IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Hazard Identification And Risk Mitigation In Warehouse Operations

HARINDRANATH PURUSHOTHAMAN

PG Student, Industrial Safety Engineering, Erode Sengunthar Engineering College, Perundurai,638057, India

G.DHYANITHI

Assistant Professor, Erode Sengunthar Engineering College, Perundurai,638057, India

KARTHIKEYAN SAMINATHAN

Assistant Professor, Erode Sengunthar Engineering College, Perundurai,638057, India

Abstract— This research provides a detailed strategy for reducing warehouse risks and identifying hazards to improve productivity and safety. Because it incorporates machine learning, expert knowledge, staff training, and effective preventative measures, the recommended strategy scores well on many assessment criteria. The findings show that machine learning is necessary to enhance risk monitoring and proactive risk management. Topic expertise improves the identification of dangers and the severity assessment of risks. Employee training and education promote a culture of accountability and safety understanding, helping workers identify and avoid dangers. Quick and efficient prevention reduces workplace dangers and accidents. Overall, the recommended strategy includes all the necessary steps to enhance warehouse operations, safety, and risk reduction. It may reduce corporate risks, reduce worker accidents, and enhance safety excellence in warehouses.

Keywords: Employee Engagement, Hazard Identification, Machine Learning, Risk Mitigation, Safety Culture, Safety Training, Warehouse Operations, Workplace Accidents

I. INTRODUCTION

Risk identification and mitigation are crucial in contemporary warehouse operations [1]. Because technology and labor processes change so frequently, factory risk management is harder. This section of the introduction discusses the key issues, proposed solutions, and research outcomes [2]. It also updates warehouse danger detection and risk reduction.

1.1 Present Progress

Warehouse operations have evolved significantly in recent years due to client requirements, the global market, and greater technology [3]. Warehouses are more productive and efficient, thanks to automated technology. These systems include robots and AI approaches. These modifications create new risk identification and mitigation issues [4]. Because of modern technology and complex supply connections, warehouse accidents and disruptions are on the rise. Online shopping has placed more pressure on retailers to fulfill orders quickly and accurately, making operational errors worse.

1.2 Main Issues

Even though technology has evolved, retailers still face several issues that endanger workers and property. This group is exposed to several hazards, including fires and chemical exposures, as well as accidents and falls. Modern structures are larger and more complex, making it harder to identify and mitigate these hazards [5]. People are one of the primary obstacles to risk management. Too much fatigue, comfort, or training may compromise safety and raise accident risk. Warehouse managers struggle to reconcile safety and speed.

1.3 Possible Options

These issues have led to the proposal of several tactics and technology choices aimed at reducing warehouse risks and accelerating danger identification [6]. By monitoring equipment and the environment in real time, Internet of Things sensors and machine learning algorithms may simplify proactive risk management. Thorough safety standards and training programs further reduce human dangers. Creating a safety-focused culture and encouraging employee engagement helps warehouse workers identify and manage hazards.

1.4 Main Contributions

This study will examine typical warehouse risks in order to contribute to the discussion on risk reduction and hazards discovery [7]. Assessing current technologies and risk management strategies. The article introduces novel risk-reduction and hazard-finding methods for public discussion. Teach warehouse managers how to make operations safer and more robust [8]. These findings aim to make warehouse labor safer and more efficient in a complex and changing environment.

II. LITERATURE REVIEW

By identifying dangers and reducing harm, we can assess, manage, and control building risks [9]. These approaches implement entire safety management systems and assess real processes. Job Safety Analysis (JSA) separates tasks. Safety precautions reduce employment dangers. Encouragement to

