

In Silico Drug Designing For Type 2 Diabetes

1Vinay Yadav, 2Nikhil Saurabh, 3Aparna Sharma, 4Dr.Nandlal Choudhary, 5Ajay Vishwakarma
1M.SC VIROLOGY, 2M.Sc Biotechnology, 3M.Sc Biotechnology, 4Assistant professor, 5Research Associate

1Amity university, Noida up,
2Amity University. Noida .UP,
3Amity University. Noida .UP,
4Amity university, Noida ,Up,

5Indian BIological Sciences and research institute

Abstract

Type 2 diabetes mellitus (T2DM) is a widespread metabolic disorder characterized by insulin resistance and insufficient insulin production, leading to hyperglycemia. With the increasing prevalence of T2DM worldwide, there is an urgent need for the development of novel and effective therapeutic agents. In silico drug design techniques have emerged as powerful tools in the drug discovery pipeline, facilitating the identification and optimization of potential drug candidates. This review provides a comprehensive overview of in silico methods employed in the discovery of anti-diabetic agents targeting various proteins and pathways implicated in T2DM pathogenesis. We discuss structure-based drug design (SBDD) approaches, including molecular docking, virtual screening, and pharmacophore modeling, as well as ligand-based drug design (LBDD) techniques such as quantitative structure-activity relationship (QSAR) modeling and similarity searching. Additionally, we highlight the application of machine learning and artificial intelligence in drug design for T2DM. Furthermore, we examine the integration of in silico methods with experimental techniques and the challenges associated with in silico drug design for T2DM. Finally, we provide insights into future perspectives and the potential impact of in silico approaches on the development of novel anti-diabetic therapies.

Keywords: type 2 diabetes mellitus; in silico drug design; structure-based drug design; ligand-based drug design; molecular docking; virtual screening; pharmacophore modeling; QSAR; machine learning; artificial intelligence

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired insulin secretion, leading to hyperglycemia [1]. It is a major global health concern, with an estimated 463 million individuals affected worldwide in 2019, and this number is projected to rise to 700 million by 2045 [2]. T2DM is associated with various complications, including cardiovascular diseases, nephropathy, neuropathy, and retinopathy, which contribute significantly to morbidity and mortality [3]. The pathogenesis of T2DM is complex and multifactorial, involving genetic and environmental factors that influence insulin sensitivity and pancreatic β -cell function [4]. Key molecular mechanisms implicated in T2DM include insulin resistance in target tissues (e.g., skeletal muscle, liver, and adipose tissue), impaired insulin secretion by pancreatic β -cells, and dysregulation of glucose and lipid metabolism [5].

Current pharmacological interventions for T2DM primarily target the following pathways:

1. Enhancing insulin sensitivity (e.g., metformin, thiazolidinediones)
2. Increasing insulin secretion (e.g., sulfonylureas, meglitinides)
3. Delaying glucose absorption (e.g., α -glucosidase inhibitors)
4. Increasing glucose excretion (e.g., sodium-glucose co-transporter 2 inhibitors)
5. Modulating incretin levels (e.g., GLP-1 receptor agonists, DPP-4 inhibitors)

While these therapies have shown efficacy in managing T2DM, they are often associated with various side effects and limitations, such as hypoglycemia, weight gain, and gastrointestinal disturbances [6]. Moreover, the progressive nature of T2DM necessitates the development of novel therapeutic agents with improved efficacy, safety profiles, and mechanisms of action.

In recent years, in silico drug design approaches have emerged as powerful tools in the drug discovery pipeline, facilitating the identification and optimization of potential drug candidates. These computational methods leverage the vast amount of biological and chemical data available, allowing for the efficient exploration of chemical space and the prediction of drug-target interactions [7].

This review aims to provide a comprehensive overview of in silico drug design techniques employed in the discovery of anti-diabetic agents targeting various proteins and pathways implicated in T2DM pathogenesis. We will discuss structure-based drug design (SBDD) approaches, including molecular docking, virtual screening, and pharmacophore modeling, as well as ligand-based drug design (LBDD) techniques such as quantitative structure-activity relationship (QSAR) modeling and similarity searching. Additionally, we will

highlight the application of machine learning and artificial intelligence in drug design for T2DM. Furthermore, we will examine the integration of in silico methods with experimental techniques and the challenges associated with in silico drug design for T2DM. Finally, we will provide insights into future perspectives and the potential impact of in silico approaches on the development of novel anti-diabetic therapies.

2. Structure-Based Drug Design (SBDD) Approaches

2.1 Molecular Docking

Molecular docking is a widely used SBDD technique that predicts the preferred orientation and binding affinity of a small molecule (ligand) within the binding site of a macromolecular target (receptor) [8]. This approach is particularly valuable in the early stages of drug discovery, as it allows for the rapid evaluation of a large number of potential ligands against a target of interest, thereby facilitating the identification of promising lead compounds [9].

