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Abstract 

This paper explores the application of advanced Reinforcement Learning (RL) techniques in developing 

intelligent game-playing AI. By implementing Deep Q-Networks (DQN) and other Deep Reinforcement 

Learning (DRL) methods, this research aims to enhance AI proficiency across various gaming environments, 

including 2048, chess, and a simulated taxi driver scenario. We highlight key objectives, methodologies, and 

outcomes, while also addressing the challenges and proposing future directions in the field of RL for gaming 

AI. 
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1. INTRODUCTION 

In the realm of artificial intelligence (AI), Reinforcement Learning (RL) stands out as a fascinating approach 

that mimics the learning process observed in humans and animals. RL is akin to teaching a computer to learn 

from its experiences, similar to how humans learn by trying and receiving feedback. This method has gained 

immense popularity, particularly in gaming, where computers autonomously learn to play games at incredibly 

high levels. 

 

RL enables computers to learn by doing and receiving rewards for good actions. Instead of being explicitly 

told what to do, they figure it out through trial and error, making it highly effective for teaching computers to 

make decisions in uncertain and dynamic situations. An RL agent interacts with an environment, taking actions 

and receiving feedback in the form of rewards or penalties. The agent's objective is to learn a strategy or policy 

that maximizes its cumulative rewards over time. 

2. LITERATURE SURVEY 

[1] Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm (2017) 

[2] Deep Reinforcement Learning for General Video Game AI (2018) 

[3] Playing Snake with Deep Reinforcement Learning (2020) 

[4] Gaming Bot Using Reinforcement Learning (2022) 

[5] Reinforcement Learning Applied to AI Bots in First-Person Shooters (2023) 
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3. BACKGROUND 

In this section, the theoretical considerations required to understand the main paper concepts are presented. 

 

3.1. Machine Learning 

 The field of machine learning (ML) focuses on developing programs that learn how to perform a task, as 

opposed to the traditional approach of developing programs with hardcoded rules on how to perform a task. 

With ML techniques, a program can adapt to changes in its input or output without the need for manual updates.   

 

3.2. Reinforcement Learning 

       RL is a subfield of machine learning that focuses on teaching an agent to make sequential decisions in an 

environment to maximize its long-term rewards. It is inspired by how humans and animals learn through 

interaction with the world. RL places an agent in an environment, carrying sensors to check its state, and gives 

it a set of actions that it can perform, as seen in Figure 1. The agent then tries out those actions by trial and 

error so that it can develop its control policy and maximize rewards based on its performed actions. 

 

 
 

Figure 1. How an agent interacts with the environment in RL 

 

3.3. Deep Reinforcement Learning 

       Deep Reinforcement Learning (DRL) is achieved by combining deep learning techniques with RL. While 

RL considers the problem of an agent learning to make decisions by trial and error, DRL incorporates deep 

learning into the solution, which allows the input of large quantities of data, such as all the pixels in a frame, 

and still manages to decide which action to perform. In Figure 2, we can see how the added deep neural 

network works with RL. 

 

 
 

Figure 2. How the DRL agent interacts with the environment. 
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4. METHODOLOGY 

This section outlines the methodologies employed in developing the Reinforcement Game Learner, 

incorporating advanced reinforcement learning (RL) techniques to enhance game-playing AI. The 

methodologies focused on the following key areas: 

 

4.1. Implementation of Deep Reinforcement Learning for Gaming Environments 

We implemented Deep Q-Networks (DQN) and other Deep Reinforcement Learning (DRL) techniques to 

train AI bots for various games. Our approach mirrored the GVGAI-Gym interface developed by Rodriguez et 

al. (2018), providing a standardized evaluation framework across diverse gaming environments. 

Steps: 

• Game Environment Selection: We selected a variety of games, including 2048, chess, and a simulated 

taxi driver scenario, to train and evaluate the AI bots. 

• DQN Implementation: We developed DQN models for each game using TensorFlow and PyTorch to 

build and train neural networks. 

• Training Process: We used OpenAI Gym to create and manage gaming environments, training the AI 

bots through extensive self-play and interaction with the game environment. 

 

4.2. Custom Reward Functions and Adaptive Strategies 

Inspired by the work of Khalkar et al. (2022), we designed and implemented custom reward functions 

tailored to each game. This adaptive approach enhanced the AI bot's ability to learn optimal strategies and 

navigate complex game dynamics. 

Steps: 

• Reward Function Design: We developed specific reward functions for each game to ensure they 

accurately reflected the task objectives. 

• Adaptive Learning: We implemented mechanisms for adjusting reward functions based on the bot's 

performance and learning progress. 