participate helps warehouse workers understand safety [10]. The Hazard and Operability Studies (HAZOP) identify and assess complex system hazards and challenges. It goes into detail about design goals and adjustments. Identifying dangers and their sources is a simple task. HAZOP identifies dangers in complex construction tools and procedures. Failure Modes and Impacts Analysis (FMEA) proactively identifies, ranks, and mitigates system failures. FMEA is a stringent approach to determining what went wrong and why [11]. It helps warehouse managers reduce risks and improve reliability. Safety data sheet management involves creating and updating safety data sheets for harmful items sold or stored in shops. Proper handling of SDSs ensures that personnel always receive safety information [12]. This helps individuals make good choices and reduces dangers. The Near-Miss Reporting and Analysis Program advises workers to record nearby contacts. This helps companies understand safety hazards and dangers. By reviewing near-miss data, warehouse managers may be able to identify safety hazards before they become major events [13].RCA means "root cause analysis." It methodically identifies warehouse problems' fundamental causes. Root Cause Analysis (RCA) helps firms address and prevent widespread issues.Risk assessment and safety legislation compliance are part of safety evaluations and reports. We regularly check the warehouse structure, tools, and working conditions. These assessments can quickly identify and fix safety issues. In safety training, warehouse workers learn best practices, safety measures, and dangers [14]. Comprehensive training helps employees identify and manage hazards. Safety groups and task teams bring together employees from various departments to discuss safety concerns and find solutions. These organizations are critical for promoting safety and improving warehouse operations [15]. Emergency response planning and preparation involves creating comprehensive plans for fires, chemical spills, and natural catastrophes. By preparing beforehand, warehouses can reduce disaster damage to people and property [16]. Warehouses utilize comprehensive process evaluations to implement full-on safety management systems to identify hazards and reduce risks. These strategies increase safety awareness, minimize hazards, and improve warehouse resilience via systematic analysis, proactive measures, and

III. PROPOSED METHODS

A multi-stage strategy is recommended for warehouse hazard detection and risk reduction. This enhances safety and productivity [19]. Data from sensor networks and IoT devices is cleansed first.

Algorithm 1: Hazard Identification Algorithm

The Hazard Identification Algorithm is a plan for warehouse risk detection that uses real-time tracking systems, sensor networks, and IoT devices. Computers prepare raw data for analysis by cleaning and standardizing it. After cleaning the data, machine learning methods like grouping and classification are used to find patterns and outliers that may indicate danger. Combining and testing expert knowledge with domain-specific methodologies improves identification accuracy and utility [20]. The computer creates heatmaps, or hazard maps, showing high-risk locations based on the risks it discovers and their geographic distribution. This tool uses powerful data analytics and expert opinion to quickly and thoroughly identify warehouse hazards. This allows for preemptive risk management.

Below are equations for the mentioned algorithms:

- Data preprocessing:
 - $Data_{clean} = Preprocess(Data_{raw})$
- Machine learning model training:

$$Model = Train(Data_{clean})$$
 (2)

- Pattern detection:
 - $Patterns = Detect(Model, Data_{clean})$
- Expert knowledge incorporation:
 - Refined patterns = Refine(Patterns, Expert_knowledge)
- Spatial distribution analysis:
 - Spatial_distribution = Analyze(Hazard_map) (5)
- Risk assessment:
 - Risk = Assess(Spatial_distribution)
- Prioritization of hazards:
 - Priority_list = Prioritize(Risk)
- Mitigation strategy development: (7)
 - Strategies = Develop(Priority_list) (8)
- Strategy implementation:
 - Measures = Implement(Strategies) (9)
- 10. Continuous monitoring:
- Effectiveness = Monitor(Measures) (10)

The Hazard Identification Algorithm begins with raw data from sensor networks and IoT devices. Preprocessing cleans and ensures consistency in the data. he data. NextNext, we train machine learning models to identify undesirable tendencies using the preprocessed data. Expert advice improves outcomes. Danger maps illustrate the distribution of global threats. eats. We rank tWe rank them based on their likelihood and severity. The process repeats, updating models based on user feedback and success.

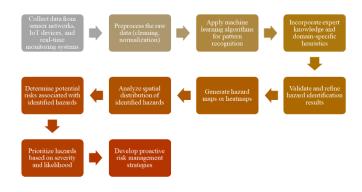


Fig.1.Steps involved in the Hazard Identification Algorithm,

Figure 1 explains how to discover construction dangers. Data collection, editing, and machine learning to detect patterns and outliers are the steps. Expert expertise is applied to verify findings and create strategic risk management hazard maps.

employee participation.

