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Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic disorder characterized by insulin resistance and
insufficient insulin production, leading to hyperglycemia. With the increasing prevalence of T2DM
worldwide, there is an urgent need for the development of novel and effective therapeutic agents. In silico
drug design techniques have emerged as powerful tools in the drug discovery pipeline, facilitating the
identification and optimization of potential drug candidates. This review provides a comprehensive overview
of in silico methods employed in the discovery of anti-diabetic agents targeting various proteins and
pathways implicated in T2DM pathogenesis. We discuss structure-based drug design (SBDD) approaches,
including molecular docking, virtual screening, and pharmacophore modeling, as well as ligand-based drug
design (LBDD) techniques such as quantitative structure-activity relationship (QSAR) modeling and
similarity searching. Additionally, we highlight the application of machine learning and artificial intelligence
in drug design for T2DM. Furthermore, we examine the integration of in silico methods with experimental
techniques and the challenges associated with in silico drug design for T2DM. Finally, we provide insights
into future perspectives and the potential impact of in silico approaches on the development of novel anti-
diabetic therapies.
Keywords: type 2 diabetes mellitus; in silico drug design; structure-based drug design; ligand-based drug

design; molecular docking; virtual screening; pharmacophore modeling; QSAR; machine learning; artificial

intelligence
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and
impaired insulin secretion, leading to hyperglycemia [1]. It is a major global health concern, with an
estimated 463 million individuals affected worldwide in 2019, and this number is projected to rise to 700
million by 2045 [2]. T2DM is associated with various complications, including cardiovascular diseases,
nephropathy, neuropathy, and retinopathy, which contribute significantly to morbidity and mortality [3].
The pathogenesis of T2DM is complex and multifactorial, involving genetic and environmental factors that
influence insulin sensitivity and pancreatic f-cell function [4]. Key molecular mechanisms implicated in
T2DM include insulin resistance in target tissues (e.g., skeletal muscle, liver, and adipose tissue), impaired
insulin secretion by pancreatic f-cells, and dysregulation of glucose and lipid metabolism [5].

Current pharmacological interventions for T2DM primarily target the following pathways:

1. Enhancing insulin sensitivity (e.g., metformin, thiazolidinediones)

2. Increasing insulin secretion (e.g., sulfonylureas, meglitinides)

3. Delaying glucose absorption (e.g., a-glucosidase inhibitors)

4. Increasing glucose excretion (e.g., sodium-glucose co-transporter 2 inhibitors)

5. Modulating incretin levels (e.g., GLP-1 receptor agonists, DPP-4 inhibitors)

While these therapies have shown efficacy in managing T2DM, they are often associated with various side
effects and limitations, such as hypoglycemia, weight gain, and gastrointestinal disturbances [6]. Moreover,
the progressive nature of T2DM necessitates the development of novel therapeutic agents with improved
efficacy, safety profiles, and mechanisms of action.

In recent years, in silico drug design approaches have emerged as powerful tools in the drug discovery
pipeline, facilitating the identification and optimization of potential drug candidates. These computational
methods leverage the vast amount of biological and chemical data available, allowing for the efficient
exploration of chemical space and the prediction of drug-target interactions [7].

This review aims to provide a comprehensive overview of in silico drug design techniques employed in the
discovery of anti-diabetic agents targeting various proteins and pathways implicated in T2DM pathogenesis.
We will discuss structure-based drug design (SBDD) approaches, including molecular docking, virtual
screening, and pharmacophore modeling, as well as ligand-based drug design (LBDD) techniques such as

quantitative structure-activity relationship (QSAR) modeling and similarity searching. Additionally, we will
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highlight the application of machine learning and artificial intelligence in drug design for T2DM.
Furthermore, we will examine the integration of in silico methods with experimental techniques and the
challenges associated with in silico drug design for T2DM. Finally, we will provide insights into future
perspectives and the potential impact of in silico approaches on the development of novel anti-diabetic
therapies.

2. Structure-Based Drug Design (SBDD) Approaches

2.1 Molecular Docking

Molecular docking is a widely used SBDD technique that predicts the preferred orientation and binding
affinity of a small molecule (ligand) within the binding site of a macromolecular target (receptor) [8]. This
approach is particularly valuable in the early stages of drug discovery, as it allows for the rapid evaluation
of a large number of potential ligands against a target of interest, thereby facilitating the identification of
promising lead compounds [9].

In the context of T2DM, molecular docking has been extensively applied to various therapeutic targets,
including insulin receptors, peroxisome proliferator-activated receptors (PPARS), dipeptidyl peptidase-4
(DPP-4), and sodium-glucose co-transporter 2 (SGLT2) [10-13]. For instance, Namasivayam et al. employed
molecular docking to identify potential inhibitors of the insulin receptor, which plays a crucial role in insulin
signaling and glucose metabolism [10]. By screening a library of natural compounds against the insulin
receptor, they identified several promising hit compounds with favorable binding affinities and predicted

interactions.
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Table 1. Examples of molecular docking studies in T2DM drug discovery.

