IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Conflict Avoidance And Landslide Update For Vehicles In Deep Curves

¹Sujan B T, ²Jagadeesh V A, ³Niranjan Gopalakrishna Hegde, ⁴Ganesh Pawan Reddy Y, ⁵Mrs.Vanishree Abhay

¹²³⁴B.E ISE Student, ⁵Assistant Professor
¹²³⁴⁵Department of Information Science and Engineering,
¹²³⁴⁵Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India

Abstract: The project aims to enhance road safety on curved mountain roads by implementing a warning system using an LCD Display that alerts drivers as vehicles approach from the opposite side of the bend. This system utilizes IR sensors connected to an Arduino Uno microcontroller to detect approaching vehicles, coupled with motor-operated gates for seamless passage. Additionally, the paper addresses the critical issue of landslides, proposing the use of accelerometer and rain sensors to detect hazardous conditions. When a landslide or heavy rainfall is detected, the system displays a warning message and closes the gates until the road conditions normalize, potentially preventing accidents and saving lives in hilly terrains.

The "Vehicle Detection and Collision Avoidance System in Deep Curves" aims to address the frequent traffic congestion and accidents that occur in hairpin bends, primarily due to the lack of visibility and communication between vehicles. Although existing solutions offer some degree of collision avoidance, they often fall short in managing traffic effectively, which is crucial in hilly areas. This project focuses on the intelligent detection and classification of vehicles to prevent collisions using a combination of vehicles, LEDs, and by utilizing vehicle class information for better traffic management. Here, we provide a detailed approach to solve this problem and highlight the importance of efficient traffic management in hairpin curves.

Index Terms – IOT, Image Processing, OpenCV, Machine Learning, YOLO.

I. INTRODUCTION

The *Internet of Things (IoT)* is a network of interconnected computing devices which are embedded in everyday objects, enabling them to send and receive data. For ex, a motion sensor can be installed inside a room and program it to Switch On/Off the lights once a person enters or leaves the room. Few applications of IoT are: Smart Watches, Smart Air Conditioners, Automatic Street Lights.

Vehicles navigating hairpin bends are highly prone to accidents due to poor visibility and lack of communication between drivers. Additionally, traffic congestion often results from the disorganized movement of vehicles in these areas. Although there are several existing methods to address these issues, each has its own limitations that hinder their practical application. To effectively tackle both problems, we have developed an advanced system designed to provide a comprehensive solution.

1.1. Existing System

Sensor-based Collision Avoidance: This system employs two ultrasonic sensors positioned at specific points on either side of the curve to detect vehicle positions. As a vehicle passes by these sensors, they emit high pulses, allowing for the calculation of the vehicle's speed based on the known distance between the sensors

and the time taken to travel between them. When two vehicles approach the curve at the same time, their speeds are determined, and the vehicle with the higher speed is given priority to pass through the curve first.

Convex Mirrors: A convex mirror, which has a reflective surface that curves outward, causes incident light rays to reflect at different angles. This setup is commonly used in hilly areas to reflect the image of an oncoming vehicle approaching a hairpin curve, enhancing visibility and safety.

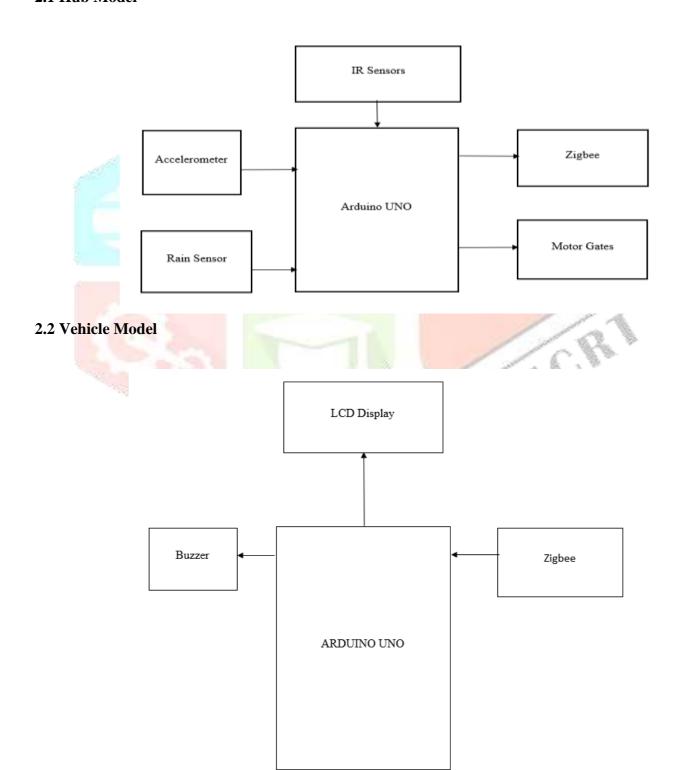
Head lights and Horns: Both headlights and horns are frequently used when driving through hairpin curves. Headlights, particularly on high beam, are effective at night, while horns can be used at any time to signal the presence to oncoming vehicles.

