

EFFECTIVENESS OF ACTIVE STRETCHING VERSUS PASSIVE STRETCHING OF HAMSTRINGS MUSCLES IN NORMAL INDIVIDUALS.”

Dr.Sejal Bhoi (PT) Dr.Arti Dharmani (PT)

Assistant Professor,

Physiotherapy Department,

B.N Patel college of Physiotherapy, Anand, India, Clinical therapist,Pune

Abstract:

Background & Objective: Active stretching is purported to stretch the shortened muscle and simultaneously strengthen the antagonist muscle. The purpose of this study was to determine whether active and passive stretching results in a difference between groups improving hip flexion and knee extension ROM subjects with hamstring tightness.

Subjects and methods: Thirty subjects who showed decreased ROM, presumably due to hamstring muscle tightness. The subjects, who had age of 18 to 30 years, were assigned to either an active stretching group or passive stretching group. Before the procedure, ROM of hip flexion with knee extension forward reach test and muscle length test was measured before and after 3 weeks of the start of the study.

Results: Results from this study found that Flexibility of hamstring muscle & ROM of hip flexion with knee extension is increased in group with Passive Stretching than the group with Active Stretching.

Conclusion: Passive Stretching of hamstring muscle in normal individuals is more effective than Active Stretching.

Key words: Active stretching, Passive stretching, Forward reach test, Muscle length test

I. INTRODUCTION

The hamstring muscle consists of three muscles: the biceps femoris muscle, semitendinosus muscle, and semimembranosus muscle. These muscle combined are primarily responsible for flexion of knee joint (bending of the knee) as well as assisting the extension of thigh (moving the upper leg backwards). In addition to these functions, the hamstring muscle work in tendon to rotate the knee, assist in maintaining a standing position with slightly bent as well as limiting how far we can bend forward as we try to touch our toes without bending our knees. The hamstring muscle also plays a role in our posture by assisting to straighten out the lower curvature of the spine which curves the pelvis forward when sitting.

The origin attachment point of biceps femoris muscle arise as two-heads from the ischial tuberosity region of the pelvis as a tendon which is shared with the semitendinosus muscle. Another short-head arise from outside-edged of the Linea Aspera. The fibers of the short head merge into those of the long head, which then have an insertion attachment point on the head of fibula.

The semitendinosus muscle has an origin attachment point from the ischial tuberosity region of the pelvis as tendon shared with the biceps femoris, and has an insertion attachment point on the upper shaft of tibia.

The semimembranosus muscle has an origin attachment point from just in front of semitendinosus muscle on the ischial tuberosity region and has five insertion attachment points: The main one on the posterior portion of the medial condyle of the tibia. A second insertion point is the fascia which covers the popliteus muscle and the remainder insert joining the tibial collateral ligament of the joint and the fascia of the leg.

The tightness of hamstring muscles is one of the main factors hindering performance in daily and sporting activities. Reduction in the flexibility of the hamstrings has been reported to be associated with the occurrence of back pain in adolescents and adults in cross-sectional studies. Furthermore, reduction in the flexibility of the hamstrings has been reported to increase the risk of damage to the musculoskeletal system. Thus, flexibility of the hamstrings is important for general health and physical fitness. Several studies have indicated that flexibility of the hamstrings is improved by stretching. Indeed, many stretching techniques are used in clinical practice, including ballistic stretching, static stretching, and proprioceptive neuromuscular facilitation techniques. Among the stretching methods, passive and active stretching techniques are easy to implement and are useful as home exercises. Active stretching increases the flexibility of tight muscles.

While concomitantly improving the function of antagonistic muscles. In contrast, passive stretching is characterized by the addition of stretch stimulation on muscle contraction independent of the subject. This method is as an alternative to static stretching. During DROM, a contraction by the antagonist muscle causes the joint crossed by the agonist muscle to move through the full ROM at a controlled, slow tempo. DROM is a technique that takes advantage of reciprocal innervation. However, Bandy et al. reported that

passive stretching is more effective than DROM, but their study had different stretching conditions, such as different stretch elongation times, and was not an accurate comparison of the stretching techniques. To our knowledge, no studies have compared active and passive stretching techniques using the same method for the hamstring muscles. Thus, the purpose of this study was to compare the effect of passive and active stretching techniques using the same method on the flexibility of the hamstring muscles.

