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Abstract:  In recent years there has been an increasing demand for solutions of the general three-body 

problem in various astrophysical situations. For example, binaries and their interactions with single stars play 

a major role in the evolution of star clusters. Triple stellar systems are another obvious astrophysical three-

body problem. Many other astrophysical bodies, ranging from compact bodies to galaxies, occur in triple 

systems. At present time, three body astrophysics is primarily motivated by the need to understand the role of 

binaries in the evolution of stellar systems because mathematically ideal solution for the three-body problem 

is of no use i.e., Sundman’s series solution which has extremely slow convergence. In this paper we have 

implemented the numerical integration method in python for two body problem for understanding the 

implementation and then extended it to higher body problem (three and four body). Here we have used 

Odeint package of Scipy library in Python to solve the equation of motion for bodies under gravitation. By 

observations of the results of computer simulations, it is found that this problem got some patterns when 

observed over a very long interval of time. Particularly in problems of astrophysical importance, one may 

almost always identify a binary and a third body. A binary can be treated as a single entity with certain 

internal properties (component masses, energy and angular momentum, as well as orientation in space) and 

this system and third body makes themselves effective binary. 

 

Index Terms - Binaries, Convergence, Star Clusters, Odeint Package, Python. 

 

. I. INTRODUCTION 

The Two –body central problem arises in different contexts in nature. The problem of motion of three 

celestial bodies under their mutual gravitational attraction is an old problem and logically follows from the 

two-body problem which was solved by Newton in his Principia in 1687. Newton also considered the three-

body problem in connection with the Motion of the Moon under the influences of the Sun and the Earth, the 

consequences of which included a headache. There are good reasons to study the three-body gravitational 

problem. The motion of the Earth and other planets around the Sun is not strictly a two-body problem. The 
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gravitational pull by another planet constitutes an extra force which tries to steer the planet off its elliptical 

path. One may even worry, as scientists did in the eighteenth century, whether the extra force might change 

the orbital course of the Earth entirely and make it fall into the Sun or escape to cold outer space. This was a 

legitimate worry at the time when the Earth was thought to be only a few thousand years old, and all possible 

combinations of planetary influences on the orbit of the Earth had not yet had time to occur.  

Another serious question was the influence of the Moon on the motion of the Earth. Would it have long 

term major effects? Is the Moon in a stable orbit about the Earth or might it one day crash on us? The motion 

of the Moon was also a question of major practical significance, since the Moon was used as a universal time 

keeping device in the absence of clocks which were accurate over long periods of time. After Newton, the 

lunar theory was studied in the eighteenth century using the restricted problem of three bodies (Euler 1772). 

In the restricted problem, one of the bodies is regarded as massless in comparison with the other two which 

are in a circular orbit relative to each other.  

We can solve the two-body problem for its general solution. But when we add a third body to the system, 

something extraordinary happens. The system becomes chaotic and highly unpredictable. It has no analytical 

solution (except a few special cases) and its equations can only be solved numerically on a computer. They 

can turn abruptly from stable to unstable and vice versa. Here we have implemented the numerical 

integration method in python for two body problem for understanding the implementation and then extend it 

to higher body problem (three and four body). 

 

II. Visualization of Orbits 

Basic Approach: According to Newton’s law of gravitation, the gravitational force between two point 

masses is directly proportional to product of masses of the two bodies and inversely proportional to the 

square of distance between them and acts along the line joining the center of two bodies.  

𝐹
→
= 𝐺

𝑚1𝑚2

𝑟2
𝑟
^
 

 

Where m1 is the mass of the first body, m2 is the mass of the second body and r is the distance between 

them. G is the universal gravitational constant. 

Equation of motion:  

The equation of motion of two body system is given by Newton’s second law of motion. According to 

Newton’s second law of motion, the net force on an object produces a net change in momentum of the object 

— in simple terms, force is mass times acceleration. So, applying the above equation to the body system 

having mass m₁ and m2, we get the following differential equation of motion for the body. 

