www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

A INTERNATIONAL JOURNAL OF CREATIVE
9 RESEARCH THOUGHTS (IJCRT)

dh
<UD’
REINFORCEMENT GAME LEARNER

Asmita D. Waghmare?, Sanika S. Patil?, Prajakta G. Nannikar® Snehal S. Vhankhande*

Prof. M. M. Raste®

BTECH Student, >Assistant Professor
Department of Computer Science and Engineering,
Padmbhooshan Vasantraodada Patil Institute of Technology, Budhgaon (Sangli)

" An International Open Access, Peer-reviewed, Refereed Journal

Abstract

This paper explores the application of advanced Reinforcement Learning (RL) techniques in developing
intelligent game-playing Al. By implementing Deep Q-Networks (DQN) and other Deep Reinforcement
Learning (DRL) methods, this research aims to enhance Al proficiency across various gaming environments,
including 2048, chess, and a simulated taxi driver scenario. We highlight key objectives, methodologies, and
outcomes, while also addressing the challenges and proposing future directions in the field of RL for gaming
Al.

Keywords - Reinforcement Learning, Q-learning, Deep Q-Networks, Game Al, Machine Learning.

1. INTRODUCTION

In the realm of artificial intelligence (Al), Reinforcement Learning (RL) stands out as-a fascinating approach
that mimics the learning process observed in humans and animals. RL is akin to teaching a computer to learn
from its experiences, similar to how humans learn by trying and receiving feedback. This method has gained
immense popularity, particularly in gaming, where computers autonomously learn to play games at incredibly
high levels. _

RL enables computers to learn by doing and receiving rewards for good actions. Instead of being explicitly
told what to do, they figure it out through trial and error, making it highly effective for teaching computers to
make decisions in uncertain and dynamic situations. An RL agent interacts with an environment, taking actions
and receiving feedback in the form of rewards or penalties. The agent's objective is to learn a strategy or policy
that maximizes its cumulative rewards over time.

2. LITERATURE SURVEY

[1] Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm (2017)
[2] Deep Reinforcement Learning for General Video Game Al (2018)

[3] Playing Snake with Deep Reinforcement Learning (2020)

[4] Gaming Bot Using Reinforcement Learning (2022)

[5] Reinforcement Learning Applied to Al Bots in First-Person Shooters (2023)

IJCRT2406196 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b814

http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

3. BACKGROUND
In this section, the theoretical considerations required to understand the main paper concepts are presented.

3.1. Machine Learning

The field of machine learning (ML) focuses on developing programs that learn how to perform a task, as
opposed to the traditional approach of developing programs with hardcoded rules on how to perform a task.
With ML techniques, a program can adapt to changes in its input or output without the need for manual updates.

3.2. Reinforcement Learning

RL is a subfield of machine learning that focuses on teaching an agent to make sequential decisions in an
environment to maximize its long-term rewards. It is inspired by how humans and animals learn through
interaction with the world. RL places an agent in an environment, carrying sensors to check its state, and gives

it a set of actions that it can perform, as seen in Figure 1. The agent then tries out those actions by trial and
error so that it can develop its control policy and maximize rewards based on its performed actions.

——

Reward State Actiomn

— s —

Figure 1. How an agent interacts with the environment in RL

3.3. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is achieved by combining deep learning techniques with RL. While
RL considers the problem of an agent learning to make decisions by trial and error, DRL incorporates deep
learning into the solution, which allows the input of large quantities of data, such as all the pixels in a frame,
and still manages to decide which action to perform. In Figure 2, we can see how the added deep neural
network works with RL.

Reward

A

<<<<<
o

.

Environment

Action

Observe State

Figure 2. How the DRL agent interacts with the environment.

IJCRT2406196 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b815

http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

4. METHODOLOGY

This section outlines the methodologies employed in developing the Reinforcement Game Learner,
incorporating advanced reinforcement learning (RL) techniques to enhance game-playing Al. The
methodologies focused on the following key areas:

4.1. Implementation of Deep Reinforcement Learning for Gaming Environments

We implemented Deep Q-Networks (DQN) and other Deep Reinforcement Learning (DRL) techniques to
train Al bots for various games. Our approach mirrored the GVGAI-Gym interface developed by Rodriguez et
al. (2018), providing a standardized evaluation framework across diverse gaming environments.
Steps:

« Game Environment Selection: We selected a variety of games, including 2048, chess, and a simulated

taxi driver scenario, to train and evaluate the Al bots.
« DQN Implementation: We developed DQN models for each game using TensorFlow and PyTorch to

build and train neural networks.
» Training Process: We used OpenAl Gym to create and manage gaming environments, training the Al

bots through extensive self-play and interaction with the game environment.