Methodology

Sample size: The study was carried on 30 subjects.

Source of data: Subjects were recruited from Anand and protocol was executed in Shree B.G Patel College Of physiotherapy Anand.

Sampling method: Convenience sampling method

Study duration: 3 weeks

Inclusion criteria:

1. Age group of 18 to 30 years.
2. Both Gender: male and female
3. Individuals with no history of knee and hip pain.
4. Individuals with hamstring tightness.
5. Individuals without history of neurological impairment and condition affecting hamstring flexibility
6. Cooperative subjects.

Exclusion criteria:

1. Individuals with history of hip & knee injury.
2. Individuals with history of neurological complication.
3. Individuals with any systemic diseases.
4. Individuals who are not fit into the inclusion criteria.

Data and Procedure:

This study was consisted of 30 subjects of both sexes aging between 18-30 years. Subjects were explained about the procedure of measuring hip and knee range of motion by goniometer; hamstring flexibility and informed consent were be obtained from each participant. Then the patients were be screened based on inclusion and exclusion criteria and randomly divided in to 2 groups i.e. group A and group B, having 15 subjects in each group.

Group A: Group of passive stretching -Subject in passive stretching group were positioned supine with their hip and knee flexed at 90°, their lumbar lordosis was supported with lumbar roll, and Their knee extended by one examiner while lying supine with 90° of hip flexion (Degrees from full extension). Stretches were performed times in 3 sets of the assigned stretch. Each stretch was held for 10 seconds at the point where tightness in the hamstring muscles was felt, and then the leg was slowly lowered (over 10 seconds). Stretches at maximum knee extension elicited a “strong but tolerable feeling of muscular tightness” in the back of subject leg.

Group B: group of active stretching - Subject in passive stretching group were positioned supine with their hip and knee flexed at 90°, their lumbar lordosis was supported with lumbar roll. Subject extended their own knee. Stretches were performed times in 3 sets of the assigned stretch. Each stretch was held for 10 seconds at the point where tightness in hamstring muscle was felt, and then the leg was slowly lowered. (Over 10 second).

Outcome:

MLT: (90-90 knee extension test)

The subject lies supine, head back and arms across the chest. The hip is passively flexed until the thigh is vertical. Maintain this thigh position throughout the test, with the opposite leg in a fully extended position. The foot of the leg being tested is kept relaxed, while the leg is actively straightened until the point when the thigh begins to move from the vertical position. The thigh angle at this point is recorded. Measure the minimum angle of knee flexion with the thigh in the vertical position. The measurement unit is degrees. If the leg is able to be fully straightened, the angle would be recorded as 0. Any degree of flexion will be recorded as a positive number, e.g. 10, 20 degrees etc. In cases where the full knee extension is achieved without thigh movement, the knee is flexed and the thigh is moved to 30 degrees past the vertical position, and the knee again straightened. The angle of knee flexion at which the thigh begins to move is again recorded.

FRT: (sit and reach test)

This test involves sitting on the floor with legs stretched out straight ahead. Shoes should be removed. The soles of the feet are placed flat against the box. Both knees should be locked and pressed flat to the floor - the tester may assist by holding them down. With the palms facing downwards, and the hands on top of each other or side by side, the subject reaches forward along the measuring line as far as possible. Ensure that the hands remain at the same level, not one reaching further forward than the other. After some practice reaches, the subject reaches out and holds that position for at least one-two seconds while the distance is recorded. Make sure there are no jerky movements. The score is recorded to the nearest centimeter or half inch as the distance

reached by the hand. Some test versions use the level of the feet as the zero mark, while others have the zero mark 9 inches before the feet.

Statistical analysis:

Statistical analysis was performed by using SPSS software for window (version16) and p value was set as 0.10(two tailed hypothesis).

Descriptive statistics and Chi square test was used to analyze baseline data for demographic representation.

Unpaired t test and Wilcoxon signed ranked test was used to find the significance of parameters pre to post test.