 

𝑚1

d2𝑟1
→

d𝑡2
= 𝐺

𝑚1𝑚2

𝑟2
𝑟
^
 

                                                                   Or 
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𝑚1

d2𝑟1
→

d𝑡2
= 𝐹

→
= 𝐺

𝑚1𝑚2

𝑟3
𝑟12
→

 

 

Now, we have a second-order differential equation that describes the interaction between two bodies due to 

gravity. To simplify its solution, we can break it down into two first order differential equations. The 

acceleration of an object is the change in velocity of the object with time so the second order differential of 

position can be replaced with a first order differential of velocity. Similarly, the velocity can be expressed as 

a first order differential of the position. 

𝑚1

𝑑𝑣
→

𝑣

𝑑𝑡
= 𝐺

𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
3 𝑟

→

𝑙𝑗

𝑑𝑟
→

𝑖

𝑑𝑡
= 𝑣𝚤

→

 

The index i is for the body whose position and velocity is to be calculated whereas the index j is for the 

other body which is interacting with body i. Thus, for a two-body system, we will be solving two sets of 

these two equations. 

 

Non dimensionalization:  

Before implementing our problem in python, we have non-dimensionalized the physical quantities. We 

converted all the quantities in the equation (like position, velocity, mass and so on) that have dimensions 

(like m, m/s, kg respectively) to non-dimensional quantities that have magnitudes close to unity. 

To non-dimensionalize the equations, we divided each quantity by a fixed reference quantity. For example, 

divide the mass terms by the mass of the sun, position (or distance) terms with the distance between the two 

stars in the Alpha Centauri system, time term with the orbital period of Alpha Centauri and velocity term 

with the relative velocity of the earth around the sun.  

When you divide each term by the reference quantity, you will also need to multiply it to avoid changing 

the equation. All these terms along with G can be clubbed into a constant, say K₁ for equation 1 and K₂ for 

equation 2. Thus, the non-dimensionalized equations are as follows: 

𝑚𝑙

− 𝑑𝑣
→

𝑙

𝑑𝑡
= 𝑘1

𝑚𝑙

−
𝑚𝑗

−

𝑟
−

𝑖𝑗
3

𝑟
−
→

𝑖𝑗

𝑑𝑟
−
→

𝑙

𝑑𝑡
= 𝑘2𝑣

−
→

𝚤

 

 

The bar over the terms indicates that the terms are non-dimensional. So these are the final equations that 

we’ll be using in our simulation. 
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III. Numerical approach to visualize the Orbits 

 

(a) Python Code for Two Body Problem 

import scipy as sci  

import matplotlib.pyplot as plt  

from matplotlib.animation import FuncAnimation  

import numpy  

from mpl_toolkits.mplot3d import Axes3D  

#defining constants and reference quantities  

G=6.67408e-11 #N-m2/kg2  

m_ref = 1.989e+30 #Kg  

r_ref = 5.326e+12 #meter  

v_ref = 30000 #m/s  

t_ref = 79.91*365*24*3600*0.51 #s  

#constants  

K1 = G*t_ref*m_ref/(r_ref**2*v_ref)  

K2 = v_ref*t_ref/r_ref 

#defining quantities  

m1 = 1.1  

m2 = 0.907  

r1 = [-0.5, 0 ,0]  

r2 = [0.5,0,0]  

# conversion of position vectors to arrays  

r1 = numpy.array(r1, dtype="float64")  

r2 = numpy.array(r2, dtype="float64")  

#finding center of mass  

r_cm = (m1*r1+m2*r2)/(m1+m2)  

#defning initial velocities  

v1 = [0.01,0.01,0] #m/s  

v2 = [-0.05,0,-0.1] #m/s 

50  

#converting velocity vector to arrays  

v1 = numpy.array(v1, dtype="float64")  

v2 = numpy.array(v2, dtype="float64")  

#finding velocity of center of mass  

v_cm = (m1*v1+m2*v2)/(m1+m2)  

#defining equations of motion in a function  

def two_body_equations(w,t,G,m1,m2): 
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r1=w[:3]  

r2=w[3:6]  

v1=w[6:9]  

v2=w[9:12]  

r = numpy.linalg.norm(r2-r1)  

dv1bydt = K1*m2*(r2-r1)/r**3  

dv2bydt = K1*m1*(r1-r2)/r**3  

dr1bydt = K2*v1  

dr2bydt = K2*v2 

derivs = numpy.concatenate((dr1bydt,dr2bydt,dv1bydt,dv2bydt))  

return derivs  

#creating figure for plotting  

fig = plt.figure(figsize=(15,15))  

