposed. Neocognitron 

LeCun et al., 1998 [19] LeNet-5, the first widely known convolutional neural 

network, is proposed. Previous versions of this network were 

proposed in 1989-1990. [17][18]. 

LeNet-5 

Hochreiter & Schmidhuber, 1997 [68] LSTM recurrent networks are introduced. LSTM (Long Short-Term Memory) 

Nair & Hinton, 2010 [5] The paper introduced the ReLU activation functions. ReLU (Rectified linear unit) 

Glorot, Bordes, & Bengio, 2010 [7] The paper demonstrated that the training of a network is much 

faster when ReLU activation functions are used. 

ReLU (Rectified linear unit) 

Bottou, 2010 [67] The Stochastic Gradient Descent is proposed as a learning 

algorithm for large-scale networks. 

Stochastic Gradient Descent 

Hinton et al. 2012 [62] Dropout, a simple and effective method to prevent overfitting, 

is proposed. 

Dropout 

Krizhevsky et al., 2012 [20] AlexNet is proposed and, thanks to its outstanding 

performance in the ILSVRC 2012 benchmark [69], the boom 

of deep learning in the computer vision community started. 

AlexNet has 8 layers. 

AlexNet 

Simonyan & Zisserman, 2014 [21] The VGG network is proposed. It has 16/18 layers. VGG 

Girshick et al., 2014 [27] The Regions with CNN features network is proposed. R-CNN 

Szegedy et al., 2015 [22] The GoogleNet network is proposed. It has 22 layers. GoogleNet 
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He et al., 2015 [23][24] The ResNet network is proposed. It is based on the use of 

residuals and is able to use up to 1001 layers. 

ResNet 

Badrinarayanan et al., 2015 [31] SegNet, a fully convolutional network for image segmentation 

applications, is proposed. 

SegNet 

 
Van de Sande et al., 2016 [235] 

The DenseNet network is proposed. It includes skip 

connections between every layer and its previous layers. 

DenseNet 

Hu et al [221] The Squeeze-and-excitation network is proposed. It 

introduces squeeze-and-excitation blocks used for 

representing contextual information. 

SENet 

 

IV. DESIGNING DEEP-LEARNING BASED VISION APPLICATIONS  

For designers of a deep-learning based vision system, it is important to know which learning frameworks and databases are available 

to be used in the design process, which DNN models are best suited for their application, whether an already trained DNN can be 

adapted to the new application, and how to approach the learning process. All these issues are addressed in this section. These 

guidelines can be used in the design process of any kind of vision system, including robot vision systems. 

Given the complexity in the design and training of DNNs, special learning frameworks/tools are used for these tasks. There is a wide 

variety of frameworks available for training and using deep neural networks, as well as several public databases suited to various 

applications and used for training. Table 4.1 presents some of these frameworks, showing the DNN models included in each case. 

Table 4.1 Tools for Designing and Developing deep learning based Vision Applications. 

Tool Description Included DNN models 

Caffe [60] Deep learning framework, written in C++ and 

able to use CUDA/CuDNN for multi-GPU. 

Support for Python and MATLAB. 

Caffe Model Zoo 3 includes pre-trained reference models of CaffeNet, 

AlexNet, R-CNN, GoogLeNet, NiN, VGG, Places-CNN, FCN, 

ParseNet, SegNet, among others. 

Torch [130] Scientific computing framework, written in C 

and able to use CUDA/CuDNN for multi- GPU. 

Support for LuaJIT. 

Torch Model Zoo includes pre-trained models of OverFeat, 

DeepCompare, and models loaded from Caffe into Torch. 

Theano [131][132] Python library for large-scale computing, able to 

use CUDA/CuDNN. It has started experimental 

multi-GPU support. 

Auto-encoders, RBMs (through Pylearn2), CNN, LSTM (through 

Theano Lights), models from Caffe Zoo (through Lasagne) 

TensorFlow [137] Framework for computation using data flow 

graphs, written in C++ with Python APIs. Able 

to use CUDA/CuDNN for multi- GPU/multi-

machine. 

It has examples of small CNNs and RNN with LSTM in its tutorial. 