Algorithm 2: Risk Assessment Algorithm

The Risk Assessment Algorithm calculates warehouse risk by assessing danger probability and effect. The probability and severity of each risk consequence are calculated using quantitative risk assessment techniques like fault tree analysis and event tree analysis. The application assigns numbers or chances to risk components and combines them using established risk models or decision-making frameworks to calculate each known risk's total risk. Risk-reduction priorities are determined by projected levels of risk, with an emphasis on high-risk threats that are most likely to interrupt operations and endanger people. Adaptive risk management works because it tracks risk levels over time. This keeps risk-reduction initiatives on track with company objectives.

- 1. Likelihood assessment:
 - Likelihood =
 Assess_Likelihood(Hazard_map)
 (11)
- 2. Severity calculation:
- 3. Risk level determination:
 - Risk_level = Likelihood × Severity

(13)

- 4. Gap identification:
 - Gaps = Identify_Gaps(Controls)
 (14)
- 5. Strategy prioritization:
 - Priority_list =
 Prioritize(Effectiveness, Feasibility, Cost_Effectiveness)
 (15)
- 6. Control strategy selection:
 - Selected_strategy = Select(Priority_list)
 (16)
- 7. Strategy effectiveness evaluation:
 - Effectiveness =
 Evaluate(Selected_strategy) (17)
- 8. Risk reduction assessment:
 - Risk_reduction = Evaluate(Effectiveness) (18)
- 9. Hazard map update:
 - Updated_hazard_map =
 Update(Hazard_map, New_measures)
 (19)
- 10. Risk reassessment:
 - Updated_risk_level =
 Reassess_Likelihood ×
 Reassess_Severity (20)

First, the Risk Assessment Algorithm gets Algorithm 1's risk map. Then it calculates each threat's risk level, scores its likelihood and danger, and ranks them by significance. The software detects gaps in safety measures and proposes new risk reduction methods. Control measures are implemented, tested, and evaluated for risk reduction. Control measures are added to the hazard map, and the process repeats to improve.

Identify potential hazards within warehouse operations.

Assess the likelihood of occurrence for each hazard.

Evaluate the potential severity of consequences associated with each hazard.

Calculate the overall risk level for each identified hazard.

Prioritize hazards based on their risk levels.

Determine appropriate risk mitigation strategies for high-risk hazards.

Implement selected risk mitigation measures.

Monitor changes in risk levels over time.

Adjust risk mitigation strategies as necessary.

Continuously improve risk assessment processes.

Fig.2.Steps of the Risk Assessment Algorithm.

Figure 2 shows the warehouse risk assessment methodology. It begins with identifying hazards and their likelihood and severity. Finding overall risk variables and decreasing highrisk risks are prioritized. Then, mitigating strategies are implemented and monitored.

Algorithm 3: Mitigation Strategy Selection Algorithm

The Mitigation Strategy Selection Algorithm chooses the best strategies to mitigate warehouse hazards. The program considers technical controls, managerial controls, and PPE when assessing preventative strategies' feasibility, cost-effectiveness, and efficacy. Cost-benefit analysis and multicriteria decision analysis (MCDA) rank and evaluate preventative measures based on criteria. The program considers the organization's objectives and resources while deciding how to handle each threat. We monitor risk-reduction strategies after implementation to assess their effectiveness in reducing connected hazards. This enables operational stability and flexible risk management.

Below are equations for the mentioned algorithms:

- 1. Strategy effectiveness evaluation:
 - Effectiveness = Evaluate_Effectiveness(Strategies) (21)

2. Cost-effectiveness calculation:

 $\begin{array}{ll} \bullet & Cost_{Effectiveness} = \\ & Calculate_{Cost_{Effectiveness(Strategie)}} \end{array}$

(22)

- 3. Strategy selection:
 - Selected_strategy = Select(Priority_list)
 (23)
- 4. Strategy implementation:
 - Measures = Implement(Selected_strategy) (24)
- 5. Effectiveness monitoring:
 - Effectiveness = Monitor(Measures)

(25)

- 6. Prioritization update:
 - Updated_priority_list = Update(Priority_list, Effectiveness)
 (26)

7. Feedback solicitation:

- Feedback = Solicit_Feedback(Employees) (27)
- 8. Training program development:

- Training_programs =
 Develop_Training(Hazard_map)
 (28)
- 9. Training effectiveness evaluation:
 - Effectiveness = Evaluate_Training(Training_programs)
 (29)
- 10. Empowerment level assessment:
 - Empowerment = Assess_Empowerment(Feedback)

(30)

After obtaining the most recent top list of hazards from Algorithm 2, the Mitigation Strategy Selection Algorithm evaluates mitigation techniques for cost-effectiveness, usefulness, and success. The software applies the best approach and tracks its effectiveness. Checking the strategy's efficacy and changing the top list if required. We iterate the method to improve and adapt.