Result:

The analysis of outcome measurement B/W group A & Group B has been presented in tables and graphs. Group A was Passive Stretching and Group B was Active Stretching.

Table: 1 comparison between group A & B - ROM of right side.

Hip flexion with knee extension				
Group	Mean	Mean Difference	t Value	p Value
GROUP A	64.07	19.06	5.466	<0.0001
GROUP B	83.13			

Comparison of mean difference between two groups. In this when the mean value of group A (64.07) compared with mean value of group B (83.13), the mean difference is 19.06, the 't' value is 5.466, and 'p' value is 0.0001 which is highly significant.

Table:2 Comparison between group A & B - ROM of left side.

Hip flexion with knee extension				
Group	Mean	Mean Difference	t Value	p Value
GROUP A	73.67	9.46	3.351	0.0048
GROUP B	83.13			

Comparison of mean difference between two groups. In this when the mean value of group A (73.67) compared with mean value of group B (83.13), the mean difference is 9.46, the 't' value is 3.351, and 'p' value is 0.0048 which is highly significant.

Table: Comparison between group A & B - MLT of right side.3

Muscle length test				
Group	Mean	Mean Difference	t Value	p Value
GROUP A	41.8	11.87	4.06	0.0012
GROUP B	29.93			

Comparison of mean difference between two groups. In this when the mean value of group A (41.8) compared with mean value of group B (29.93), the mean difference is 11.87, the 't' value is 4.06, and 'p' value is 0.0012 which is highly significant.

Table:4 Comparison between group A & B - MLT of left side.

Muscle length test				
Group	Mean	Mean Difference	t Value	p Value
GROUP A	34.73	9	3.397	0.0043
GROUP B	25.73			

Comparison of mean difference between two groups. In this when the mean value of group A (34.73) compared with mean value of group B (25.73), the mean difference is 9, the 't' value is 3.397, and 'p' value is 0.0043 which is highly significant.

Table:5 Comparison between group A & B – FRT

Forward reach test				
Group	Mean	Mean Difference	t Value	p Value
GROUP A	8.567	1.967	1.351	0.1982
GROUP B	6.6			

Comparison of mean difference between two groups. In this when the mean value of group A (8.567) compared with mean value of group B (6.6), the mean difference is 1.967, the 't' value is 1.351, and 'p' value is 0.1982 which is highly significant.

Table:6 Demographic details M/F

Gender	Group: A	Group: B	Total
Male	1	5	6
Female	14	10	24
Total	15	15	30

Discussion:

According to the results obtained from the study titled "**EFFECTIVENESS OF ACTIVE STRETCHING VERSUS PASSIVE STRETCHING OF HAMSTRING MUSCLE IN NORMAL INDIVIDUALS.**"

When the mean value of comparison of mean difference between two groups for ROM of right side. In this when the mean value of group A (64.07) compared with mean value of group B (83.13), the mean difference is 19.06, the 't' value is 5.466, and 'p' value is <0.0001 which is highly significant.

This shows that there was a significant difference in the Group A.

Comparison of mean difference between two group for ROM of left side. In this when the mean value of group A (73.67) compared with mean value of group B (83.13), the mean difference is 9.46, the 't' value is 3.351, and 'p' value is 0.0048 which is highly significant.

That shows that group A has better intervention than the group B.

Comparison of mean difference between two groups for MLT of right side. In this when the mean value of group A (41.8) compared with mean value of group B (29.93), the mean difference is 31.87, the 't' value is 4.06, and 'p' value is 0.0012 which is highly significant

That shows that group A has better intervention than the group B

Comparison of mean difference between two groups for MLT of left side. In this when the mean value of group A (34.73) compared with mean value of group B (25.73), the mean difference is 9, the 't' value is 3.397, and 'p' value is 0.0043 which is highly significant. That shows that group A has better intervention than the group B

Comparison of mean difference between two groups for FRT. In this when the mean value of group A (8.567) compared with mean value of group B (6.6), the mean difference is 1.967, the 't' value is 1.351, and 'p' value is 0.1982 which is not significant, That shows that group A has better intervention than the group B.