Target Ligand Library Key Findings Reference

Insulin Natural compound|ldentification of potential inhibitors with{[10]
receptor  |library favorable binding affinities and predicted

interactions

PPAR-y |In-house synthetic|Discovery of novel agonists with predicted|[11]

compound library binding modes and structural insights

DPP-4 FDA-approved drug|Repurposing of existing drugs as potential|{[12]

library DPP-4 inhibitors for T2DM

SGLT2  |Virtual combinatorial|Design and optimization of novel SGLT2|[13]
library inhibitors with improved potency and

selectivity

2.2. Virtual Screening

Virtual screening (VS) is another powerful SBDD technique that involves the computational evaluation of
large compound libraries against a target of interest, with the aim of identifying potential hit or lead
compounds [14]. VS methods can be broadly classified into structure-based virtual screening (SBVS) and
ligand-based virtual screening (LBVS) approaches.

In SBVS, molecular docking is typically employed to dock and score a large number of compounds against
the target structure, enabling the prioritization of compounds based on their predicted binding affinities or
scoring functions [15]. This approach has been widely utilized in T2DM drug discovery, targeting proteins

such as PPARs, DPP-4, and SGLT2 [16-18].
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Table 2. Examples of structure-based virtual screening studies in T2DM drug discovery.

Target |Compound Key Findings Reference

Library

PPAR- |ZINC database |ldentification of novel agonists with improved|[16]

V4 binding affinity and selectivity

DPP-4 INCI  Diversity|Discovery of potential inhibitors with predicted|[17]

Set binding modes and structural insights
SGLT2 |PubChem Identification of hit compounds with promising|[18]
database SGLT2 inhibitory activity

LBVS, on the other hand, relies on the knowledge of known active compounds to identify structurally similar
or complementary molecules from databases [19]. This approach has been employed in T2DM drug
discovery, particularly for targets with limited structural information or in cases where known active
compounds are available [20, 21].

Table 3. Examples of ligand-based virtual screening studies in T2DM drug discovery.

Target|Known Actives |Key Findings Reference
AMPK [Metformin Identification of novel AMPK activators with{[20]
analogues improved potency and selectivity
DPP-4 |Sitagliptin Discovery of potential DPP-4 inhibitors with
analogues enhanced pharmacokin

2.3. Pharmacophore Modeling

Pharmacophore modeling is a SBDD technique that involves the identification of the essential features
responsible for the biological activity of a compound [22]. These features, which can include hydrogen bond
donors/acceptors, hydrophobic regions, aromatic rings, and ionic interactions, are then used to generate a 3D

pharmacophore model. This model serves as a template for virtual screening, enabling the identification of
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molecules that possess the desired pharmacophoric features and potentially exhibit similar biological
activities [23].

In the context of T2DM, pharmacophore modeling has been employed to identify potential inhibitors or
activators of various therapeutic targets, such as PPARs, DPP-4, and SGLT2 [24-26]. For instance,
Ramachandran et al. developed a pharmacophore model based on known PPAR-y agonists, which was
subsequently used to screen compound databases and identify novel lead compounds with potential anti-
diabetic activity [24].

Table 4. Examples of pharmacophore modeling studies in T2DM drug discovery.

Target [Known Actives Key Findings Reference

PPAR- |Thiazolidinedione Development of a pharmacophore model and|[24]

V4 agonists identification of novel lead compounds

DPP-4 (Vildagliptin and|Generation of a pharmacophore model and|[25]
sitagliptin virtual screening for potential inhibitors

SGLT2 |Dapagliflozin and|Development of a pharmacophore model and|[26]
canagliflozin discovery of novel SGLT2 inhibitors

3.Ligand-Based Drug Design (LBDD) Approaches

3.1. Quantitative Structure-Activity Relationship (QSAR) Modeling

Quantitative structure-activity relationship (QSAR) modeling is a LBDD technique that establishes a
quantitative relationship between the structural features of a compound and its biological activity [27]. This
approach involves the development of mathematical models that correlate the structural descriptors (e.g.,
physicochemical properties, topological indices, and molecular fingerprints) of a set of compounds with their
experimental activities. These QSAR models can then be used to predict the activities of new compounds,
facilitating the identification of promising lead candidates [28].

In the field of T2DM drug discovery, QSAR modeling has been widely applied to various therapeutic targets,
including PPARs, DPP-4, and SGLT2 [29-31]. For example, Kumari et al. developed QSAR models for a
series of PPAR-y agonists, providing insights into the structural requirements for optimal activity and

selectivity [29].
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Table 5. Examples of QSAR modeling studies in T2DM drug discovery.