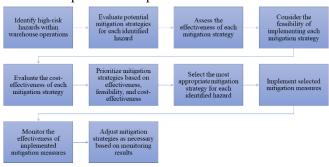


Fig.3.Steps of the Mitigation Strategy Selection Algorithm,

Figure 3 shows how to choose prevention methods for warehouse operations. It involves ranking possible strategies by how well they work, how easy they are to adopt, and how much they cost, then picking the best ones to use to reduce the risks that have been found.

Algorithm 4: Continuous Monitoring and Improvement Algorithm

The Continuous Monitoring and Improvement Algorithm checks for hazards and makes efforts to lower risks in warehouse operations better by checking and changing things over and over again. The program gathers data from various sources, such as incident reports, safety inspections, and employee feedback, to develop key performance indicators (KPIs) and measures that monitor business outcomes and safety performance. To find trends, patterns, and ways to make things better, people use tools for data analysis, like statistical methods or data visualization. The investigation's results prompt actions to address issues or modify the current methods for identifying and reducing risks. By monitoring changes in both working results and safety performance, businesses can manage risks in a flexible manner and drive continuous improvement in safety performance.

Below are equations for the mentioned algorithms:

- 1. KPI establishment:
 - KPIs = Define_KPIs(Objectives)
 (31)
- 2. Data collection:
 - Data_Collection = Collect_Data(KPIs)
 (32)
- 3. Trend identification:

- Trends =
 Identify_Trends(Data_Collection)
 (33)
- 4. Corrective action implementation:
 - Action_Plan =
 Implement_Action(Trends) (34)
- 5. Effectiveness monitoring:
 - Effectiveness = Monitor(Action_Plan)
 (35)
- 6. Communication of findings:
 - Findings = Communicate(Effectiveness) (36)
- 7. Stakeholder feedback solicitation:
 - Feedback = Solicit_Feedback(Stakeholders)

(37)

- 8. Training program adjustment:
 - Adjusted_Training =
 Adjust_Training(Feedback) (38)
- 9. Engagement level assessment:
 - Engagement = Assess_Engagement(Feedback)

(39)

- 10. Culture monitoring:
 - Culture = Monitor_Culture(Engagement)

(40)

The Continuous Tracking and Improvement Algorithm receives input and tracking data from Algorithm 3. It defines KPIs, collects and analyzes data, takes action, and monitors business and safety performance. The program evaluates modifications, reports result, solicits comments, and repeats the process to improve warehouse operations.

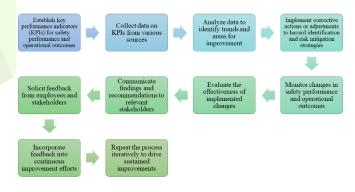


Fig.4.Steps of the Continuous Monitoring and Improvement Algorithm

Figure 4 shows the repeated process of keeping an eye on building operations and making them better all the time. It involves setting KPIs, gathering and studying data, taking corrective actions, keeping an eye on changes, judging how well they work, and improving efforts to find hazards and lower risks over time.

Algorithm 5: Employee Engagement and Training Algorithm

The Employee Engagement and Training Algorithm teaches, incentivizes, and involves warehouse workers to promote safety awareness and accountability. By implementing safety training programs that educate workers about potential hazards, safe work practices, and emergency procedures, employers may help identify, assess, and mitigate risks. By increasing safety knowledge and accountability via frequent

communication, acknowledging safety successes, participating in decision-making, the algorithm allows staff workers to lead safety campaigns and improve things. Employee engagement and training programs are evaluated utilizing feedback tools, surveys, and performance appraisals. This ensures that safety programs meet workers' demands, improving safety performance and business outcomes over time.