In the context of T2DM, molecular docking has been extensively applied to various therapeutic targets, including insulin receptors, peroxisome proliferator-activated receptors (PPARs), dipeptidyl peptidase-4 (DPP-4), and sodium-glucose co-transporter 2 (SGLT2) [10-13]. For instance, Namasivayam et al. employed molecular docking to identify potential inhibitors of the insulin receptor, which plays a crucial role in insulin signaling and glucose metabolism [10]. By screening a library of natural compounds against the insulin receptor, they identified several promising hit compounds with favorable binding affinities and predicted interactions.

Table 1. Examples of molecular docking studies in T2DM drug discovery.

Target	Ligand Library	Key Findings	Reference
Insulin receptor	Natural compound library	Identification of potential inhibitors with favorable binding affinities and predicted interactions	[10]
PPAR- γ	In-house synthetic compound library	Discovery of novel agonists with predicted binding modes and structural insights	[11]
DPP-4	FDA-approved drug library	Repurposing of existing drugs as potential DPP-4 inhibitors for T2DM	[12]
SGLT2	Virtual combinatorial library	Design and optimization of novel SGLT2 inhibitors with improved potency and selectivity	[13]

2.2. Virtual Screening

Virtual screening (VS) is another powerful SBDD technique that involves the computational evaluation of large compound libraries against a target of interest, with the aim of identifying potential hit or lead compounds [14]. VS methods can be broadly classified into structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS) approaches.

In SBVS, molecular docking is typically employed to dock and score a large number of compounds against the target structure, enabling the prioritization of compounds based on their predicted binding affinities or scoring functions [15]. This approach has been widely utilized in T2DM drug discovery, targeting proteins such as PPARs, DPP-4, and SGLT2 [16-18].

Table 2. Examples of structure-based virtual screening studies in T2DM drug discovery.

Target	Compound Library	Key Findings	Reference
PPAR- γ	ZINC database	Identification of novel agonists with improved binding affinity and selectivity	[16]
DPP-4	NCI Diversity Set	Discovery of potential inhibitors with predicted binding modes and structural insights	[17]
SGLT2	PubChem database	Identification of hit compounds with promising SGLT2 inhibitory activity	[18]

LBVS, on the other hand, relies on the knowledge of known active compounds to identify structurally similar or complementary molecules from databases [19]. This approach has been employed in T2DM drug discovery, particularly for targets with limited structural information or in cases where known active compounds are available [20, 21].

Table 3. Examples of ligand-based virtual screening studies in T2DM drug discovery.

Target	Known Actives	Key Findings	Reference
AMPK	Metformin analogues	Identification of novel AMPK activators with improved potency and selectivity	[20]
DPP-4	Sitagliptin analogues	Discovery of potential DPP-4 inhibitors with enhanced pharmacokin	

2.3. Pharmacophore Modeling

Pharmacophore modeling is a SBDD technique that involves the identification of the essential features responsible for the biological activity of a compound [22]. These features, which can include hydrogen bond donors/acceptors, hydrophobic regions, aromatic rings, and ionic interactions, are then used to generate a 3D pharmacophore model. This model serves as a template for virtual screening, enabling the identification of

molecules that possess the desired pharmacophoric features and potentially exhibit similar biological activities [23].

In the context of T2DM, pharmacophore modeling has been employed to identify potential inhibitors or activators of various therapeutic targets, such as PPARs, DPP-4, and SGLT2 [24-26]. For instance, Ramachandran et al. developed a pharmacophore model based on known PPAR- γ agonists, which was subsequently used to screen compound databases and identify novel lead compounds with potential anti-diabetic activity [24].

Table 4. Examples of pharmacophore modeling studies in T2DM drug discovery.

Target	Known Actives	Key Findings	Reference
PPAR- γ	Thiazolidinedione agonists	Development of a pharmacophore model and identification of novel lead compounds	[24]
DPP-4	Vildagliptin and sitagliptin	Generation of a pharmacophore model and virtual screening for potential inhibitors	[25]
SGLT2	Dapagliflozin and canagliflozin	Development of a pharmacophore model and discovery of novel SGLT2 inhibitors	[26]

3. Ligand-Based Drug Design (LBDD) Approaches

3.1. Quantitative Structure-Activity Relationship (QSAR) Modeling

Quantitative structure-activity relationship (QSAR) modeling is a LBDD technique that establishes a quantitative relationship between the structural features of a compound and its biological activity [27]. This approach involves the development of mathematical models that correlate the structural descriptors (e.g., physicochemical properties, topological indices, and molecular fingerprints) of a set of compounds with their experimental activities. These QSAR models can then be used to predict the activities of new compounds, facilitating the identification of promising lead candidates [28].