4.3 Transfer Learning Across Games 

We investigated the transferability of learned skills across different gaming environments. Leveraging 

insights from existing challenges, we developed an AI agent capable of efficiently applying knowledge gained 

from one game to accelerate learning in another. 

Steps: 

• Cross-Game Training: We trained AI bots on one game and evaluated their performance on another, 

observing how knowledge transfer affected learning efficiency. 

• Skill Generalization: We identified common strategies and skills that could be generalized across 

different games, refining the transfer learning process. 

 

4.4 Dynamic Adaptation to Changing Environments 

To address challenges associated with dynamic environments, we explored methods enabling the AI bot to 

adapt and learn in scenarios where game rules or dynamics change over time. This dynamic adaptation is 

crucial for real-world applicability. 

Steps: 

• Environment Variation: We introduced changes in game rules or dynamics during training to test the 

AI bot's adaptability. 

• Adaptive Algorithms: We implemented algorithms allowing the AI bot to modify its strategies in 

response to environmental changes, ensuring robust performance. 

 

4.5 Evaluation Metrics and Benchmarking 

Following the benchmarking approach used in the GVGAI-Gym interface, we established robust evaluation 

metrics to assess the AI bot's performance across different games. This ensured a systematic and quantitative 

analysis of the developed algorithms and strategies. 

Steps: 

• Performance Metrics: We defined key performance indicators such as win rate, learning speed, and 

strategy efficiency. 

• Benchmarking: We conducted comparative analysis against existing AI bots and human players using 

standardized testing protocols. 
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5.RESULTS 

   In this section, we will answer the first proposed question and talk about the various frameworks, algorithms, 

training architectures, and platforms that were identified in recent papers, stating facts and comparing items 

inside each category. 

 

5.1. Frameworks 

In this section, we will expose the various frameworks and libraries that have been extracted from the 

collected data. 

 

• TensorFlow 

TensorFlow is an open-source ML framework and library created by the Google Brain team and was 

initially released in 2015. TensorFlow was made to be flexible, efficient, extensible, and portable, able 

to be used on any device. Its main characteristic is the use of data flow graphs: it uses the computational 

model of a directed graph, where the nodes are functions and edges are numbers, matrices, or tensors. 

By splitting up calculations into smaller pieces, TensorFlow can distribute the load throughout multiple 

CPUs, GPUs, and other computational devices 

 

• PyTorch 

PyTorch is an open-source ML framework and library developed by Facebook, Inc. It was ported to 

Python from the Lua Torch library and provides seamless use of GPUs by utilizing PyTorch’ s CUDA 

backend and its Distributed Data-Parallel module to distribute the training process across multiple 

machines; it also provides a platform for deep learning that provides flexibility and speed 

 

5.2. Algorithms 

      In this section, we will explain the various training algorithms that have been found in the selected papers 

and will look over their use cases. 

 

• Q-Learning 

Introduced in 1989, Q-learning is an outdated Model-Free RL made to choose the best action for the 

given observation. Each possible action for each observation has its Q-value, which stands for the 

quality of the given act. The Q-learning algorithm updates the Q-function at each time step using the 

following equation: 

 

Q(s,a)←Q(s,a)+α(r+γ∗maxαQ(st+1,a)−Q(st,at)) 

 

Where: 

Q (s, a) is the current Q-value for state s and action a. 

α is the learning rate. 

r is the reward received after taking action 𝑎a in state s. 

γ is the discount factor. 

max𝑎′𝑄 (𝑠′, 𝑎′) is the maximum Q-value for the next state s′ and all possible actions a′. 

• Deep Q-Network 

The Deep Q-Network (DQN) is a variation of the Q-learning algorithm that uses a neural network to 

approximate the Q-function, instead of employing a value-based approach. The training process 

involves updating the weights of the neural network based on the difference between the predicted and 

actual rewards obtained by taking certain actions. This allows the agent to improve its decision-making 

over time and learn optimal strategies for achieving its goals. The key feature of DQN is its use of an 

experience replay, which stores past experiences in memory and randomly selects them to train the 

neural network. This prevents it from becoming stuck in local optima and improves sample efficiency. 

For Deep Q-Networks (DQN), the loss function is defined as: 

 

𝐿(𝜃) = 𝐸 [(𝑟 + 𝛾 max𝑎′ 𝑄(𝑠′, 𝑎′;𝜃−) − 𝑄(𝑠, 𝑎;𝜃))2] 
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Where: 

L(θ) is the loss function for the network parameters θ. 

E denotes the expected value. 

r is the reward received. 