Target |Compound Series Key Findings Reference

PPAR- |Thiazolidinedione Development of QSAR models and|[29]
V4 agonists identification of structural determinants for

activity and selectivity

DPP-4 |Xanthine-based Generation of QSAR models and prediction of|[30]

inhibitors potential DPP-4 inhibitors

SGLT2|C-glucoside  SGLT2[Development of QSAR models and design of|[31]

inhibitors novel SGLT2 inhibitors with improved potency

3.2. Similarity Searching

Similarity searching is a LBDD technique that identifies compounds structurally similar to known active
compounds or reference molecules [32]. This approach is based on the principle that structurally similar
molecules are likely to exhibit similar biological activities, a concept known as the "similarity property
principle™ [33]. Similarity searching can be performed using various molecular descriptors and similarity
metrics, such as fingerprint-based methods (e.g., Tanimoto coefficient) or field-based methods (e.g.,
Electroshape and ROCS) [34].

In the context of T2DM drug discovery, similarity searching has been employed to identify potential hit or
lead compounds for various therapeutic targets, including PPARs, DPP-4, and SGLT2 [35-37]. For instance,
Salam et al. performed a similarity search based on known DPP-4 inhibitors, leading to the identification of

several potential inhibitors with promising activities [36].
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Table 6. Examples of similarity searching studies in T2DM drug discovery.

Target |Reference Key Findings Reference
Compounds

PPAR- |Rosiglitazone Identification of structurally similar compounds|[35]

V4 with potential PPAR-y agonist activity

DPP-4 |\Vildagliptin and|Discovery of potential DPP-4 inhibitors through|[36]

sitagliptin similarity searching

SGLT2 |Dapagliflozin and|ldentification of structurally similar compounds|[37]

canagliflozin with potential SGLT2 inhibitory activity

4.Machine Learning and Artificial Intelligence in Drug Design for T2DM

In recent years, machine learning (ML) and artificial intelligence (Al) techniques have gained significant
traction in the field of drug discovery, including the development of anti-diabetic agents [38]. These
computational approaches leverage large datasets and advanced algorithms to identify patterns, make
predictions, and generate novel molecular structures with desired properties.

4.1. Machine Learning for Property Prediction

ML algorithms have been extensively employed in the prediction of various molecular properties relevant to
drug design, such as physicochemical properties, ADMET (absorption, distribution, metabolism, excretion,
and toxicity) parameters, and biological activities [39]. In the context of T2DM, ML models have been
developed to predict the binding affinities of compounds to therapeutic targets, such as PPARs and DPP-4
[40, 41]. These predictive models can be used to prioritize promising compounds for further experimental

validation, thereby streamlining the drug discovery process.
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Table 7. Examples of machine learning studies for property prediction in T2DM drug discovery.

Target (Property |ML Key Findings Reference

Algorithm

PPAR- |Binding Random Forest|Development of a predictive model for|[40]
V4 affinity binding affinity and identification of

important molecular descriptors

DPP-4 |Inhibitory |Support Vector|Generation of a predictive model for DPP-|[41]

activity Machines 4 inhibitory activity and virtual screening

4.2. De Novo Molecular Design

De novo molecular design involves the generation of novel molecular structures with desirable properties,
without relying on existing compound libraries [42]. This approach leverages generative models, such as
variational autoencoders (VAES), generative adversarial networks (GANSs), and reinforcement learning (RL),
to generate novel molecular structures that satisfy specified design criteria [43].

In the field of T2DM drug discovery, de novo molecular design has been explored for the generation of novel
compounds with potential anti-diabetic activity. For instance, Gomez-Bombarelli et al. employed a VAE-
based approach to generate novel molecular structures with predicted activity against the DPP-4 target [44].

Table 8. Examples of de novo molecular design studies in T2DM drug discovery.

Target |Approach Key Findings Reference

DPP-4 |Variational Generation of novel molecular structures with|[44]

Autoencoder (VAE) |predicted DPP-4 inhibitory activity

PPAR- |Reinforcement Design of novel PPAR-y agonists with{[45]

Y Learning (RL) improved potency and selectivity

5. Integration of In Silico Methods with Experimental Techniques
While in silico drug design techniques offer numerous advantages, such as cost-effectiveness and the ability

to explore vast chemical spaces, experimental validation remains crucial for the successful development of
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anti-diabetic agents. Therefore, the integration of computational approaches with experimental techniques is
essential for efficient and successful drug discovery campaigns.