Can load models from Caffe Zoo. 

MXNet [138] Deep learning framework. It is portable, allows 

multi-GPU/multi-machine use, and has bindings 

for Python, R, C++ and Julia. 

Includes three pre-trained models: Inception-BN Network, Inception-

V3 Network, and Full ImageNet Network. 

Deeplearning4j [139] Deep learning library written in Java and Scala. 

Has multi-GPU/multi-machine support. 

Examples of RBM, DBM, LSTM. Its Model Zoo includes AlexNet, 

LeNet, VGGNetA, VGGNetD. 
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Chainer [140] Deep Learning Framework written in Python. 

Implements CuPy for multi-GPU support. 

AlexNet, GoogLeNet, NiN, MLP. Can import some pre-trained 

models from the Caffe Zoo. 

CNTK [141] Computational Network Toolkit. Allows 

efficient multi-GPU/multi-machine use. 

It has no pre-trained models. 

OverFeat [142] Feature extractor and classifier based on CNNs. 

No support for GPUs. 

OverFeat Network (pre-trained on ImageNet) 

SINGA [143][144] Distributed deep learning platform written in 

C++, Has support for multi-GPU/multi- 

machine. 

It has no pre-trained models. 

ConvNetJS [145] Javascript library for training deep learning 

models entirely in a web browser. No support for 

GPUs. 

Browser demos of CNNs 

Cuda-convnet2 [146] A fast C++/CUDA implementation of 

convolutional neural networks. Has support for 

multi-GPU. 

It has no pre-trained models. 

MatConvNet [147] MATLAB toolbox implementing CNNs. Able 

to use CUDA/CuDNN on multi-GPU. 

Pre-trained models of VGG-Face, FCNs, ResNet, GoogLeNet, 

VGG-VD [21], VGG-S,M,F [74] CaffeNet, AlexNet. 

Neon [148] Python based Deep Learning framework. Able 

to use CUDA for multi-GPU. 

Pre-trained models of VGG, Reinforcement learning, ResNet, Image 

Captioning, Sentiment analysis, and more. 

Veles [149] Distributed platform, able to use 

CUDA/CuDNN on multi-GPU/multi-machine. 

Written in Python. 

AlexNet, FCNs, CNNs, auto-encoders. 

 

The availability of training data is also a crucial issue. There are several datasets available for popular computer vision tasks such 

as image classification, object detection and recognition, semantic segmentation, and action recognition (see Table 4.2). 

 

Table 4. 2Training Databases used in some selected Computer Vision Applications. 

Image classification MNIST (70,000 images, handwritten digits) [171], CIFAR-10 (60,000 tiny images) [172], CIFAR- 

 

100 (60,000 tiny images) [172], ImageNet [163] (14M+ images), SUN (scene classification, 130,519 

 

images) [162] 

Object detection and 

recognition 

Pascal VOC 2012 (11,540 train/val images) [154], KITTI (7,481 train images, car/pedestrian/cyclist) 

 

[157], MS COCO (300,000+ images) [158], LabelMe (2,920 train images) [159] 

Semantic segmentation Cityscapes (5,000 fine + 20,000 coarse images) [160], Pascal VOC 2012 (2,913 images) [154], 

 

NYU2 (RGBD, 1,449 images) [155] 

Action recognition MPII (25,000+ images) [156], Pascal VOC 2012 (5,888 images) [154] 

 

Selected databases Application 
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V. SELECTION OF THE DNN MODEL 

The selection of the network model to be used must consider a trade-off between classification performance, computational 

requirements, and processing speed. 

When selecting a DNN model, there are two main options: using a pre-existing model, or using a novel one. But, the use of a fully 

novel DNN model is not recommended because of the difficulties in predicting its behavior, unless the purpose of the developer is to 

propose a new optimized neural model. When using a pre-existing model there are three options: (i) using a pre- trained neural model 

for solving the task directly, (ii) fine-tuning the parameters of a pre-trained model for adapting it to the new task, or (iii) training the 

model from scratch. In cases (ii) and (iii), the dimensionality of the network output can be different from the dimensionality required 

by the task. In that case, the last fully-connected layers of the network in charge of the classification can be replaced by new ones, or 

by statistical classifiers such as SVMs or random forests. 