As the result has shown above the interventions of the group A is better than the group B. Flexibility is increased in group A than group B and the range of motion is better improved in group A.

Conclusion

There were less effects of active stretching on hamstring muscle of normal individuals than passive stretching.

As results show that active stretching on hamstring muscle of normal individuals was not that much effective. Passive stretching increases ROM as well as increases the flexibility. As we had result that passive stretching was quite more effective than active stretching.

ACKNOWLEDGMENT

I dedicate this work to the almighty god without whose blessing and grace I would have never reached this stage in my life.

It is my great pleasure to thank people who helped and encouraged me for the guidance and completion of this project work. It has been my privilege to receive the able guidance of DR. TEJAS CHAUDHARI (M.P.T), Assistant Professor in Physiotherapy at Shree B.G Patel College of Physiotherapy.

I sincerely acknowledge my indebtedness to him, for his keen interest and guidance throughout the work. I consider myself fortunate for the constant encouragement given by DR. MANOJ KUMAR (PT), Principal, Shree B.G.Patel College of Physiotherapy, Anand throughout the course of the study. I also consider huge thanks to the subjects who actively participated in our study throughout. Above all, I would like to thank the Almighty God & Parents, without whose grace this project would not have taken this form.

I would like to pay high regards to my parents; Mr. Ramesh Bhai Bhoi and Mrs. Bhartiben Bhoi, my elder brother, Mr. Hitesh Bhoi, younger brother, Mr. Akash Bhoi and sister Mrs. Divya Bhoi for their unwavering love, sincere encouragement and support throughout my research work. They have been my strength through this challenging phase and have knowingly and unknowingly helped me in achieving success.

REFERENCES

- 1.] Salminen JJ, Pentti J, Terho P: Low back pain and disability in 14-year old school children. *Acta Paediatr*, 1992.
- 2.] Hultman G, Saraste H, Ohlsen H: Anthropometry, spinal canal width, and flexibility of the spine and hamstring muscles in 45-55 year old men with and without low back pain. *J Spinal Disord*, 1992.
- 3.] Hartig DE, Henderson JM: Increasing hamstring flexibility decreases lower extremity overuse injuries in military basic trainees. *Am J Sports Med*, 1999.
- 4.] Hreljac A, Marshall RN, Hume PA: Evaluation of lower extremity overuse injury potential in runners, 2000.
- 5.] Fasen JM, O'Connor AM, Schwartz SL, et al: A randomized controlled trial of hamstring stretching: comparison of 4 techniques. *J Strength Cond Res*, 2009.
- 6.] Smith M, Fryer G: A comparison of 2 muscle energy techniques for increasing flexibility of the hamstring muscle group. *J BodywMovTher*, 2008.
- 7.] Meroni R, Cerri CG, Lanzarini C, et al: Comparison of active stretching technique on hamstring flexibility. *Clin J Sport Med*, 2010.
- 8.] Ayala F, Sainz de Baranda P, De Ste Croix M, et al: Comparison of active stretching technique in males with normal and limited hamstring flexibility. *Phys Ther Sport*, 2013.
- 9.] Kang MH, Jung DH, An DH, et al: Acute effects of hamstring stretching exercises on the kinematics of the lumbar spine and hip during stoop lifting. *J Bone Min Metab*, 2013.
- 10.] Lim KI, Nam HC, Jung KS: Effects on hamstring muscle extensibility, muscle activity, and balance of different stretching techniques. *J Phys Ther Sci*, 2014.
- 11.] Bandy WD, Irion JM, Briggler M: The effect of time and frequency of static stretching on flexibility of the hamstring muscles. *Phys Ther*, 1997.

12.] **White S, Sahrman S:** A movement system balance approach to management of musculoskeletal pain. OntargetPubns: New York, 1993.

13.] **Winters MV, Blake CG, Trost JS, et al:** Passive versus active stretching of hip flexor muscles in subjects with limited hip extension:a randomized clinicaltrial.PhysTher, 2004.

14.] **Murphy D:DYNAMIC ROM training:** an alternative to static stretching. Chiropr Sports Med, 1994.