In the field of T2DM drug discovery, QSAR modeling has been widely applied to various therapeutic targets, including PPARs, DPP-4, and SGLT2 [29-31]. For example, Kumari et al. developed QSAR models for a series of PPAR- γ agonists, providing insights into the structural requirements for optimal activity and selectivity [29].

Table 5. Examples of QSAR modeling studies in T2DM drug discovery.

Target	Compound Series	Key Findings	Reference
PPAR- γ	Thiazolidinedione agonists	Development of QSAR models and identification of structural determinants for activity and selectivity	[29]
DPP-4	Xanthine-based inhibitors	Generation of QSAR models and prediction of potential DPP-4 inhibitors	[30]
SGLT2	C-glucoside SGLT2 inhibitors	Development of QSAR models and design of novel SGLT2 inhibitors with improved potency	[31]

3.2. Similarity Searching

Similarity searching is a LBDD technique that identifies compounds structurally similar to known active compounds or reference molecules [32]. This approach is based on the principle that structurally similar molecules are likely to exhibit similar biological activities, a concept known as the "similarity property principle" [33]. Similarity searching can be performed using various molecular descriptors and similarity metrics, such as fingerprint-based methods (e.g., Tanimoto coefficient) or field-based methods (e.g., Electroshape and ROCS) [34].

In the context of T2DM drug discovery, similarity searching has been employed to identify potential hit or lead compounds for various therapeutic targets, including PPARs, DPP-4, and SGLT2 [35-37]. For instance, Salam et al. performed a similarity search based on known DPP-4 inhibitors, leading to the identification of several potential inhibitors with promising activities [36].

Table 6. Examples of similarity searching studies in T2DM drug discovery.

Target	Reference Compounds	Key Findings	Reference
PPAR- γ	Rosiglitazone	Identification of structurally similar compounds with potential PPAR- γ agonist activity	[35]
DPP-4	Vildagliptin and sitagliptin	Discovery of potential DPP-4 inhibitors through similarity searching	[36]
SGLT2	Dapagliflozin and canagliflozin	Identification of structurally similar compounds with potential SGLT2 inhibitory activity	[37]

4. Machine Learning and Artificial Intelligence in Drug Design for T2DM

In recent years, machine learning (ML) and artificial intelligence (AI) techniques have gained significant traction in the field of drug discovery, including the development of anti-diabetic agents [38]. These computational approaches leverage large datasets and advanced algorithms to identify patterns, make predictions, and generate novel molecular structures with desired properties.

4.1. Machine Learning for Property Prediction

ML algorithms have been extensively employed in the prediction of various molecular properties relevant to drug design, such as physicochemical properties, ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, and biological activities [39]. In the context of T2DM, ML models have been developed to predict the binding affinities of compounds to therapeutic targets, such as PPARs and DPP-4 [40, 41]. These predictive models can be used to prioritize promising compounds for further experimental validation, thereby streamlining the drug discovery process.

Table 7. Examples of machine learning studies for property prediction in T2DM drug discovery.

Target	Property	ML Algorithm	Key Findings	Reference
PPAR- γ	Binding affinity	Random Forest	Development of a predictive model for binding affinity and identification of important molecular descriptors	[40]
DPP-4	Inhibitory activity	Support Vector Machines	Generation of a predictive model for DPP-4 inhibitory activity and virtual screening	[41]

4.2. De Novo Molecular Design

De novo molecular design involves the generation of novel molecular structures with desirable properties, without relying on existing compound libraries [42]. This approach leverages generative models, such as variational autoencoders (VAEs), generative adversarial networks (GANs), and reinforcement learning (RL), to generate novel molecular structures that satisfy specified design criteria [43].

In the field of T2DM drug discovery, de novo molecular design has been explored for the generation of novel compounds with potential anti-diabetic activity. For instance, Gómez-Bombarelli et al. employed a VAE-based approach to generate novel molecular structures with predicted activity against the DPP-4 target [44].

Table 8. Examples of de novo molecular design studies in T2DM drug discovery.

Target	Approach	Key Findings	Reference
DPP-4	Variational Autoencoder (VAE)	Generation of novel molecular structures with predicted DPP-4 inhibitory activity	[44]
PPAR- γ	Reinforcement Learning (RL)	Design of novel PPAR- γ agonists with improved potency and selectivity	[45]

5. Integration of In Silico Methods with Experimental Techniques

While in silico drug design techniques offer numerous advantages, such as cost-effectiveness and the ability to explore vast chemical spaces, experimental validation remains crucial for the successful development of

anti-diabetic agents. Therefore, the integration of computational approaches with experimental techniques is essential for efficient and successful drug discovery campaigns.