Table 5.1 shows popular DNNs, the number of layers and parameters used in each case, the main applications in which the DNNs 

have been used, and the sizes of the datasets that have been used for training. 

 
Table 5.1 Popular CNN-based Architectures used in Computer-vision Applications. The dataset size does not consider data 

augmentation. 
 

Name Layers Parameters Application Dataset size used for 

training (# images) 

Le-Net5 2 conv, 2 fc, 1 Gaussian 60 K Image classification 70 K 

AlexNet [20] 5 conv, 3 fc 60 M Image classification 1.2 M 

VGG-Fast/Medium/Slow 5 conv, 3 fc 77M / 102M / 102M Image classification 1.2 M 

VGG16 13 conv, 3 fc 138 M Image classification 1.2 M 

VGG19 16 conv, 3 fc 144 M Image classification 1.2 M 

GoogleNet 22 layers 7 M Image classification 1.2 M 

ResNet-50 [23] 49 res-conv + 1 fc 0.75 M4 Image classification (also 

used in other applications) 

1.2 M 

DenseNet [235] 1 conv + 1 pooling + N 0.8M – 27.2M Image classification 1.2 M 

 dense blocks + 1 fc    

SENet [221] 1 conv + 1 pooling + N 

squeeze-and-excitation 

blocks + 1 fc 

103MB – 137MB Image Classification 1.2 M 

Faster R-CNN (ZF) [29] 5 conv shared, 2 conv 

RPN, 1 fc reg, 1 fc cls 

54 M Object detection and 

recognition 

200 K 

Faster R-CNN (VGG16) [29] 13 conv shared, 2 conv 

RPN, 1 fc reg, 1 fc cls 

138 M Object detection and 

recognition 

200 K 

Faster R-CNN (ResNet-50) [23] 49 res-conv shared, 2 conv 

RPN, 1 fc reg, 1 fc cls 

0.75 M4 Object detection and 

recognition 

200 K 

SegNet [31] 13 conv encoder, 13 conv 

decoder 

29.45 M Semantic segmentation 200 K 

http://www.ijcrt.org/


www.ijcrt.org                                                          © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT2406684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g62 
 

Adelaide_context [166] VGG-16 based, unary and 

pairwise nets 

Not available Semantic segmentation 200 K 

DeepLabv3 [208] ResNet based, atrous 

convolution 

Not available Semantic segmentation 200 K 

Pyramid Scene Parsing network 

[209] 

Pyramid pooling modules 188 MB Semantic segmentation 200K 

Stacked hourglass networks 

[167] 

42 layers, multiscale 

skipping connections 

166 MB Action Recognition 24 K 

R*CNN [168] 5 conv shared, 2 fc for 

main object, 2 fc for 

secondary object 

500 MB Action Recognition 24 K 

 

VI. DEEP NEURAL NETWORKS IN ROBOT VISION 

Deep learning has already attracted the attention of the robot vision community, and during the last couple of years studies 

addressing the use of deep learning in robots have been published in robotics conferences. Table 6.1 shows some of the recently 

published papers on robot vision applications based on DNN.  

Table 6. Selected Papers on Robot Vision Applications based on DNN. 

Paper DNN Model and Distinctive Methods Application 

Pasquale et al., 2015 [38] Use of CaffeNet in humanoid robots for recognizing objects. Object Detection and Categorization 

Bogun et al., 2015 [39] DNN with LSTM for recognizing objects in videos. Object Detection and Categorization 

Hosang at al., 2015 [40] AlexNet-based R-CNN for pedestrian detection with 

SquaresChnFtrs as person proposal. 

Object Detection and Categorization 

(Pedestrian detection) 

Tome et al., 2016 [42] CNN (Alexnet v/s GoogleNet) for pedestrian detection with 

LCDF as person proposal. 

Object Detection and Categorization 

(Pedestrian detection) 

Lenz at al., 2013 [45] CNN trained on hand-labeled data, two-stage with two hidden 

layers each. 