5.1. In Silico Screening and Experimental Validation

A common workflow in drug discovery involves the initial in silico screening of compound libraries using
techniques such as molecular docking, virtual screening, and pharmacophore modeling. The top-ranked
compounds or hits are then subjected to experimental validation through biochemical assays, cell-based
assays, and animal studies to assess their biological activities, potencies, and safety profiles [46].

In the context of T2DM drug discovery, this integrated approach has been employed to identify and optimize
potential inhibitors or activators of various therapeutic targets. For instance, Zhong et al. employed a
combination of in silico screening and experimental validation to identify novel DPP-4 inhibitors [47]. They
first performed structure-based virtual screening to identify potential hit compounds, which were then
evaluated in vitro for their DPP-4 inhibitory activity. The most promising compounds were further optimized
through iterative rounds of structural modifications and biological testing, ultimately leading to the
identification of potent DPP-4 inhibitors with favorable pharmacokinetic properties.

Table 9. Examples of studies integrating in silico and experimental approaches in T2DM drug

discovery.
Target|(In Silico|Experimental Key Findings Reference
Approach \alidation
DPP-4 |Structure-based  |In vitro  enzyme|ldentification and|[47]
virtual screening [assays, in vivo|optimization of novel DPP-
pharmacokinetic 4 inhibitors with favorable
studies potency and

pharmacokinetic profiles

PPAR- |Pharmacophore  |In vitro transactivation|Discovery of novel PPAR-y|[48]

Y modeling, assays, in vivolagonists  with  improved
molecular docking |efficacy studies selectivity and anti-diabetic
activity
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SGLT2(QSAR modeling,{In  vitro  SGLT2[Design and development of|[49]
virtual screening [inhibition assays, in|potent and selective SGLT2
vivo glucose-lowering|inhibitors with favorable in

studies vivo profiles

5.2. Structure-Based Drug Design and X-ray Crystallography

In structure-based drug design, the availability of high-resolution protein structures is crucial for accurate
molecular docking and virtual screening campaigns. X-ray crystallography is a powerful experimental
technique that provides detailed structural information about proteins and their interactions with small
molecules [50].

In the field of T2DM drug discovery, X-ray crystallography has been extensively used to elucidate the
structures of therapeutic targets, such as PPARs, DPP-4, and SGLT2, as well as their complexes with various
ligands [51-53]. These structural insights have facilitated the rational design and optimization of potential
anti-diabetic agents through structure-based approaches.

Table 10. Examples of X-ray crystallography studies in T2DM drug discovery.

Target |Key Findings Reference

PPAR- |Structural elucidation of PPAR-y in complex with various agonists,|[51]

Y providing insights for rational drug design

DPP-4 (Determination of DPP-4 structures in complex with inhibitors, enabling|[52]

the design of novel inhibitors with improved potency and selectivity

SGLT2|Structural characterization of SGLT2 and its interactions with|[53]
inhibitors, guiding the development of next-generation SGLT2

inhibitors

6. Challenges and Future Perspectives
Despite the numerous advancements and successes in the application of in silico drug design techniques for
T2DM, several challenges remain, which need to be addressed to further enhance the efficiency and accuracy

of these computational approaches.

IJCRT2406314 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | ¢910


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

6.1 Challenges

6.1.1 Target Flexibility and Induced Fit Effects

Many drug targets, such as protein kinases and nuclear receptors, exhibit significant conformational
flexibility, which can influence their interactions with small molecules. Conventional molecular docking
algorithms often treat the protein target as a rigid structure, failing to account for induced fit effects, where
the binding of a ligand can induce conformational changes in the target [54]. Incorporating target flexibility
and induced fit effects into computational workflows remains a significant challenge.

6.1.2 Accurate Prediction of Binding Affinities

While molecular docking and scoring functions can provide qualitative estimates of binding affinities, the
accurate quantitative prediction of binding free energies remains a formidable task. This is due to the
complexity of the underlying physical processes and the limitations of the approximations and force fields
used in computational methods [55]. Improving the accuracy of binding affinity predictions is crucial for
reliable hit identification and lead optimization.

6.1.3. Consideration of Pharmacokinetic and Toxicity Properties

In addition to potency and target selectivity, successful drug candidates must possess favorable
pharmacokinetic properties (e.g., absorption, distribution, metabolism, and excretion) and minimal toxicity.
While in silico approaches for predicting these properties exist, their integration into the early stages of drug
discovery workflows remains a challenge [56]. Developing robust computational models and incorporating
them into the drug design process is essential for identifying promising compounds with desirable ADMET
profiles.

6.1.4. Handling Protein-Protein Interactions

Many therapeutic targets in T2DM, such as insulin receptors and protein kinases, are involved in complex
protein-protein interactions (PPIs) [57]. Modulating these PPIs represents an attractive strategy for
developing novel anti-diabetic agents. However, computationally modeling and predicting the effects of
small molecules on PPIs remains a significant challenge due to the large and often flat binding interfaces

involved [58].