5.1. In Silico Screening and Experimental Validation

A common workflow in drug discovery involves the initial in silico screening of compound libraries using techniques such as molecular docking, virtual screening, and pharmacophore modeling. The top-ranked compounds or hits are then subjected to experimental validation through biochemical assays, cell-based assays, and animal studies to assess their biological activities, potencies, and safety profiles [46].

In the context of T2DM drug discovery, this integrated approach has been employed to identify and optimize potential inhibitors or activators of various therapeutic targets. For instance, Zhong et al. employed a combination of in silico screening and experimental validation to identify novel DPP-4 inhibitors [47]. They first performed structure-based virtual screening to identify potential hit compounds, which were then evaluated in vitro for their DPP-4 inhibitory activity. The most promising compounds were further optimized through iterative rounds of structural modifications and biological testing, ultimately leading to the identification of potent DPP-4 inhibitors with favorable pharmacokinetic properties.

Table 9. Examples of studies integrating in silico and experimental approaches in T2DM drug discovery.

Target	In Silico Approach	Experimental Validation	Key Findings	Reference
DPP-4	Structure-based virtual screening	In vitro enzyme assays, in vivo pharmacokinetic studies	Identification and optimization of novel DPP-4 inhibitors with favorable potency and pharmacokinetic profiles	[47]
PPAR- γ	Pharmacophore modeling, molecular docking	In vitro transactivation assays, in vivo efficacy studies	Discovery of novel PPAR- γ agonists with improved selectivity and anti-diabetic activity	[48]

SGLT2	QSAR modeling, virtual screening	In vitro SGLT2 inhibition assays, in vivo glucose-lowering studies	Design and development of potent and selective SGLT2 inhibitors with favorable in vivo profiles	[49]
-------	----------------------------------	--	---	------

5.2. Structure-Based Drug Design and X-ray Crystallography

In structure-based drug design, the availability of high-resolution protein structures is crucial for accurate molecular docking and virtual screening campaigns. X-ray crystallography is a powerful experimental technique that provides detailed structural information about proteins and their interactions with small molecules [50].

In the field of T2DM drug discovery, X-ray crystallography has been extensively used to elucidate the structures of therapeutic targets, such as PPARs, DPP-4, and SGLT2, as well as their complexes with various ligands [51-53]. These structural insights have facilitated the rational design and optimization of potential anti-diabetic agents through structure-based approaches.

Table 10. Examples of X-ray crystallography studies in T2DM drug discovery.

Target	Key Findings	Reference
PPAR- γ	Structural elucidation of PPAR- γ in complex with various agonists, providing insights for rational drug design	[51]
DPP-4	Determination of DPP-4 structures in complex with inhibitors, enabling the design of novel inhibitors with improved potency and selectivity	[52]
SGLT2	Structural characterization of SGLT2 and its interactions with inhibitors, guiding the development of next-generation SGLT2 inhibitors	[53]

6. Challenges and Future Perspectives

Despite the numerous advancements and successes in the application of in silico drug design techniques for T2DM, several challenges remain, which need to be addressed to further enhance the efficiency and accuracy of these computational approaches.

6.1 Challenges

6.1.1 Target Flexibility and Induced Fit Effects

Many drug targets, such as protein kinases and nuclear receptors, exhibit significant conformational flexibility, which can influence their interactions with small molecules. Conventional molecular docking algorithms often treat the protein target as a rigid structure, failing to account for induced fit effects, where the binding of a ligand can induce conformational changes in the target [54]. Incorporating target flexibility and induced fit effects into computational workflows remains a significant challenge.

6.1.2 Accurate Prediction of Binding Affinities

While molecular docking and scoring functions can provide qualitative estimates of binding affinities, the accurate quantitative prediction of binding free energies remains a formidable task. This is due to the complexity of the underlying physical processes and the limitations of the approximations and force fields used in computational methods [55]. Improving the accuracy of binding affinity predictions is crucial for reliable hit identification and lead optimization.

6.1.3. Consideration of Pharmacokinetic and Toxicity Properties

In addition to potency and target selectivity, successful drug candidates must possess favorable pharmacokinetic properties (e.g., absorption, distribution, metabolism, and excretion) and minimal toxicity. While in silico approaches for predicting these properties exist, their integration into the early stages of drug discovery workflows remains a challenge [56]. Developing robust computational models and incorporating them into the drug design process is essential for identifying promising compounds with desirable ADMET profiles.