#create 3d axes  

ax = fig.add_subplot(111,projection="3d") 

import scipy.integrate  

def update(frame):  

ax.clear()  

global r1,r2,v1,v2,K1,K2  

init_params = numpy.array([r1,r2,v1,v2])  

init_params = init_params.flatten() # flatten to 1d array  

time_span = numpy.linspace(0,1.7,403) 

two_body_sol = sci.integrate.odeint(two_body_equations,init_params,time_span,args=(G,m1,m2))  

r1_sol = two_body_sol[:,:3]  

r2_sol = two_body_sol[:,3:6]  

v1_sol = two_body_sol[:, 6:9]  

v2_sol = two_body_sol[:, 9:12]  

#Finding location of COM  

rcom_sol=(m1*r1_sol+m2*r2_sol)/(m1+m2)  

#Finding location of Alpha Centauri A w.r.t COM  

r1com_sol= r1_sol-r1_sol # for frame of reference in one of the body  

#r1com_sol= r1_sol-rcom_sol  

#Finding location of Alpha Centauri B w.r.t COM  

r2com_sol= r2_sol-r1_sol # for frame of reference in one of the body  

#r2com_sol = r2_sol-rcom_sol  

#Ploting the orbits in COM frame  

ax.plot(r1com_sol[:,0],r1com_sol[:,1],r1com_sol[:,2],color="darkblue")  

ax.plot(r2com_sol[:,0],r2com_sol[:,1],r2com_sol[:,2],color="tab:red")  
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#Ploting the final positions of the stars in COM Frame 

ax.scatter(r1com_sol[-1,0],r1com_sol[-1,1],r1com_sol[-

1,2],color="darkblue",marker="o",s=100,label="Alpha Centauri A")  

ax.scatter(r2com_sol[-1,0],r2com_sol[-1,1],r2com_sol[-

1,2],color="tab:red",marker="o",s=100,label="Alpha Centauri B")  

#"""  

r1 = [r1_sol[-1,0],r1_sol[-1,1],r1_sol[-1,2]]  

r2 = [r2_sol[-1,0],r2_sol[-1,1],r2_sol[-1,2]]  

v1 = [v1_sol[-1,0],v1_sol[-1,1],v1_sol[-1,2]]  

v2 = [v2_sol[-1,0],v2_sol[-1,1],v2_sol[-1,2]]  

r1 = numpy.array(r1, dtype="float64")  

r2 = numpy.array(r2, dtype="float64")  

v1 = numpy.array(v1, dtype="float64")  

v2 = numpy.array(v2, dtype="float64")  

ani = FuncAnimation(fig, update, interval=1000)  

ax.set_xlabel("x-coordinate",fontsize=14)  

ax.set_ylabel("y-coordinate",fontsize=14)  

ax.set_zlabel("z-coordinate",fontsize=14)  

ax.set_title("Visualization of orbits of stars in a two-body system\n",fontsize=14)  

plt.show() 

 

On running the above python code, for initial conditions 

 

m1 m2 v1 v2 r1 r2 

1.1 0.907 [0.01,0.01,0] [-0.05,0, - 

0.1] 

[-0.5, 0 ,0] [0.5,0,0] 

 

 

The trajectories of the two bodies can be seen in different frame of references. In the frame of and 

arbitrary point fixed in space, the trajectory looks like: 
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Fig1. Two body orbits in arbitrary frame 

 

i.e. the bodies move in a spiral type path with the passage of time for stable initial conditions. If the 

conditions are not stable, bodies may be thrown apart from each other and keeps travelling away from each 

other. 