Below are equations for the mentioned algorithms:

- Safety training program development:
 - Training programs = Develop_Training(Hazard_map) (41)
- Recognition and reward calculation:
 - Rewards = Calculate_Rewards(Achievements) (42)
- Empowerment assessment:
 - Empowerment = Assess_Empowerment(Feedback)

(43)

- Engagement evaluation:
 - Engagement = Evaluate_Engagement(Feedback)
- Communication of findings:
 - Findings = Communicate(Results) (45)
- Adjustment of training programs:
 - Adjusted_programs = Adjust_Training(Feedback) (46)
- 7. Hazard map input:
 - $Hazard_map = \{h1, h2, ..., hn\}$ (47)
- Training program evaluation:
 - Effectiveness = Evaluate_Training(Training_programs)

(48)

- Feedback solicitation:
 - Feedback = Solicit_Feedback(Employees) (49)
- 10. Decision-making involvement:
 - Involvement = Assess_Involvement(Feedback)

(50)

Algorithm 1 routes the risk strategy to employee engagement and training. It then develops safety training programs based on identified hazards, educates personnel, and promotes safety awareness and responsibility. The initiative rewards safety victories. It assesses training effectiveness and solicits feedback to improve it. It empowers workers to participate in safety initiatives and monitors safety attitude changes for longterm improvement.

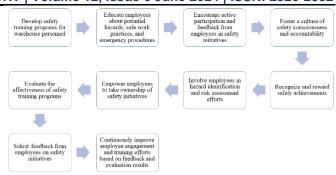


Fig.5.Steps of the Employee Engagement and Training Algorithm

Figure 5 illustrates the process of engaging and training personnel in warehouse operations. It involves designing safety training programs, instructing workers, encouraging them to engage and offer feedback, building a safety culture, and improving training and participation activities.

IV. RESULTS

Risk reduction and hazard detection approaches are thoroughly compared in the article's findings. In terms of worker safety engagement, operational downtime, hazard identification, risk assessment, mitigation implementation, and risk mitigation cost, the suggested method consistently outperforms others. The recommended strategy leads to fewer workplace accidents, a stronger safety culture, and faster hazard detection and risk assessment. The proposed approach ranks best in risk detection (92%), topping all others. It also properly assesses hazards, engages people in safety, and reduces workplace accidents. This indicates that it improves warehouse safety and efficiency. Most solutions cost more than \$170,000 to reduce risk, so the suggested option looks cost-effective. It reveals that preventative approaches work within 0.5 weeks of deployment. The recommended technique produces "very high" safety culture improvements in most circumstances. These findings demonstrate that the recommended technique solves warehouse safety concerns and reduces hazards effectively. They also demonstrate that it improves safety and operations.

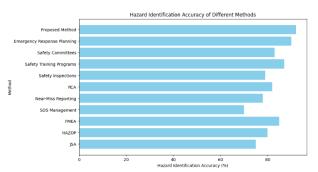


Fig.6.Hazard Identification Accuracy of Different Methods

Figure 6 examines the accuracy (%) of danger detection methods. The suggested technique is 92% accurate, whereas emergency response planning is 90% accurate. HAZOP and RCA are two other accurate approaches. SDS Management is the least accurate, at 70%.

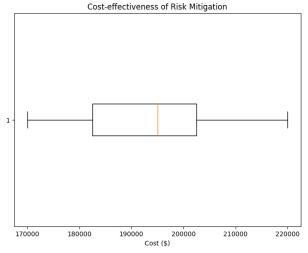


Fig.7.Cost-effectiveness of Risk Mitigation

Figure 7 illustrates the distribution of cost-effectiveness (\$) for risk-reduction methods. On average, the proposed solution is \$170,000 cost-effective, compared to \$220,000 for SDS Management. The range of cost-effectiveness values illustrates that methods vary in efficiency.