15.] **Bandy WD, Irion JM, Briggler M:** The effect of static strtch and dynamic ROM trainigon the flexibility of the hamstring muscles.. J Orthop Sports Phys Ther, 1998.

16.] **Gajdosik R, Lusin G:** Hamstring muscle tightness. Reliability of an AKET.PhysTher, 1983.

17.] **Rakos DM, Shaw KA, Fedor RL, et al:** Interrator reliability of the AKET for hamstring length in school-aged children. Pediatr Phys Ther, 2001.

18.] **Reurink G, Goudswaard GJ, Oomen HG, et al:** Reliability of the active and passive knee extension test in acute hamstring injuries.Am J Sports Med, 2013.

19.] **Davis DS, Quinn RO, Whitemann CT, et al:** Concurrent validity of 4 clinical stests used to measure hamstring flexibility. J Strength Cond Res, 2008.

20.] **Hulliger M:** The mammalian muscle spindle and its central control. Rev Physiol Biochem Pharmacol, 1984.

21.] **Simic L, Sarabon N, Markovic G:** Does pre-exercise static stretching inhibit maximal performance? A meta-analytical review. Scand J Med Sci Sports, 2013.

22.] **Yamaguchi T, Ishii K:** Effects of static stretching for 30 seconds and dynamic stretching on leg extension power. J Strength Cond Res, 2005.

23.] **Faigenbaum AD, McFarland JE, Schwerdtman JA, et al:** Dynamic warm up protocols, with and without a weighted vest, and fitness performance in high school female athletes. J Athl Train, 2006.

24.] **Shrier I.** Stretching before exercise does not reduce the risk of local muscle injury: a critical review of the clinical and basic science literature. Clin J Sport Med. 1999.

25.] **Charles E. Corbin, Ruth Lindsay,** 9th edition in 1997, Concepts of physical fitness.

26.] **WernerKuprian, Helmutork,** Physical therapy for sports chapter 9, 2nd edition 1997.

27.] **B Dadebo, J White, K P George.** A survey of flexibility training protocols and hamstring strains in professional football clubs in England. Br J Sports Med 2004.

28.] **Thomas E., Marianne S. Gengenbach, eds.** Conservative management of Sports injuries. Jones & Bartlett Learning, 2006.

29.] **J Brent Feland, J William Myrer, Shane S Schulthies, Gill W Fellingham, Gary W Measom.** The Effect of Duration of Stretching of the Hamstring Muscle Group for Increasing Range of Motion in People Aged 65 Years or Older. Physical Therapy May 2001.

30.] **Gogia Prem P, James H. Braatz, Steven J. Rose, and Barbara J. Norton.** Reliability and validity of goniometric measurements at the knee. Physical therapy 1987.

31.] **Willy, Richard W., Bryan A. Kyle, Shawn A. Moore, and Gary S. Chleboun.** Effect of cessation and resumption of static hamstring muscle stretching on joint range of motion. Journal of Orthopaedic& Sports Physical Therapy 2001.

32.] **Bandy William D, Jean M. Irion, MichelleBriggler.** The effect of static Stretch and dynamic range of motion training on the flexibility of the hamstring Muscles. Journal of Orthopaedic& Sports Physical Therapy 1998.

33.] **Reid Duncan A, PETER J. McNair.** Passive force angle, and stiffness Changes after stretching of hamstring muscles. Medicine and science in sports and exercise 2004; 36(11): 1944-1948.

34.] **Jaeger Gayle, Denis J. MarcellinLittle, David Levine.** Reliability of Goniometry in Labrador Retrievers. American journal of veterinary research 2002.

35.] **Taylor Dean C, James D. Dalton, Anthony V. Seaber, William E. Garrett.** Viscoelastic Properties of muscle-tendon units the biomechanical effects of Stretching.” The American journal of sports medicine 1990.

36.] **Fredriksen H, H. Dagfinrud, V. Jacobsen, S.Maeblum.** Passive knee Extension test to measure hamstring muscle tightness. Scandinavian journal of Medicine & science in sports 1997.

37.] **Shellock Frank G, William E. Prentice.** Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports Medicine 1985.