1.2. Proposed System

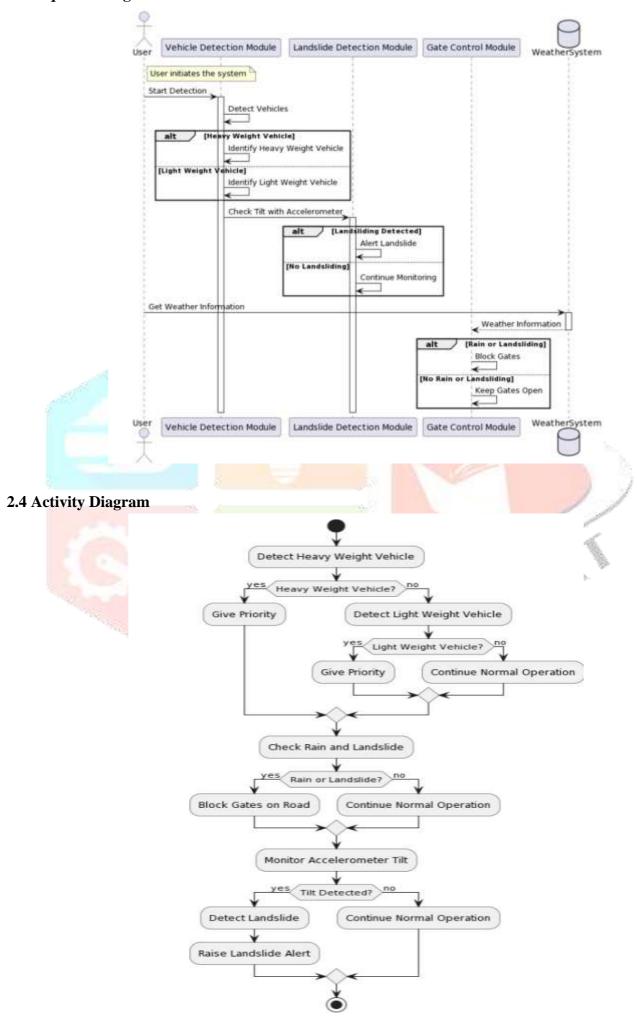
Objective:

- Develop a real-time conflict avoidance system using Arduino Uno and IR sensors to identify obstacles and potential conflicts on the road, especially in deep curves.
- Implement an ADXL sensor to monitor Landslides and provide drivers with information on vehicle tilt and lateral acceleration in real-time.
- Detection of vehicles in deep curves and automating the vehicle operations
- Utilize an LCD display to present visual warnings and updates to the driver regarding road conditions and potential conflicts.
- Establish a Zigbee communication network between vehicles to exchange critical information about road conditions, obstacles, and potential landslide risks.
- Ensure compatibility with existing vehicle systems and navigation devices, making it easy to retrofit vehicles with this system.

1.3. Proposed Solution


The proposed solution involves the development of a compact and portable landslide detection device using Arduino micro controller and MEMS sensors. The system will include the following components:

- 1. **Arduino Board:** Acts as the main control unit for data acquisition, processing, and decision-making.
- 2. **MEMS Accelerometer and Gyroscope:** Measures slope inclination, tilt, and acceleration changes, providing real-time data on ground movement.
- 3. External Power Source: Provides continuous power supply to the system, ensuring uninterrupted operation.
- 4. **LED Indicators:** Visual indicators to display system status and alert users in the event of landslide detection.
- 5. **Buzzer:** Audible alarm for immediate alerting in the event of landslide risks.
- 6. **Communication Module (Optional):** Interface with GSM, GPS, or LoRa modules for remote monitoring and data transmission to a central server or monitoring station.
- 7. **Data Logging:** Capability to log sensor data for post-event analysis and system performance evaluation.
- 8. The system will be calibrated and tested in simulated landslide scenarios to validate its accuracy and reliability in detecting potential hazards. Field trials will be conducted in collaboration with relevant authorities and stakeholders to assess its effectiveness in real-world landslide detection and early warning applications.
- 9. **Cameras:** High-resolution cameras installed along curved road sections to capture video feeds of traffic.
- 10. **YOLO Algorithm:** Implementation of YOLO algorithm for real-time object detection and categorization vehicle in video frames.
- 11. **Computer Hardware:** Powerful computer hardware equipped with GPU (Graphics Processing Unit) to handle real-time processing of video streams.