Object Grasping and Manipulation 

Redmon et al., 2015 [46] CNN based on AlexNet trained on hand-labeled data, rectangle 

regression. 

Object Grasping and Manipulation 

Sung et al., 2016 [47] Transfer manipulation strategy in embedding space by using a 

deep neural network. 

Object Grasping and Manipulation 

Levine at al., 2016 [48] Learn hand-eye coordination independently of camera 

calibration or robot pose, visual/motor DNN. 

Object Grasping and Manipulation 

Zhou 2014 et al., [50] CNNs for place recognition based on CaffeNet. Scene Representation and Classification 

(Place recognition) 

Gomez-Ojeda et al., 2015 [49] CNN for appearance-invariant place  recognition, based on 

CaffeNet. 

Scene Representation and Classification 

(Place recognition) 
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Hou et al., 2015 [51] CNN for loop closing, based on CaffeNet. Scene Representation and Classification 

(Place recognition) 

Sundehauf et al., 2015 [52] Place categorization and semantic mapping, based on 

CaffeNet. 

Scene Representation and Classification 

(Scene categorization) 

Ye et al., 2016 [53] R-CNN for functional scene understanding, based on 

Selective Search and VGG. 

Scene Representation and Classification 

(Scene categorization) 

Cadena et al., 2016 [97] Multi-modal auto-encoders for semantic segmentation. The 

inputs are RGB-D, LIDAR and stereo data. It uses inverse 

depth parametrization. 

Scene Representation and Classification 

(Semantic segmentation, Scene Depth 

Estimation) 

Li et al., 2016 [98] FCN for vehicle detection. Input is a point map generated using 

a LIDAR. 

Object Detection and Categorization 

Alcantarilla et al., 2016 [99] Deconvolutional Networks for Street-View Change Detection. Scene Representation and Classification 

(Street-View Change Detection) 

Sunderhauf et al., 2015 [100] R-CNN used for creating region landmarks for describing an 

image. AlexNet (up to conv3) as feature extractor. 

Scene Representation and Classification 

(Place Recognition) 

Albani et al., 2016 [101] CNN as a validating step for humanoid robot detection. Object Detection and Categorization 

(humanoid soccer robot detection) 

Speck et al., 2016 [102] CNNs for ball localization in robotics soccer. Object Detection and Categorization 

(humanoid soccer ball detection) 

Finn et al., 2016 [103] Deep Spatial Auto-encoder for learning state representation. 

Used for reinforcement learning. 

Object Grasping and Manipulation 

Gao et al., 2016 [104] Visual CNN and Haptic CNN combined for haptic 

classification. 

Spatiotemporal Vision (Object Understanding) 

Husain et al., 2016 [105] Temporal concatenation of the output of pre-trained VGG-16 

into a 3D convolutional layer. 

Spatiotemporal Vision (Action Recognition) 

Oliveira et al., 2016 [106] FCN-based architecture for human body part segmentation. Object Detection and Categorization 

Zaki et al. 2016 [107] Convolutional Hypercube Pyramid based on VGG-f as feature 

extractor for RGBD. 

Object Detection and Categorization 

Mendes et al., 2016 [108] Network-in-Network converted into FCN for road 

segmentation. 

Scene Representation and Categorization 

(Semantic Segmentation) 

Pinto et al., 2016 [109] AlexNet based architecture to predict grasp location and angle 

from image patches, based on self-supervision. 

Object Grasping and Manipulation 
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Jain et al., 2016 [110] Fusion RNN based on LSTM units fed by visual features. Spatiotemporal Vision (Human Action 

Prediction). 

Schlosser et al., 2016 [111] R-CNN for pedestrian detection by using RGB-D from camera 

and LIDAR. The depth represented using HHA. RGB-D 

deformable parts model as object proposals. 

Object Detection and Recognition (Pedestrian 

detection) 

Costante et al., 2016 [112] CNNs for learning feature representation and frame to frame 

motion estimation from optical flow. 

Spatiotemporal Vision (Visual Odometry) 

Liao et al., 2016 [113] AlexNet-based scene classifier with a semantic segmentation 

branch. 