4.2. Custom Reward Functions and Adaptive Strategies
Inspired by the work of Khalkar et al. (2022), we designed and implemented custom reward functions
tailored to each game. This adaptive approach enhanced the Al bot's ability to learn optimal strategies and
navigate complex game dynamics.
Steps:
» Reward Function Design: We developed specific reward functions for each game to ensure they
accurately reflected the task objectives.
« Adaptive Learning: We implemented mechanisms for adjusting reward functions based on the bot's
performance and learning progress.
4.3 Transfer Learning Across Games
We investigated the transferability of learned skills across different gaming environments. Leveraging
insights from existing challenges, we developed an Al agent capable of efficiently applying knowledge gained
from one game to accelerate learning in another.
Steps:
» Cross-Game Training: We trained Al bots on one game and evaluated their performance on another,
observing how knowledge transfer affected learning efficiency.
» Skill Generalization: We identified common strategies and skills that could be generalized across
different games, refining the transfer learning process.

4.4 Dynamic Adaptation to Changing Environments
To address challenges associated with dynamic environments, we explored methods enabling the Al bot to
adapt and learn in scenarios where game rules or dynamics change over time. This dynamic adaptation is
crucial for real-world applicability.
Steps:
« Environment Variation: We introduced changes in game rules or dynamics during training to test the
Al bot's adaptability.
« Adaptive Algorithms: We implemented algorithms allowing the Al bot to modify its strategies in
response to environmental changes, ensuring robust performance.

4.5 Evaluation Metrics and Benchmarking
Following the benchmarking approach used in the GVGAI-Gym interface, we established robust evaluation
metrics to assess the Al bot's performance across different games. This ensured a systematic and quantitative
analysis of the developed algorithms and strategies.
Steps:
» Performance Metrics: We defined key performance indicators such as win rate, learning speed, and
strategy efficiency.
« Benchmarking: We conducted comparative analysis against existing Al bots and human players using
standardized testing protocols.

IJCRT2406196] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b816

http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

5.RESULTS

In this section, we will answer the first proposed question and talk about the various frameworks, algorithms,
training architectures, and platforms that were identified in recent papers, stating facts and comparing items
inside each category.

5.1. Frameworks

In this section, we will expose the various frameworks and libraries that have been extracted from the
collected data.

» TensorFlow
TensorFlow is an open-source ML framework and library created by the Google Brain team and was
initially released in 2015. TensorFlow was made to be flexible, efficient, extensible, and portable, able
to be used on any device. Its main characteristic is the use of data flow graphs: it uses the computational
model of a directed graph, where the nodes are functions and edges are numbers, matrices, or tensors.
By splitting up calculations into smaller pieces, TensorFlow can distribute the load throughout multiple
CPUs, GPUs, and other computational devices

« PyTorch
PyTorch is an open-source ML framework and library developed by Facebook, Inc. It was ported to
Python from the Lua Torch library and provides seamless use of GPUs by utilizing PyTorch’ s CUDA
backend and its Distributed Data-Parallel module to distribute the training process across multiple
machines; it also provides a platform for deep learning that provides flexibility and speed

5.2. Algorithms

In this section, we will explain the various training algorithms that have been found in the selected papers
and will look over their use cases.

* Q-Learning
Introduced in 1989, Q-learning is an outdated Model-Free RL made to choose the best action for the
given observation. Each possible action for each observation has its Q-value, which stands for the
quality of the given act. The Q-learning algorithm updates the Q-function at each time step using the
following equation:

Q(s,2)«—Q(s,a)ta(r+y*maxaQ(st+1,a)—Q(st,at))

Where:

Q (s, a) is the current Q-value for state s and action a.

a is the learning rate.

r is the reward received after taking action aa in state s.

y s the discount factor.

maxq«Q (s', a’) is the maximum Q-value for the next state s’ and all possible actions a'.

» Deep Q-Network

The Deep Q-Network (DQN) is a variation of the Q-learning algorithm that uses a neural network to
approximate the Q-function, instead of employing a value-based approach. The training process
involves updating the weights of the neural network based on the difference between the predicted and
actual rewards obtained by taking certain actions. This allows the agent to improve its decision-making
over time and learn optimal strategies for achieving its goals. The key feature of DQN is its use of an
experience replay, which stores past experiences in memory and randomly selects them to train the
neural network. This prevents it from becoming stuck in local optima and improves sample efficiency.
For Deep Q-Networks (DQN), the loss function is defined as:

L(6) = E [(r +y maxa Q(s', a;07) — Q(s, a;6))*]

IJCRT2406196 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b817

http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

Where:
L(#) is the loss function for the network parameters 6.
E denotes the expected value.
r is the reward received.
y is the discount factor.
maxaQ(s’,a’;6-) is the target Q-value for the next state s’ and action a’, with 6— being the parameters
of the target network.
Q(s,a;0) is the predicted Q-value for the current state ss and action aa with network parameters 6.

5.3. Training Architectures

« Self-Play
Self-play is a technique often used in RL that involves having RL agents play against themselves to
improve performance. A single agent acts as all players, learning from the outcomes of its own actions.
Self-play has been successfully applied, where researchers used this method to develop their Chess- and
Shogi-playing Al.

» Behaviour Cloning
Behavioral cloning is a type of imitation learning where a learning program is trained to mimic the
actions of a human performer. By recording the actions of a human player in a video game environment,
these actions are fed into the program, which then generates rules for the agent to replicate the performer's
actions. The quality of the training improves with more diverse and comprehensive data from the human

player.