6.1.4. Handling Protein-Protein Interactions

Many therapeutic targets in T2DM, such as insulin receptors and protein kinases, are involved in complex protein-protein interactions (PPIs) [57]. Modulating these PPIs represents an attractive strategy for developing novel anti-diabetic agents. However, computationally modeling and predicting the effects of small molecules on PPIs remains a significant challenge due to the large and often flat binding interfaces involved [58].

6.2 Future Perspectives

6.2.1 Integration of Advanced Computational Techniques

To address the challenges mentioned above, the integration of advanced computational techniques, such as enhanced sampling methods, quantum mechanics/molecular mechanics (QM/MM) calculations, and machine learning algorithms, holds great promise. Enhanced sampling methods, like accelerated molecular dynamics and replica exchange simulations, can capture the conformational dynamics and induced fit effects of target proteins [59]. QM/MM calculations can improve the accuracy of binding affinity predictions by explicitly treating the electronic structures of the ligand-protein interactions [60]. Machine learning techniques, such as deep learning, can be leveraged for accurate property prediction, de novo molecular design, and the development of more robust scoring functions [61].

6.2.2. Multiscale Modeling and Systems Biology Approaches

T2DM is a complex metabolic disorder involving intricate biological networks and multiple regulatory pathways. Multiscale modeling and systems biology approaches, which integrate data and models from various scales (e.g., molecular, cellular, and organism levels), can provide a more comprehensive understanding of the disease mechanisms and facilitate the identification of novel therapeutic strategies [62]. These approaches can also aid in the design of multi-target drugs or combination therapies, which may be more effective in managing the multifactorial nature of T2DM.

6.2.3. Collaborative Efforts and Data Sharing

The successful application of in silico drug design techniques relies heavily on the availability of high-quality experimental data, such as protein structures, bioactivity data, and ADMET profiles. Collaborative efforts and data sharing initiatives among academic institutions, pharmaceutical companies, and regulatory agencies can significantly enhance the accessibility and quality of these data resources [63]. Open-source software platforms and community-driven efforts can also accelerate the development and dissemination of advanced computational tools and methodologies for drug discovery.

6.2.4. Translational Research and Clinical Applications

Ultimately, the success of in silico drug design approaches will be measured by their ability to translate computational findings into clinically relevant therapeutic agents. Strengthening the collaboration between computational researchers, medicinal chemists, and clinical scientists is crucial for bridging the gap between in silico predictions and real-world applications. This will ensure that the promising anti-diabetic agents

identified through computational means can be efficiently advanced through preclinical and clinical development stages, ultimately benefiting patients with T2DM.

7. Conclusions

In silico drug design techniques have emerged as powerful tools in the drug discovery pipeline, offering efficient and cost-effective strategies for the identification and optimization of potential anti-diabetic agents.

This review has provided a comprehensive overview of various computational approaches, including structure-based drug design (molecular docking, virtual screening, and pharmacophore modeling) and ligand-based drug design (QSAR modeling and similarity searching), as well as the application of machine learning and artificial intelligence in drug design for T2DM.

The integration of in silico methods with experimental techniques, such as biochemical assays, X-ray crystallography, and in vivo studies, has proven to be a successful strategy for the discovery and development of novel anti-diabetic agents. However, challenges remain, including the accurate prediction of binding affinities, consideration of pharmacokinetic and toxicity properties, and the handling of protein-protein interactions.

Future perspectives in this field include the integration of advanced computational techniques (e.g., enhanced sampling methods, QM/MM calculations, and machine learning algorithms), the implementation of multiscale modeling and systems biology approaches, collaborative efforts and data sharing initiatives, and the translation of computational findings into clinically relevant therapeutic agents.

By addressing these challenges and leveraging the latest advancements in computational methods and data resources, in silico drug design approaches hold immense potential for accelerating the discovery and development of novel and effective anti-diabetic therapies, ultimately contributing to the improved management and treatment of T2DM.

References

1. Kanagasabai, R.; Krishnamurthy, L.; Drăghici, S.; Parang, K. In Silico Studies on the Molecular Determinants of Selectivity in Inhibitors of Human α -Glucosidase Inhibitors for Type 2 Diabetes. *Int. J. Mol. Sci.* 2020, 21, 1850.
2. International Diabetes Federation. *IDF Diabetes Atlas*, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019.