γ is the discount factor. 

max𝑎′𝑄(𝑠′,𝑎′;𝜃−) is the target Q-value for the next state s′ and action a′, with θ− being the parameters 

of the target network. 

𝑄(𝑠,𝑎;𝜃) is the predicted Q-value for the current state 𝑠s and action 𝑎a with network parameters θ. 

 

5.3. Training Architectures 

 

• Self-Play 

Self-play is a technique often used in RL that involves having RL agents play against themselves to 

improve performance. A single agent acts as all players, learning from the outcomes of its own actions. 

Self-play has been successfully applied, where researchers used this method to develop their Chess- and 

Shogi-playing AI. 

 

• Behaviour Cloning 

Behavioral cloning is a type of imitation learning where a learning program is trained to mimic the 

actions of a human performer. By recording the actions of a human player in a video game environment, 

these actions are fed into the program, which then generates rules for the agent to replicate the performer's 

actions. The quality of the training improves with more diverse and comprehensive data from the human 

player. 

 

• Curriculum Training 

Curriculum Training is an approach that mirrors the way humans learn by gradually increasing the 

difficulty of the tasks. In supervised learning, this means progressively using more complex training 

datasets. In the context of reinforcement learning, it involves making the environment and tasks more 

challenging over time, allowing the agent to build up its skills incrementally. 

 

5.4. Platforms and Tools 

 

• Jupyter Notebook 

Jupyter Notebook provides an interactive computational environment where code, visualizations, and 

text can be combined. This platform was instrumental in our project for prototyping and iterating over RL 

algorithms. 

 

• Google Colab 

Google Colab offers free access to powerful GPUs, making it suitable for training complex deep 

learning models. It also supports collaborative coding, enabling multiple team members to work together 

seamlessly. 

 

• OpenAI Gym 

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms. It provides 

a variety of environments, ranging from simple text-based games to complex physics simulations, which 

are essential for training and evaluating our RL models. 

 

5.5. External Interface Requirement 

 

5.5.1. Hardware Interface 

• Processor: Multi-core processor 

• Memory (RAM): Minimum 16 GB RAM for efficient handling of deep neural network training. 

• Graphics Card: NVIDIA GeForce GTX or RTX series 

• Storage: Minimum 500 GB SSD 
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5.5.2. Software Interface 

• Operating System Compatibility: Windows, Linux, and macOS 

• Reinforcement Learning Frameworks: TensorFlow and PyTorch 

• Dependency Libraries: NumPy, SciPy, and OpenAI Gym etc. 

 

5.5.3. Communication Interface 

• APIs: APIs enable the exchange of game state information, action decisions, and 

• feedback, ensuring a cohesive interaction during the training process. 

• Network Protocols: HTTP/HTTPS for communication between components 

• Data Exchange Format: JavaScript Object Notation (JSON) 

5.6. System Architecture 

 

 
 

Figure 3. 

 

(a)Reinforcement Learning (b) Architecture for the Reinforcement Learning dom actions and observe 

the resultant state using some sensor information of the game and give feedback (in the form of reward 

which is further used to calculate the Q-Values for the state-action pairs or Q-Table) of that action to the 

previous state according to the desirability of the current state. Q- Values of the state action pairs are known 

as Q-Table which define a policy. After every action policy updates QValues for the state action pairs (Q-

Table) this policy is used to predict the best action while playing the game. RL agent learns while playing 

so it again gives feedback and the whole process goes on till the end of the game 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT2406196 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b820 
 

5.7. Outcome: 

 

 
 

Figure 4.  

 
Figure 5. Analysis 

 

6. SIGNIFICANCE AND SCOPE 

 

    The significance of applying Reinforcement Learning (RL) to game AI lies in its potential to create highly 

intelligent and adaptive agents capable of learning from experience and improving autonomously. This 

research enhances gaming experiences, serves as an educational tool, and provides a benchmark for AI 

development. The scope includes exploring various RL algorithms, utilizing platforms like Jupyter Notebook 

and Google Colab, and applying these techniques in diverse gaming environments. The insights gained extend 

beyond gaming to fields such as robotics and finance, promoting innovation and cross-disciplinary 

applications. This research aims to advance the state-of-the-art in AI and contribute to solving complex real-

world problems. 

 

7. CONCLUSION 

 

    In this paper, we explored the application of Reinforcement Learning (RL) to create intelligent game-

playing AI. Future work will involve extending these approaches to more complex and dynamic 

environments, refining reward functions, and exploring the transferability of learned policies across various 

games. The integration of behavioral cloning and curriculum training further enhances the adaptability and 

efficiency of the learning process, paving the way for more advanced AI applications in gaming and beyond. 
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