- 12. **Automation Software:** Custom software to automate the operation of the detection system, including camera control, data processing, and alert generation.
- 13. **Alerting Mechanism:** Integration with alerting mechanisms such as email notifications, SMS alerts, or visual alarms to notify authorities or stakeholders in case of detected incidents or anomalies.
- 14. **Data Logging and Visualization:** Capability to log detected vehicle data and visualize traffic patterns for further analysis and decision-making.
- 15. **Testing and Validation:** Calibration and testing of system in simulated and real-world curved road scenarios to validate its accuracy, reliability, and performance.

II. SYSTEM DESIGN

2.1 Hub Model

2.3 Sequence Diagram

III. METHODOLOGY AND IMPLEMENTATION

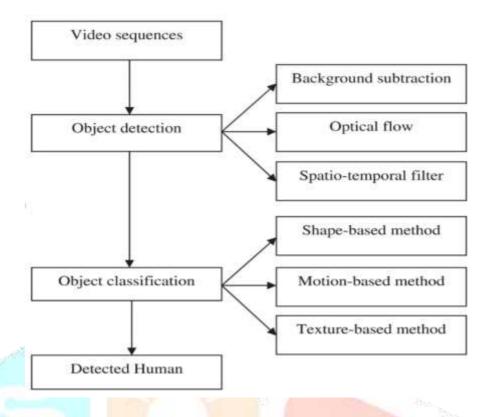


Figure 3 Vehicle Detection Module

3.1 Module Description

1. Landslide Detection Module:

Sensor: ADXL sensors are used for detecting ground movement and potential landslides. If a landslide is detected, the system triggers an alert and sends message to respective authority and takes preventive action by closing gates on either sides and prohibiting vehicle movement across that area.

2. Rainfall Monitoring Module:

Rain sensors measure the volume of rainfall in a given area. This Sensor is interfaced with Arduino UNO. If heavy rainfall is detected, the system triggers gates closure using DC motors to prevent landslides and it sends an alert to respective authority.

3. Gate Control Module:

DC Motors control the gates positioned alongside curves.H-Bridge which is interfaced with Arduino will control the DC motors.

4. Image Processing Module:

Camera: Captures images of roads. Utilizes image processing algorithms to detect heavy vehicle on the road. Heavy vehicles are given priority, and alerts are sent to other vehicles to avoid conflict.

5. Alerting System:

Communication Module: Arduino Uno interfaces with a communication module ESP8266 or Node MCU Sends SMS or push notifications to authorities and drivers in case of landslides, heavy rainfall, or priority alerts.

3.2 Implementation Overview:

- 1. Data Acquisition:
 - Read data from ADXL sensors for landslide detection.
 - Collect data from rain sensors for rainfall monitoring.
 - Capture images through cameras for image processing.

2. Decision Logic:

- Implement decision-making logic on Arduino Uno based upon the sensor data.
- If landslide or heavy rainfall is detected, trigger gate closure using DC motors.

3. Image Processing:

- Process captured images to identify heavy vehicles.
- Prioritize large vehicles in traffic flow.

4. Alerting System:

- Interface with communication modules to send alerts.
- Send SMS or push notifications based on detected conditions.

3.3 Sensor Manager Module

A sensor manager module is responsible for managing the various sensors used in the project. It handles sensor initialization, data acquisition, and provides an interface for other modules to access sensor data. The Sensors used are

Rain Sensor: Used to know amount of rainfall.

ADXL Sensor: ADXL Sensor or Accelerometer Sensor functions to identify landslide detection across ghat areas.

3.4 SMS Manager Module

Telegram Messenger is a cloud-based instant messaging and voice over IP service. It's easily downloadable on smartphones (both Android and iPhone) and computers (PC, Mac, and Linux). Notably, it's ad-free and free to use. One interesting feature is the ability to create bots within Telegram. These bots, essentially third-party applications, operate within the Telegram platform and users can engage with them by sending messages, commands, and inline requests. These bots are controlled via HTTPS requests to the Telegram Bot API.

For instance, the ESP8266 can be programmed to interact with a Telegram bot, enabling it to send messages to your Telegram account. This means that whenever motion is detected, you'll receive a notification on your smartphone, provided you have internet access.

In this project if any landslide occurs or if rain amount is more then by using Node MCU alert message or push notification will be sent to respective authorities.