When we observe orbits of two bodies in center of mass frame, the orbits are as: 

 

 

 

Fig2. Two body orbit in Center of Mass frame 

 

i.e., bodies are found to be moving in elliptical orbits for stable initial conditions. If we shift frame of 

reference to one of the bodies then one body is observed revolving around reference body in elliptical orbit. 
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Fig3. Two body orbit in one of the Planet’s frame 

 

(b) Python Code for Three Body Problem:  

import scipy as sci  

import matplotlib.pyplot as plt  

from matplotlib.animation import FuncAnimation  

import numpy  

from mpl_toolkits.mplot3d import Axes3D  

#defining constants and reference quantities  

G=6.67408e-11 #N-m2/kg2  

m_ref = 1.989e+30 #Kg  

r_ref = 5.326e+12 #meter  

v_ref = 30000 #m/s  

t_ref = 79.91*365*24*3600*0.51 #s 

#constants  

K1 = G*t_ref*m_ref/(r_ref**2*v_ref)  

K2 = v_ref*t_ref/r_ref 

#defining quantities  

m1 = 1.1  

m2 = 0.907  

m3 = 1.0  

r1 = [-0.5, 0.2 ,0.0]  

r2 = [0.5,0.0,0.1]  

r3 = [0.2,0.5,0.0]  

# conversion of position vectors to arrays 

r1 = numpy.array(r1, dtype="float64")  

r2 = numpy.array(r2, dtype="float64")  
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r3 = numpy.array(r3, dtype="float64")  

#finding center of mass  

r_cm = (m1*r1+m2*r2+m3*r3)/(m1+m2+m3)  

#defning initial velocities 

v1 = [0.01,0.01,0.0] #m/s  

v2 = [-0.05,0.0,-0.1] #m/s  

v3 = [0.0,-0.01,0.0] #m/s  

#converting velocity vector to arrays  

v1 = numpy.array(v1, dtype="float64")  

v2 = numpy.array(v2, dtype="float64")  

v3 = numpy.array(v3, dtype="float64")  

#finding velocity of center of mass  

v_cm = (m1*v1+m2*v2+m3*v3)/(m1+m2+m3) 

#defining equations of motion in a function  

def three_body_equations(w,t,G,m1,m2,m3):  

r1=w[:3]  

r2=w[3:6]  

r3=w[6:9]  

v1=w[9:12]  

v2=w[12:15] 

v3=w[15:18]  

r12 = numpy.linalg.norm(r2-r1)  

r13 = numpy.linalg.norm(r3-r1)  

r23 = numpy.linalg.norm(r3-r2)  

dv1bydt=K1*m2*(r2-r1)/r12**3+K1*m3*(r3-r1)/r13**3  

dv2bydt=K1*m1*(r1-r2)/r12**3+K1*m3*(r3-r2)/r23**3  

dv3bydt=K1*m1*(r1-r3)/r13**3+K1*m2*(r2-r3)/r23**3  

dr1bydt=K2*v1  

dr2bydt=K2*v2  

dr3bydt=K2*v3  

r12_derivs=numpy.concatenate((dr1bydt,dr2bydt))  

r_derivs=numpy.concatenate((r12_derivs,dr3bydt))  

v12_derivs=numpy.concatenate((dv1bydt,dv2bydt))  

v_derivs=numpy.concatenate((v12_derivs,dv3bydt))  

derivs=numpy.concatenate((r_derivs,v_derivs))  

return derivs  

#creating figure for plotting  

fig = plt.figure(figsize=(15,15)) 
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#create 3d axes  

ax = fig.add_subplot(111,projection="3d")  

import scipy.integrate  

def update(frame):  

ax.clear()  

global r1,r2,r3,v1,v2,v3,K1,K2  

init_params = numpy.array([r1,r2,r3,v1,v2,v3])  

init_params = init_params.flatten() # flatten to 1d array  

time_span = numpy.linspace(0,0.1,20)  

#time_span = numpy.linspace(0,4,500)  

three_body_sol = sci.integrate.odeint(three_body_equations,init_params,time_span,args=(G,m1,m2,m3))  

r1_sol = three_body_sol[:,:3]  

r2_sol = three_body_sol[:,3:6]  

r3_sol = three_body_sol[:,6:9] 

v1_sol = three_body_sol[:,9:12]  

v2_sol = three_body_sol[:,12:15]  

v3_sol = three_body_sol[:,15:18]  

#Finding location of COM  

#rcom_sol=(m1*r1_sol+m2*r2_sol+m3*r3_sol)/(m1+m2+m3)  