[JCRT2406314 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | €911


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

6.2 Future Perspectives

6.2.1 Integration of Advanced Computational Techniques

To address the challenges mentioned above, the integration of advanced computational techniques, such as
enhanced sampling methods, quantum mechanics/molecular mechanics (QM/MM) calculations, and
machine learning algorithms, holds great promise. Enhanced sampling methods, like accelerated molecular
dynamics and replica exchange simulations, can capture the conformational dynamics and induced fit effects
of target proteins [59]. QM/MM calculations can improve the accuracy of binding affinity predictions by
explicitly treating the electronic structures of the ligand-protein interactions [60]. Machine learning
techniques, such as deep learning, can be leveraged for accurate property prediction, de novo molecular
design, and the development of more robust scoring functions [61].

6.2.2. Multiscale Modeling and Systems Biology Approaches

T2DM is a complex metabolic disorder involving intricate biological networks and multiple regulatory
pathways. Multiscale modeling and systems biology approaches, which integrate data and models from
various scales (e.g., molecular, cellular, and organism levels), can provide a more comprehensive
understanding of the disease mechanisms and facilitate the identification of novel therapeutic strategies [62].
These approaches can also aid in the design of multi-target drugs or combination therapies, which may be
more effective in managing the multifactorial nature of T2DM.

6.2.3. Collaborative Efforts and Data Sharing

The successful application of in silico drug design techniques relies heavily on the availability of high-quality
experimental data, such as protein structures, bioactivity data, and ADMET profiles. Collaborative efforts
and data sharing initiatives among academic institutions, pharmaceutical companies, and regulatory agencies
can significantly enhance the accessibility and quality of these data resources [63]. Open-source software
platforms and community-driven efforts can also accelerate the development and dissemination of advanced
computational tools and methodologies for drug discovery.

6.2.4. Translational Research and Clinical Applications

Ultimately, the success of in silico drug design approaches will be measured by their ability to translate
computational findings into clinically relevant therapeutic agents. Strengthening the collaboration between
computational researchers, medicinal chemists, and clinical scientists is crucial for bridging the gap between

in silico predictions and real-world applications. This will ensure that the promising anti-diabetic agents
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identified through computational means can be efficiently advanced through preclinical and clinical
development stages, ultimately benefiting patients with T2DM.
7. Conclusions
In silico drug design techniques have emerged as powerful tools in the drug discovery pipeline, offering
efficient and cost-effective strategies for the identification and optimization of potential anti-diabetic agents.
This review has provided a comprehensive overview of various computational approaches, including
structure-based drug design (molecular docking, virtual screening, and pharmacophore modeling) and
ligand-based drug design (QSAR modeling and similarity searching), as well as the application of machine
learning and artificial intelligence in drug design for T2DM.
The integration of in silico methods with experimental techniques, such as biochemical assays, X-ray
crystallography, and in vivo studies, has proven to be a successful strategy for the discovery and development
of novel anti-diabetic agents. However, challenges remain, including the accurate prediction of binding
affinities, consideration of pharmacokinetic and toxicity properties, and the handling of protein-protein
interactions.
Future perspectives in this field include the integration of advanced computational techniques (e.g., enhanced
sampling methods, QM/MM calculations, and machine learning algorithms), the implementation of
multiscale modeling and systems biology approaches, collaborative efforts and data sharing initiatives, and
the translation of computational findings into clinically relevant therapeutic agents.
By addressing these challenges and leveraging the latest advancements in computational methods and data
resources, in silico drug design approaches hold immense potential for accelerating the discovery and
development of novel and effective anti-diabetic therapies, ultimately contributing to the improved
management and treatment of T2DM.
References

1. Kanagasabai, R.; Krishnamurthy, L.; Draghici, S.; Parang, K. In Silico Studies on the Molecular

Determinants of Selectivity in Inhibitors of Human a-Glucosidase Inhibitors for Type 2 Diabetes. Int.
J. Mol. Sci. 2020, 21, 1850.
2. International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation:

Brussels, Belgium, 2019.

IJCRT2406314 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | ¢913


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

3.

10.

11.

12.

13.

14.

15.

Forbes, J.M.; Cooper, M.E. Mechanisms of Diabetic Complications. Physiol. Rev. 2013, 93, 137—
188.

Prentki, M.; Nolan, C.J. Islet B Cell Failure in Type 2 Diabetes. J. Clin. Invest. 2006, 116, 1802—
1812.

DeFronzo, R.A. Pathogenesis of Type 2 Diabetes Mellitus. Med. Clin. N. Am. 2004, 88, 787-835.
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A;;
Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs:
Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6.

Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug Discovery.
Pharmacol. Rev. 2014, 66, 334-395.

Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking and Structure-
Based Drug Design Strategies. Molecules 2015, 20, 13384-13421.

Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for
Structure-Based Drug Discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146-157.

Namasivayam, V.; Giinther, R. pssRV Finder: A Program for Finding Clusters of Specificity-
Determining Residue Positions and Refining Residue Pssms and Profiles for Determining Protein
Subfamilies. Nucleic Acids Res. 2007, 35, W406-415.

Srivastava, P.; Puri, S.K.; Dinda, A.K.; Tripathi, R.P. Discovery of Novel PPAR-Gamma Agonists
by a Molecular Docking and Structure-Based Virtual Screening Approach. J. Mol. Model. 2019, 25,
250.

Yuan, J.; Wang, M.; Abuduwalishi, G.; Wang, S.; Li, J.; Hou, T. Structure-Based Discovery of DPP4
Inhibitors. Curr. Drug Targets 2018, 19, 137-144.

Tarigan, |.; Hintansah, A.; Siswandono. In Silico Design of Sodium-Glucose Co-Transporter 2
Inhibitors: A Multiple Target Fragments Approach. Sci. Pharm. 2019, 87, 20.

Gupta, S.; Santos, H.A.; Murahari, M.; Bathini, R. Role of In Silico Approaches in the Drug
Discovery Process. Curr. Top. Med. Chem. 2020, 20, 1777-1804.

Lill, M.A. Virtual Screening in Drug Design. In Silico Models for Drug Discovery; Kortagere, S.,
Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 993, pp. 363—

376.

IJCRT2406314 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c914


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Ahmed, N.; Shenoy, N.; Bose, U.; Han, K.Y.; Kim, Y.S.; Lim, H.K.; Cho, K.M. Discovery of Novel
PPAR-y Agonists: A Virtual Screening, Molecular Docking and Biological Evaluation Study.
ChemistryOpen 2020, 9, 783-794.

Bao, X.; He, F.; Sun, Y.; Chen, L. Structure-based in silico screening and in vitro evaluation identified
novel DPP4 inhibitors. Med. Chem. Res. 2019, 28, 650—670.

Choudhury, V.; Pal, D.; Bagchi, A. Identification of Novel SGLT2 Inhibitors Using In Silico
Techniques. Mol. Divers. 2020, 24, 411-433.

Kalyaanamoorthy, S.; Chen, Y.P. Modelling and enhanced molecular dynamics to fedratinib

Feng, B.Y.; Shelat, A.; Doman, T.N.; Guy, R.K.; Shoichet, B.K. High-Throughput Molecular
Docking: Successful Application in Finding New Lead Compounds Targeting Protein Tyrosine
Phosphatases. J. Med. Chem. 2005, 48, 2114-2125.

Schiller, A.; H&hnke, V.; Schneider, G. SmiNet: A Topology-Based Software for the 3D Structure-
Based Prediction of Small Molecules' Similarity to Binders. QSAR Comb. Sci. 2007, 26, 407-413.
Yang, S.Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent
Advances. Drug Discov. Today 2010, 15, 444-450.

Leach, A.R.; Gillet, V.J.; Lewis, R.A.; Taylor, R. Three-Dimensional Pharmacophore Methods in
Drug Discovery. J. Med. Chem. 2010, 53, 539-558.

Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain
Configurations. J. Mol. Biol. 1963, 7, 95-99.

Dang, Q.; Kasibhatla, S.R.; Reddy, K.R.; Jiang, T.; Reddy, M.R.; Potter, S.C.; Fujitaki, J.M.; van
Poelje, P.D.; Huang, J.; Li, J.; Erion, M.D. Discovery of Potent and Selective Dipeptidyl Peptidase
IV Inhibitors Derived from 3-Aminoamides. J. Med. Chem. 2009, 52, 5064-5072.

Chao, J.; Huang, L.; Xia, Y. Facile Synthesis of 3,5-Disubstituted Isoxazoles and Application to the
Discovery of a Potent SGLT2 Inhibitor. Org. Lett. 2015, 17, 2154-2157.

Mukherjee, S. Insilico Drug Design: The Knowledge Engine for Drug Discovery. Curr. Proteomics
2019, 16, 41-56.

Zhang, L.; Tan, J.; Han, D.; Zhu, H. From Machine Learning to Deep Learning: Progress in Machine

Intelligence for Rational Drug Discovery. Drug Discov. Today 2017, 22, 1680-1685.

IJCRT2406314 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c915


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Kumari, R.; Kumar, R.; Lynn, A.; Gat, Y.; Ray, S.S.; Leclerc, D.; Gupta, S.K.; Ghosh, B. Towards
Designing Non-Covalent Hybrid Ligands as Potent PPAR-y Agonists: Molecular Docking, Quantum
Polarized Ligand Docking and 3D-QSAR Studies. J. Mol. Graph. Model. 2015, 56, 41-57.