» Curriculum Training
Curriculum Training is an approach that mirrors the way humans learn by gradually increasing the
difficulty of the tasks. In supervised learning, this means progressively using more complex training
datasets. In the context of reinforcement learning, it involves making the environment and tasks more
challenging over time, allowing the agent to build up its skills incrementally.

5.4. Platforms and Tools

« Jupyter Notebook
Jupyter Notebook provides an interactive computational environment where code, visualizations, and
text can be combined. This platform was instrumental in our project for prototyping and iterating over RL
algorithms.

» Google Colab
Google Colab offers free access to powerful GPUs, making it suitable for training complex deep
learning models. It also supports collaborative coding, enabling multiple team members to work together
seamlessly.

* OpenAl Gym
OpenAl Gym is a toolkit for developing and comparing reinforcement learning algorithms. It provides
a variety of environments, ranging from simple text-based games to complex physics simulations, which
are essential for training and evaluating our RL models.

5.5. External Interface Requirement

5.5.1. Hardware Interface
« Processor: Multi-core processor
« Memory (RAM): Minimum 16 GB RAM for efficient handling of deep neural network training.
» Graphics Card: NVIDIA GeForce GTX or RTX series
« Storage: Minimum 500 GB SSD

IJCRT2406196] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b818

http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

5.5.2. Software Interface
» Operating System Compatibility: Windows, Linux, and macOS
» Reinforcement Learning Frameworks: TensorFlow and PyTorch
» Dependency Libraries: NumPy, SciPy, and OpenAl Gym etc.

5.5.3. Communication Interface
* APIs: APIs enable the exchange of game state information, action decisions, and
» feedback, ensuring a cohesive interaction during the training process.
* Network Protocols: HTTP/HTTPS for communication between components
« Data Exchange Format: JavaScript Object Notation (JSON)

5.6. System Architecture

action o
I Rlearner I‘ I World I
feedback
,_s,:,ac::iel TQ-Values
Training
e | Policy | ————————————
Playing
stateT lbest action
action g
|RL Agent |¢ I World I
feedback
Figure 3.

(a)Reinforcement Learning (b) Architecture for the Reinforcement Learning dom actions and observe
the resultant state using some sensor information of the game and give feedback (in the form of reward
which is further used to calculate the Q-Values for the state-action pairs or Q-Table) of that action to the
previous state according to the desirability of the current state. Q- Values of the state action pairs are known
as Q-Table which define a policy. After every action policy updates QValues for the state action pairs (Q-
Table) this policy is used to predict the best action while playing the game. RL agent learns while playing
so it again gives feedback and the whole process goes on till the end of the game

IJCRT2406196 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b819

http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

5.7. Outcome:

upyler Sea<al Lot daesst Z9IVAN 1nzesnd

Figure 4.

- Score
35 1 Mean Score

25
20 1
15 1

10 1

[,,,,w} uw A 1‘ r'u
¥ , 10 125

0 25 50 75

Figure 5. Analysis
6. SIGNIFICANCE AND SCOPE

The significance of applying Reinforcement Learning (RL) to game Al lies in its potential to create highly
intelligent and adaptive agents capable of learning from experience and improving autonomously. This
research enhances gaming experiences, serves as an educational tool, and provides a benchmark for Al
development. The scope includes exploring various RL algorithms, utilizing platforms like Jupyter Notebook
and Google Colab, and applying these techniques in diverse gaming environments. The insights gained extend
beyond gaming to fields such as robotics and finance, promoting innovation and cross-disciplinary
applications. This research aims to advance the state-of-the-art in Al and contribute to solving complex real-
world problems.

7. CONCLUSION

In this paper, we explored the application of Reinforcement Learning (RL) to create intelligent game-
playing Al. Future work will involve extending these approaches to more complex and dynamic
environments, refining reward functions, and exploring the transferability of learned policies across various
games. The integration of behavioral cloning and curriculum training further enhances the adaptability and
efficiency of the learning process, paving the way for more advanced Al applications in gaming and beyond.

IJCRT2406196] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b820

http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882

8. REFERENCES

[1] Silver, D., et al. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm. arXiv:1712.01815.

[2] Rodriguez, R., Bontrager, P., Togelius, J., Liu, J. (2018). Deep Reinforcement Learning for General VVideo
Game Al. IEEE Conference on Computational Intelligence and Games (CIG).

[3] Smith, A., et al. (2020). Playing Snake with Deep Reinforcement Learning. arXiv:2004.01130.

[4] Khalkar, R., et al. (2022). Gaming Bot Using Reinforcement Learning. International Journal of Advanced
Research in Computer Science.

[5] Almeida, P., Carvalho, V., Simdes, A. (2023). Reinforcement Learning Applied to Al Bots in First-Person
Shooters: A Systematic Review. Journal of Artificial Intelligence Research.

IJCRT2406196 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b821

http://www.ijcrt.org/