#Finding location of first star w.r.t COM  

r1com_sol= r1_sol#-rcom_sol  

#Finding location of second star w.r.t COM 

r2com_sol= r2_sol#-rcom_sol  

#Finding the location of third star w.r.t. COM  

r3com_sol = r3_sol#-rcom_sol  

#Ploting the orbits in COM frame  

ax.plot(r1com_sol[:,0],r1com_sol[:,1],r1com_sol[:,2],color="darkblue")  

ax.plot(r2com_sol[:,0],r2com_sol[:,1],r2com_sol[:,2],color="tab:red")  

ax.plot(r3com_sol[:,0],r3com_sol[:,1],r3com_sol[:,2],color="green")  

#Ploting the final positions of the stars in COM Frame  

ax.scatter(r1com_sol[-1,0],r1com_sol[-1,1],r1com_sol[-

1,2],color="darkblue",marker="o",s=100,label="Alpha Centauri A")  

ax.scatter(r2com_sol[-1,0],r2com_sol[-1,1],r2com_sol[-

1,2],color="tab:red",marker="o",s=100,label="Alpha Centauri B")  

ax.scatter(r3com_sol[-1,0],r3com_sol[-1,1],r3com_sol[-1,2],color="green",marker="o",s=100,label="Third 

Star")  

#"""  

r1 = [r1_sol[-1,0],r1_sol[-1,1],r1_sol[-1,2]]  
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r2 = [r2_sol[-1,0],r2_sol[-1,1],r2_sol[-1,2]]  

r3 = [r3_sol[-1,0],r3_sol[-1,1],r3_sol[-1,2]]  

v1 = [v1_sol[-1,0],v1_sol[-1,1],v1_sol[-1,2]]  

v2 = [v2_sol[-1,0],v2_sol[-1,1],v2_sol[-1,2]]  

v3 = [v3_sol[-1,0],v3_sol[-1,1],v3_sol[-1,2]] 

r1 = numpy.array(r1, dtype="float64")  

r2 = numpy.array(r2, dtype="float64")  

v1 = numpy.array(v1, dtype="float64")  

v2 = numpy.array(v2, dtype="float64"  

#ani.event_source.stop()  

ani = FuncAnimation(fig, update, interval=500)  

ax.set_xlabel("x-coordinate",fontsize=14)  

ax.set_ylabel("y-coordinate",fontsize=14)  

ax.set_zlabel("z-coordinate",fontsize=14)  

ax.set_title("Visualization of orbits of stars in a two-body system\n",fontsize=14)  

plt.show() 

 

On running the simulation for three body problem, with initial conditions: 

m1 m2 m3 

1.1 0.907 1.0 

 

r1 r2 r3 

[-0.5, 0.2 ,0.0] [0.5,0.0,0.1] [0.2,0.5,0.0] 

 

v1 v2 v3 

[0.01,0.01,0.0] [-0.05,0.0, -0.1] [0.0, -0.01,0.0] 

The orbits of the body abruptly change with change of initial conditions and are chaotic  in nature. 
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A typical chaotic orbit in our simulation is: 

 

Fig4. Chaotic orbit of three body system 

 

 

 

 

 

Over the long-term evolution of the system, it is found that one of the bodies is ejected out of the system 

and two bodies seems to orbit each other in a stable orbit. 

 

 

Fig5. Long term evolution of three body system 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT2406320 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c980 
 

(c) Modeling four body problems: 

On running the simulation for four bodies for some initial conditions, the orbits are very  

chaotic: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig6. Chaos in four body problem 

 

IV. Conclusion 

The results of above simulations are very important in understanding the interaction between 

different numbers of bodies and their trajectories. It can help us in understanding the formation of 

planetary systems, star clusters and binaries. Most work done on the n-body problem has been on 

the gravitational problem. But there exist other systems for which n-body mathematics and 

simulation techniques have proven useful. In large scale electrostatics problems, such as the 

simulation of proteins and cellular assemblies in structural biology, the Coulomb potential has the 

same form as the gravitational potential, except that charges may be positive or negative, leading to 

repulsive as well as attractive forces. 
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