Prasad, Y.B.R.; Gacche, R.N.; Yeole, R.D. QSAR Studies of Xanthine Derivatives as DPP-1V
Inhibitors: An Attempt To Understand The Requirements of Binding Pocket. J. Enzyme Inhib. Med.
Chem. 2015, 30, 38-47.

Ojeda-Montes, M.J.; Gimeno, A.; Tomas-Hernandez, S.; Cereto-Massagué, A.; Beltran-Debon, R.;
Amat-Guerri, F.; Vega, S.; Masis, M.; Andreu, I.; Oliva, J.; et al. Activity and In Silico Studies of C-
Glucoside SGLT2 Inhibitors. Molecules 2019, 24, 3299.

Martin, E.J.; Blaney, J.M.; Siani, M.A.; Spellmeyer, D.C.; Wong, A.K.; Moos, W.H. Measuring
Diversity: Experimental Design of Libraries for Molecular Similarity and Dissimilarity Value
Analysis. J. Comput. Aided Mol. Des. 1995, 9, 473-488.

Johnson, M.A.; Maggiora, G.M. Concepts and Applications of Molecular Similarity; Willey: New
York, NY, USA, 1990.

Nicholls, A.; McGaughey, G.B.; Sheridan, R.P.; Good, A.C.; Warren, G.; Mathieu, M.; Muchmore,
S.W.; Brown, S.P.; Grant, J.A.; Haigh, J.A.; et al. Molecular Shape and Medicinal Chemistry: A
Perspective. J. Med. Chem. 2010, 53, 3862-3886.

Majhi, A.; Jash, C.; Kim, T.; Kwon, T.-H.; Kim, C.; Lee, K. Pharmacophore-based virtual screening
to studies binding mechanism of rosiglitazone: A novel thermodynamic approach for hit
identification. J. Mol. Graph. Model. 2018, 85, 106-115.

Li, Q.; Tao, Z.; Shen, X.; Tsume, Y.; Amidon, G.L.; Yang, J.; Goldstein, D.S.; Zhao, Y.; Haroun,
T.J.; Sun, D.; et al. In Silico Modeling for Dapagliflozin Drug-Drug Interaction. J. Comput. Aided
Mol. Des. 2019, 33, 233-250.

Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The Rise of Deep Learning in Drug
Discovery. Drug Discov. Today 2018, 23, 1241-1250.

Ghosh, J.; Das, D.; Bagchi, M.C. QSAR Modeling and In Silico Design of Anti-Diabetic Compounds.

Curr. Pharm. Des. 2019, 25, 3585-3605.

[JCRT2406314 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | ¢916


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Ke, Y.-Y.; Liao, C.-C.; Tsai, K.-C.; Peng, H.-P.; Su, E.-C.; Li, K.-C.; Hsu, W.-S. Prediction of
Peroxisome Proliferator-Activated Receptor Gamma (PPAR-y) Binding Affinity Using Monte Carlo
Method. Int. J. Mol. Sci. 2019, 20, 282.

Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P.J. Isoform-Level Accurate Prediction of Compound—
Protein Bioactivity by Chemically-Aware Machine Learning. Chem. Sci. 2021, 12, 3792-3807.
Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular De-Novo Design through Deep
Reinforcement Learning. J. Cheminform. 2017, 9, 48.

Gupta, A.; Mdller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative
Recurrent Networks for De Novo Drug Design. J. Med. Chem. 2018, 61, 10964-10976.
Gbémez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernandez-Lobato, J.M.; Sdnchez-Lengeling, B.;
Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic
Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci.
2018, 4, 268-276.

Zhou, Z.; Kearnes, S.; Li, L.; Zare, R.N.; Riley, P. Optimization of Molecules via Deep
Reinforcement Learning. Sci. Rep. 2019, 9, 10752.

Talele, T.T.; Khedkar, S.A.; Rigby, A.C. Successful Applications of Computer Aided Drug
Discovery: Moving Drugs from Concept to the Clinic. Curr. Top. Med. Chem. 2010, 10, 127-141.
Zhong, H.-J.; Xiao, D.; Zhu, J.-B.; Gan, L.-L.; Yang, F.; Xu, S.-P.; Yuan, Q.; Yang, Q.-Y.; Lin, Z.-
W.; Liu, H.; et al. The Discovery of Potent, Selective and Orally Bioavailable DPP4 Inhibitors. ACS
Med. Chem. Lett. 2011, 2, 874-878.