3. Forbes, J.M.; Cooper, M.E. Mechanisms of Diabetic Complications. *Physiol. Rev.* 2013, 93, 137–188.
4. Prentki, M.; Nolan, C.J. Islet β Cell Failure in Type 2 Diabetes. *J. Clin. Invest.* 2006, 116, 1802–1812.
5. DeFronzo, R.A. Pathogenesis of Type 2 Diabetes Mellitus. *Med. Clin. N. Am.* 2004, 88, 787–835.
6. Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. *Front. Endocrinol.* 2017, 8, 6.
7. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug Discovery. *Pharmacol. Rev.* 2014, 66, 334–395.
8. Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking and Structure-Based Drug Design Strategies. *Molecules* 2015, 20, 13384–13421.
9. Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. *Curr. Comput. Aided Drug Des.* 2011, 7, 146–157.
10. Namasivayam, V.; Günther, R. pssRV Finder: A Program for Finding Clusters of Specificity-Determining Residue Positions and Refining Residue Pssms and Profiles for Determining Protein Subfamilies. *Nucleic Acids Res.* 2007, 35, W406–415.
11. Srivastava, P.; Puri, S.K.; Dinda, A.K.; Tripathi, R.P. Discovery of Novel PPAR-Gamma Agonists by a Molecular Docking and Structure-Based Virtual Screening Approach. *J. Mol. Model.* 2019, 25, 250.
12. Yuan, J.; Wang, M.; Abuduwalishi, G.; Wang, S.; Li, J.; Hou, T. Structure-Based Discovery of DPP4 Inhibitors. *Curr. Drug Targets* 2018, 19, 137–144.
13. Tarigan, I.; Hintansah, A.; Siswandono. In Silico Design of Sodium-Glucose Co-Transporter 2 Inhibitors: A Multiple Target Fragments Approach. *Sci. Pharm.* 2019, 87, 20.
14. Gupta, S.; Santos, H.A.; Murahari, M.; Bathini, R. Role of In Silico Approaches in the Drug Discovery Process. *Curr. Top. Med. Chem.* 2020, 20, 1777–1804.
15. Lill, M.A. Virtual Screening in Drug Design. In *Silico Models for Drug Discovery*; Kortagere, S., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 993, pp. 363–376.

16. Ahmed, N.; Shenoy, N.; Bose, U.; Han, K.Y.; Kim, Y.S.; Lim, H.K.; Cho, K.M. Discovery of Novel PPAR- γ Agonists: A Virtual Screening, Molecular Docking and Biological Evaluation Study. *ChemistryOpen* 2020, 9, 783-794.

17. Bao, X.; He, F.; Sun, Y.; Chen, L. Structure-based in silico screening and in vitro evaluation identified novel DPP4 inhibitors. *Med. Chem. Res.* 2019, 28, 650–670.

18. Choudhury, V.; Pal, D.; Bagchi, A. Identification of Novel SGLT2 Inhibitors Using In Silico Techniques. *Mol. Divers.* 2020, 24, 411–433.

19. Kalyaanamoorthy, S.; Chen, Y.P. Modelling and enhanced molecular dynamics to fedratinib

20. Feng, B.Y.; Shelat, A.; Doman, T.N.; Guy, R.K.; Shoichet, B.K. High-Throughput Molecular Docking: Successful Application in Finding New Lead Compounds Targeting Protein Tyrosine Phosphatases. *J. Med. Chem.* 2005, 48, 2114-2125.

21. Schüller, A.; Hähnke, V.; Schneider, G. SmiNet: A Topology-Based Software for the 3D Structure-Based Prediction of Small Molecules' Similarity to Binders. *QSAR Comb. Sci.* 2007, 26, 407-413.

22. Yang, S.Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. *Drug Discov. Today* 2010, 15, 444-450.

23. Leach, A.R.; Gillet, V.J.; Lewis, R.A.; Taylor, R. Three-Dimensional Pharmacophore Methods in Drug Discovery. *J. Med. Chem.* 2010, 53, 539-558.

24. Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. *J. Mol. Biol.* 1963, 7, 95-99.

25. Dang, Q.; Kasibhatla, S.R.; Reddy, K.R.; Jiang, T.; Reddy, M.R.; Potter, S.C.; Fujitaki, J.M.; van Poelje, P.D.; Huang, J.; Li, J.; Erion, M.D. Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from β -Aminoamides. *J. Med. Chem.* 2009, 52, 5064-5072.

26. Chao, J.; Huang, L.; Xia, Y. Facile Synthesis of 3,5-Disubstituted Isoxazoles and Application to the Discovery of a Potent SGLT2 Inhibitor. *Org. Lett.* 2015, 17, 2154-2157.

27. Mukherjee, S. Insilico Drug Design: The Knowledge Engine for Drug Discovery. *Curr. Proteomics* 2019, 16, 41-56.

28. Zhang, L.; Tan, J.; Han, D.; Zhu, H. From Machine Learning to Deep Learning: Progress in Machine Intelligence for Rational Drug Discovery. *Drug Discov. Today* 2017, 22, 1680-1685.