Scene Representation and Classification (Place 

Classification / Semantic Segmentation) 

Mahler et al., 2016 [114] Multi-View Convolutional Neural Networks with Pre-trained 

AlexNet as CNNs for computing shape descriptors for 3D 

objects. Used for selecting object grasps. 

Object Grasping and Manipulation 

Guo et al., 2016 [115] AlexNet-based CNN for detecting object and grasp by 

regression on an image patch. 

Object Grasping and Manipulation 

Yin et al., 2016 [116] Deep Autoencoder for nonlinear time alignment of human 

skeleton representations. 

Spatiotemporal vision (Human Action 

Recognition) 

Giusti et al., 2016 [117] CNN that receives a trail image as input and classifies it as the 

kind of motion needed for remaining on the trail. 

Scene Representation and Classification (Trail 

Direction Classification) 

Held et al., 2016 [118] CaffeNet, pre-trained on ImageNet, fine-tuned for viewpoint 

invariance. 

Object Detection and Categorization (Single- 

view Object Recognition) 

Yang et al., 2016 [119] FCN and DSN based Network with AlexNet as basis. Used with 

CRF for estimating 3D scene layout from monocular camera. 

Scene Representation and Classification 

(Semantic Segmentation, Scene Depth 

Estimation) 

Uršic et al., 2016 [120] R-CNN used for generating histograms of part-based models. 

Places-CNN (CaffeNet trained on Places 205) as region feature 

extractor. 

Scene Representation and Classification 

(Place Classification) 

Bunel et al., 2016 [121] CNN architecture of 4 convolutional layers with PReLU as 

activation function and 2 FC layers. Used for detecting 

pedestrians at far distance. 

Object Detection and Categorization 

(Pedestrian Detection) 

Murali et al., 2016 [122] VGG architecture as feature extractor for unsupervised 

segmentation of image sequences. 

Spatiotemporal    Vision (Segmentation of 

trajectories in robot-assisted surgery). 

Kendall et al., 2016 [123] Bayesian PoseNet (Modified GoogLeNet) with pose regression, 

use dropout for estimating uncertainty. 

Scene Representation and Classification 

(Camera re-localization) 

Husain et al., 2016 [124] CNN using layers from OverFeat Network with multiple 

pooling sizes. RGB-D inputs. Use of HHA and distance-from- 

wall for depth. 

Scene Representation and Classification 

(Semantic Segmentation) 
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Hoffman et al., 2016 [125] R-CNN using RGB-D data, based on AlexNet and HHA. 

Proposals are based on RGB-D Selective Search. 

Object Detection and Categorization 

Sunderhauf et al., 2016 [126] Places-CNN as image classifier for building 2D grid semantic 

maps. LIDAR used for SLAM. Bayesian filtering over class 

labels. 

Scene Representation and Classification 

(Place Classification) 

Saxena et al., 2017 [189]  
CNN used for image-based visual servoing. Inputs are 

monocular images from current and desired poses. Outputs are 

velocity commands for reaching the desired pose. 

 
Object Grasping and Manipulation (Visual 

servoing) 

 
Lei et al., [191] 

 
Robot exploration by using a CNN, trained first by supervised 

learning, later by using deep reinforcement learning. Tested on 

simulated and real experiments. 

 
Scene Representation and Classification 

(Scene Exploration) 

 
Zhu et al., [192] 

 
Robot navigation by learning a scene-dependent Siamese 

network, which receives images from two places as input, and 

generates motion commands for travelling between them. 

 
Scene Representation and Classification 

(Visual Navigation) 

Mirowski et al., [193]  
Robot navigation in complex maze-like environments from 

raw monocular images and inertial information. Use of deep 

reinforcement learning on a network composed of a CNN 

followed by two LSTM layers. Multi-task loss considering 

reward prediction and depth prediction improves learning. 

 
Scene Representation and Classification 

(Visual Navigation) 

 

VII. CONCLUSIONS 

This survey provides a valuable guidance for the developers of robot vision systems, since it promotes understanding of the 

basic concepts behind the application of deep-learning in vision applications, explains the tools and frameworks used in the 

development process of vision systems, and shows current tendencies in the use of DNN models in robot vision. 
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