Nakka, M.; Suan, E.G.; Saidijam, M.; Hoi, K.K.; Bauer, J.; Ali, S.T.; Hooi, L.C.; Eichmann, C.;
Benjakul, S.; Vicino, R.; et al. Discovery of a Novel Peroxisome Proliferator-Activated Receptor y
(PPARY) Agonist via a Molecular Deconstruction Approach. J. Med. Chem. 2018, 61, 4199-4218.
Yang, Z.; Chou, K.-C. Bio-Swarm Optimizer and Bio-Random Walk for Enhancing Docking
Efficiency and Protein-Ligand Binding Prediction. Mol. Omics 2019, 15, 308—3109.

Smyth, M.S.; Martin, J.H. X Ray Crystallography. Mol. Pathol. 2000, 53, 8-14.

Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H.; Kurokawa, R.; Rosenfeld, M.G.;
Willson, T.M.; Glass, C.K.; Milburn, M.V. Ligand Binding and Co-Activator Assembly of the

Peroxisome Proliferator-Activated Receptor-y. Nature 1998, 395, 137-143.

IJCRT2406314 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c917


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

51.

52.

53.

54.

55.

56.

o7,

58.

59.

60.

61.

Zhang, J.; Ren, J.; Luo, H.; Gu, Y.; Liu, D.; Zhang, J.; Huang, F.; Zhao, P.; Wei, A.; Ma, J.; et al.
Discovery and Optimization of Potent Dipeptidyl Peptidase-4 Inhibitors Derived from a-
Aminoamides. J. Med. Chem. 2008, 51, 3416-3427.

Bhatia, S.; Gangrade, B.K.; Zahir, F.; Khanna, A.K.; Satti, N.K.; Suri, N. Bioactive Molecules of
Human Therapeutics Database (BIOTDB): Structural Aspects of Drug Design, Screening Data and
Drug-Target Nomenclature. J. Mol. Graph. Model. 2011, 29, 847-857.

Cossins, B.P.; Hosseini, A.; Guallar, V. Exploration of Protein Conformational Change with PELE
and Meta-Dynamics. Sci. Rep. 2019, 9, 10545.

Ganesan, A.; Coote, M.L.; Barakat, K. Molecular Dynamics-Driven Drug Discovery: Leaping Over
Shadows in the Twilight of Force Field Blindness. Drug Discov. Today 2017, 22, 249-264.
Khadikar, P.V.; Singh, S.; Mandloi, D.; Pal-Bhadra, M.; Jaiswal, A. QSAR study on some derivatives
of thiazolidinediones as potent hypoglycemic agents. Bioorg. Med. Chem. 2004, 12, 3917-3926.
Wu, Y.; Sun, X.; Wu, Q.; Zhang, N.; Zhu, Q.; Bao, X.; Zhang, X.; Meng, S.; Deng, X.; Li, Y.; et al.
Molecular Modulation of PKM2 Protein Binding to Small Molecule Allosteric Activators. Mol.
Biosyst. 2015, 11, 714-724.

Lavi, A.; Ngan, C.H.; Movshovitz-Attias, D.; Bohnuud, T.; Yueh, C.; Beglov, D.; Schueler-Furman,
O.; Kozakov, D. Detection of Ligand Binding Hot Spots Using a Hybrid Approach for the Integration
of Theoretical Calculations and Experimental Measurements. J. Chem. Inf. Model. 2015, 55, 2424
2447,

Hamelberg, D.; Mongan, J.; McCammon, J.A. Accelerated Molecular Dynamics: A Promising and
Efficient Simulation Method for Biomolecules. J. Chem.

Lin, H.; Truhlar, D.G. QM/MM: What Have We Learned, Where Are We, and Where Do We Go
from Here? Theor. Chem. Acc. 2007, 117, 185-199.

Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: A Deep Convolutional Neural Network for
Bioactivity Prediction in Structure-based Drug Discovery. ArXiv 2015, arXiv:1510.02855.

Ghosh, S.; Matsuoka, Y.; Asai, Y.; Hsin, K.-Y.; Kitano, H. Software for Systems Biology: From

Tools to Integrated Platforms. Nat. Rev. Genet. 2011, 12, 821-832.

[JCRT2406314 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | €918


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

62. Allen, B.K.; Mehta, S.; Ember, S.W.J.; Schiirer, S.C.; Hillier, A.C.; Wilson, I.B.H.; Hukkerikar, A.S.;
Andrews, D.M.; Mehn, M.P.; McDonnell, N.B. Large Datasets to Bioinformatically Tackle Whole
Human Proteome Drug Discovery. Cell Syst. 2021, 12, 1292-1311.e6.

63. Drwal, M.N.; Griffith, R. Enhancing Autoencoder-Based De Novo Molecular Design with Recurrent

Neural Network Scoring. J. Chem. Inf. Model. 2021, 61, 1788-1796.

I[JCRT2406314 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | €919


http://www.ijcrt.org/