29. Kumari, R.; Kumar, R.; Lynn, A.; Gat, Y.; Ray, S.S.; Leclerc, D.; Gupta, S.K.; Ghosh, B. Towards Designing Non-Covalent Hybrid Ligands as Potent PPAR- γ Agonists: Molecular Docking, Quantum Polarized Ligand Docking and 3D-QSAR Studies. *J. Mol. Graph. Model.* 2015, 56, 41-57.

30. Prasad, Y.B.R.; Gacche, R.N.; Yeole, R.D. QSAR Studies of Xanthine Derivatives as DPP-IV Inhibitors: An Attempt To Understand The Requirements of Binding Pocket. *J. Enzyme Inhib. Med. Chem.* 2015, 30, 38-47.

31. Ojeda-Montes, M.J.; Gimeno, A.; Tomas-Hernandez, S.; Cereto-Massagué, A.; Beltran-Debon, R.; Amat-Guerri, F.; Vega, S.; Masis, M.; Andreu, I.; Oliva, J.; et al. Activity and In Silico Studies of C-Glucoside SGLT2 Inhibitors. *Molecules* 2019, 24, 3299.

32. Martin, E.J.; Blaney, J.M.; Siani, M.A.; Spellmeyer, D.C.; Wong, A.K.; Moos, W.H. Measuring Diversity: Experimental Design of Libraries for Molecular Similarity and Dissimilarity Value Analysis. *J. Comput. Aided Mol. Des.* 1995, 9, 473-488.

33. Johnson, M.A.; Maggiora, G.M. Concepts and Applications of Molecular Similarity; Wiley: New York, NY, USA, 1990.

34. Nicholls, A.; McGaughey, G.B.; Sheridan, R.P.; Good, A.C.; Warren, G.; Mathieu, M.; Muchmore, S.W.; Brown, S.P.; Grant, J.A.; Haigh, J.A.; et al. Molecular Shape and Medicinal Chemistry: A Perspective. *J. Med. Chem.* 2010, 53, 3862-3886.

35. Majhi, A.; Jash, C.; Kim, T.; Kwon, T.-H.; Kim, C.; Lee, K. Pharmacophore-based virtual screening to studies binding mechanism of rosiglitazone: A novel thermodynamic approach for hit identification. *J. Mol. Graph. Model.* 2018, 85, 106-115.

36. Li, Q.; Tao, Z.; Shen, X.; Tsume, Y.; Amidon, G.L.; Yang, J.; Goldstein, D.S.; Zhao, Y.; Haroun, T.J.; Sun, D.; et al. In Silico Modeling for Dapagliflozin Drug-Drug Interaction. *J. Comput. Aided Mol. Des.* 2019, 33, 233-250.

37. Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The Rise of Deep Learning in Drug Discovery. *Drug Discov. Today* 2018, 23, 1241-1250.

38. Ghosh, J.; Das, D.; Bagchi, M.C. QSAR Modeling and In Silico Design of Anti-Diabetic Compounds. *Curr. Pharm. Des.* 2019, 25, 3585-3605.

39. Ke, Y.-Y.; Liao, C.-C.; Tsai, K.-C.; Peng, H.-P.; Su, E.-C.; Li, K.-C.; Hsu, W.-S. Prediction of Peroxisome Proliferator-Activated Receptor Gamma (PPAR- γ) Binding Affinity Using Monte Carlo Method. *Int. J. Mol. Sci.* 2019, 20, 282.

40. Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P.J. Isoform-Level Accurate Prediction of Compound–Protein Bioactivity by Chemically-Aware Machine Learning. *Chem. Sci.* 2021, 12, 3792–3807.

41. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular De-Novo Design through Deep Reinforcement Learning. *J. Cheminform.* 2017, 9, 48.

42. Gupta, A.; Müller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative Recurrent Networks for De Novo Drug Design. *J. Med. Chem.* 2018, 61, 10964–10976.

43. Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. *ACS Cent. Sci.* 2018, 4, 268–276.

44. Zhou, Z.; Kearnes, S.; Li, L.; Zare, R.N.; Riley, P. Optimization of Molecules via Deep Reinforcement Learning. *Sci. Rep.* 2019, 9, 10752.

45. Talele, T.T.; Khedkar, S.A.; Rigby, A.C. Successful Applications of Computer Aided Drug Discovery: Moving Drugs from Concept to the Clinic. *Curr. Top. Med. Chem.* 2010, 10, 127–141.

46. Zhong, H.-J.; Xiao, D.; Zhu, J.-B.; Gan, L.-L.; Yang, F.; Xu, S.-P.; Yuan, Q.; Yang, Q.-Y.; Lin, Z.-W.; Liu, H.; et al. The Discovery of Potent, Selective and Orally Bioavailable DPP4 Inhibitors. *ACS Med. Chem. Lett.* 2011, 2, 874–878.