IV. TESTING

4.1 Unit testing:

Unit testing is a vital part of software development, where the smallest functional components, known as units, undergo thorough examination to ensure they operate correctly. The primary objective is to isolate each segment of the program and demonstrate that they meet the specified requirements and function as intended. Test cases and their outcomes are typically organized and presented in tables for clarity and documentation purposes

Table 4.1

Sl # Test Case: -	UTC-1
Name of Test: -	Vehicle Detection
Items being tested: -	Different Mask images
Sample Input: -	Image or video
Expected output: -	Vehicle should be detected
Actual output: -	Same as Expected
Remarks: -	Test Passed

4.2 Integration Testing:

In a well-rounded software development setting, integration testing typically begins with bottom-up testing, where individual components are tested first before moving to top-down testing. This process ensures that each layer of the software interacts seamlessly with the others. Ultimately, the culmination of integration testing involves conducting multiple tests on the complete application, often in scenarios that closely resemble real-world situations. This approach allows for the identification and resolution of any issues that may arise when different components of the software are combined and interact with one another. Table 4.2 shows the test cases for integration testing and their results

Table 4.2

S1 # Test Case : -	ITC-1
Name of Test: -	Landslide Detection
Item being tested: -	Different inputs accelerometer
Sample Input: -	Vibration input
Expected output: -	Landslide should be detected
Actual output: -	Functioned Properly
Remarks: -	Pass.

4.3 System testing:

System Testing is shown in below tables

Table 4.2

Sl # Test Case: -	STC-1
Name of Test: -	System testing
Item being tested: -	OS Compatibility
Sample Input: -	Video Stream
Expected output: -	Should work in windows, Linux
Actual output: -	Worked in all os platforms
Remarks: -	Pass

Table 4.3

Sl # Test Case: -	STC-2
Name of Test: -	Signal Operation according to vehicle detected
Item being tested: -	Input different categories of vehicle images and check
Sample Input: -	Capture image and send Signal to hardware
Expected output: -	Signal LEDs should operate according to vehicle detected
Actual output: -	Traffic signal Status operated according to vehicle detected
Remarks: -	Pass.

v. CONCLUSION

The "Conflict Avoidance and Landslide Update System for Vehicles in Deep Curves" project utilizes Arduino Uno, IR sensors, ADXL sensors, LCD displays, and ZigBee communication to provide real-time assistance and updates to drivers navigating challenging terrains. This system aims to prevent accidents, improve road safety, and save lives while optimizing traffic flow in areas prone to deep curves and landslides.

In the existing system, convex mirrors are utilized at curves to aid drivers in easily observing vehicles approaching from the opposite direction, but this method proves inadequate during nighttime. To address this, the suggested approach leverages sensors strategically placed at hairpin turns, offering effective functionality even in low-light conditions.

Placing sensors on both sides of the curves ensures timely detection, triggering signals when a vehicle is within proximity, enhancing safety measures. Furthermore, this project delves into studying the environmental impacts of landslides, emphasizing the need for comprehensive analysis and robust tools for displaying results.

The primary goal remains the avoidance of collisions in hairpin curves, coupled with efforts to alleviate traffic congestion, thereby facilitating smoother vehicle movement in hilly terrains. To achieve this, the system incorporates advanced cameras and intricate calculations, delivering real-time solutions for collision prevention and traffic management.

In conclusion, the project endeavors to mitigate risks associated with landslides while enhancing road safety

and traffic flow, underscoring the importance of proactive measures and innovative solutions in challenging terrain.

REFERENCES

- [1] Harshada Targe, Anushka Mahajan, Mohit Patil, Yogesh Lilake and Vijay Sonawane, "Advance Road Safety For Ghat Road's At Hairpin Bend", International Research Journal of Engineering and Technology, Volume: 05, Issue: 01, January 2018.
- [2] Aravinda B, Chaithralakshmi C and Deeksha, "Sensor Based Accident Prevention System", International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, Volume: 04, Issue: 06, June 2016.
- [3] R. Anusha, K. Sonia, V.M.K. Vamsi Prasad and J.Raj Kumar, "Collision Avoidance At Hairpin Curves Using Sensors", Journal of Emerging Technologies and Innovative Research, Volume: 06, Issue: 04, April 2019.
- [4] Anand M G, A Dhanyakumar, Bhaskar N and Mahaling S B, "Sensor Based Accident Prevention System in Curving", International Journal of Advance Research and Innovative Ideas in Education, Volume: 05, Issue: 02, December 2019.
- [5] Anuradha A, Trupti Tagare, Vibha T. G and Priyanka N, "Implementation of Critical Intimation System for Avoiding Accidents in Hairpin Curves & Foggy Areas", International Journal of Science Technology & Engineering, Volume: 05, Issue: 05, November 2018.
- [6] Avinash Shetty, Bhavish Bhat, RameshaKarantha and Srinivasa Hebbar, "Smart Transport System Signaling Sensor System Near Hairpin Bends", International Journal of Scientific & Engineering Research, Volume: 09, Issue: 04, April 2018.
- [7] V.Ramachandran, R.Ramalakshmi and K. Mathankumar, "Accident Prevention and Traffic Pattern Analysis System for Hilly Regions", International Journal of Innovative Technology and Exploring Engineering, Volume: 09, Issue: 02, December 2019.
- [8] P Sudarshan Duth, M Mary Deepa, "Color Detection in RGBmodeled images using MATLAB", International Journal of Engineering & Technology, Volume: 07, Issue: 02, June 2018.