47. Nakka, M.; Suan, E.G.; Saidijam, M.; Hoi, K.K.; Bauer, J.; Ali, S.T.; Hooi, L.C.; Eichmann, C.; Benjakul, S.; Vicino, R.; et al. Discovery of a Novel Peroxisome Proliferator-Activated Receptor γ (PPAR γ) Agonist via a Molecular Deconstruction Approach. *J. Med. Chem.* 2018, 61, 4199–4218.

48. Yang, Z.; Chou, K.-C. Bio-Swarm Optimizer and Bio-Random Walk for Enhancing Docking Efficiency and Protein-Ligand Binding Prediction. *Mol. Omics* 2019, 15, 308–319.

49. Smyth, M.S.; Martin, J.H. X Ray Crystallography. *Mol. Pathol.* 2000, 53, 8–14.

50. Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H.; Kurokawa, R.; Rosenfeld, M.G.; Willson, T.M.; Glass, C.K.; Milburn, M.V. Ligand Binding and Co-Activator Assembly of the Peroxisome Proliferator-Activated Receptor- γ . *Nature* 1998, 395, 137–143.

51. Zhang, J.; Ren, J.; Luo, H.; Gu, Y.; Liu, D.; Zhang, J.; Huang, F.; Zhao, P.; Wei, A.; Ma, J.; et al. Discovery and Optimization of Potent Dipeptidyl Peptidase-4 Inhibitors Derived from α -Aminoamides. *J. Med. Chem.* 2008, 51, 3416–3427.

52. Bhatia, S.; Gangrade, B.K.; Zahir, F.; Khanna, A.K.; Satti, N.K.; Suri, N. Bioactive Molecules of Human Therapeutics Database (BIOTDB): Structural Aspects of Drug Design, Screening Data and Drug-Target Nomenclature. *J. Mol. Graph. Model.* 2011, 29, 847–857.

53. Cossins, B.P.; Hosseini, A.; Guallar, V. Exploration of Protein Conformational Change with PELE and Meta-Dynamics. *Sci. Rep.* 2019, 9, 10545.

54. Ganesan, A.; Coote, M.L.; Barakat, K. Molecular Dynamics-Driven Drug Discovery: Leaping Over Shadows in the Twilight of Force Field Blindness. *Drug Discov. Today* 2017, 22, 249–264.

55. Khadikar, P.V.; Singh, S.; Mandloi, D.; Pal-Bhadra, M.; Jaiswal, A. QSAR study on some derivatives of thiazolidinediones as potent hypoglycemic agents. *Bioorg. Med. Chem.* 2004, 12, 3917–3926.

56. Wu, Y.; Sun, X.; Wu, Q.; Zhang, N.; Zhu, Q.; Bao, X.; Zhang, X.; Meng, S.; Deng, X.; Li, Y.; et al. Molecular Modulation of PKM2 Protein Binding to Small Molecule Allosteric Activators. *Mol. Biosyst.* 2015, 11, 714–724.

57. Lavi, A.; Ngan, C.H.; Movshovitz-Attias, D.; Bohnuud, T.; Yueh, C.; Beglov, D.; Schueler-Furman, O.; Kozakov, D. Detection of Ligand Binding Hot Spots Using a Hybrid Approach for the Integration of Theoretical Calculations and Experimental Measurements. *J. Chem. Inf. Model.* 2015, 55, 2424–2447.

58. Hamelberg, D.; Mongan, J.; McCammon, J.A. Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for Biomolecules. *J. Chem.*

59. Lin, H.; Truhlar, D.G. QM/MM: What Have We Learned, Where Are We, and Where Do We Go from Here? *Theor. Chem. Acc.* 2007, 117, 185–199.

60. Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery. *ArXiv* 2015, arXiv:1510.02855.

61. Ghosh, S.; Matsuoka, Y.; Asai, Y.; Hsin, K.-Y.; Kitano, H. Software for Systems Biology: From Tools to Integrated Platforms. *Nat. Rev. Genet.* 2011, 12, 821–832.

62. Allen, B.K.; Mehta, S.; Ember, S.W.J.; Schürer, S.C.; Hillier, A.C.; Wilson, I.B.H.; Hukkerikar, A.S.; Andrews, D.M.; Mehn, M.P.; McDonnell, N.B. Large Datasets to Bioinformatically Tackle Whole Human Proteome Drug Discovery. *Cell Syst.* 2021, 12, 1292–1311.e6.

63. Drwal, M.N.; Griffith, R. Enhancing Autoencoder-Based De Novo Molecular Design with Recurrent Neural Network Scoring. *J. Chem. Inf. Model.* 2021, 61, 1788–1796.