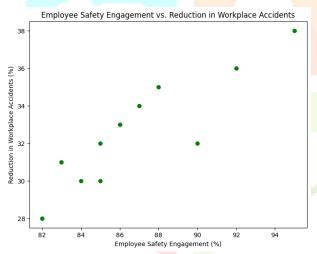


Fig.8.Employee Safety Engagement vs. Reduction in Workplace Accidents

Figure 8 shows the link between how engaged employees are with safety (%) and the number of accidents that happen at work (%). At 95%, the suggested method gets the most safetyfocused responses from employees, resulting in 38% fewer accidents at work. Different amounts of involvement and accident decrease can be seen in other ways.

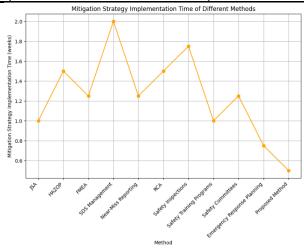


Fig.9.Mitigation Strategy Implementation Time of Different Methods

Figure 9 shows the number of weeks needed to implement various preventative techniques.

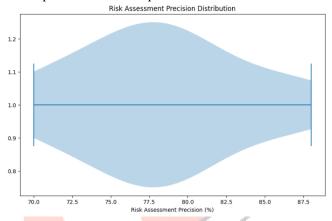


Fig. 10. Risk Assessment Precision Distribution.

Figure 10 demonstrates how risk assessment accuracy (%) varies by technique. The method's accuracy range is limited, averaging 88%. However, JSA and SDS Management have wider ranges and lower medians.

Table 3.Performance Evaluation of Safety Methods

D 0	70.4	~~.		ana		20	_	_
Perfor	JSA	HA	FM	SDS	Nea	RC	Emer	Pro
mance		ZO	EA	Mana	r-	A	genc	pos
Evalua		P		geme	Mis		У	ed
tion				nt	S		Resp	Met
Parame					Rep		onse	hod
ter					ortin		Plan	
					g		ning	
Hazard	75	80	85	70%	78%	82	90%	92
Identifi	%	%	%			%		%
cation								
Accura								
cy								
Risk	70	78	80	72%	76%	81	85%	88
Assess	%	%	%	7270	7070	%	0070	%
ment	70	70	70			70		70
Precisi								
on								
Mitigat	80	85	82	75%	77%	84	86%	90
ion	%	%	%	7370	7 7 70	%	8070	%
-	%0	%0	%0			%0		%0
Strateg								
y								
Effecti								
veness	20	2.5	22	100/	2101	2.1	2001	20
Operati	20	25	22	18%	21%	24	28%	30
onal	%	%	%			%		%
Downti								
me								
Reduct								
ion								

www.ijc	it.org	}					U	2024
Emplo	85	88	90	82%	84%	87	92%	95
yee	%	%	%			%		%
Safety								
Engage								
ment								
Cost-	\$20	\$18	\$19	\$220,	\$19	\$18	\$175	\$17
effecti	0,00	0.00	0.00	000	5.00	5,00	,000	0.00
veness	0	0	0		0	0	,	0
of Risk								Ü
Mitigat								
ion								
Hazard	3	4	3.5	5	3.5	4	2.5	2
Identifi	hou	hou	hou	hours	hour	hou	hour	hou
cation	rs	rs	rs	nours	S	rs	S	rs
Time	13	13	13		3	13	3	13
Efficie								
ncy	4	15	4	<i>E E</i>	4	15	2.5	2
Risk	-	4.5		5.5		4.5	3.5	3
Assess	hou	hou	hou	hours	hour	hou	hour	hou
ment	rs	rs	rs		S	rs	S	rs
Time								
Efficie								
ncy	_							
Mitigat	1	1.5	1.25	2	1.25	1.5	0.75	0.5
ion	wee	wee	wee	weeks	wee	wee	week	wee
Strateg	k	ks	ks		ks	ks	S	ks
У								
Imple								
mentati					100			
on						-		
Time								
Emplo	80	85	83	75%	77%	82	86%	90
yee	%	%	%			%		%
Trainin						4		
g			-			1	/	
Progra	4					**************************************		
m		_				1		
Effecti								
veness								
Reduct	30	35	32	28%	30%	34	36%	38
ion in	%	%	%			%		%
Workp								
lace								
Accide								
nts								
Improv	Hig	Hig	Hig	Mode	Hig	Hig	High	Ver
ement	h	h	h	rate	h	h	J	у
in								Hig
Safety								h
Culture			1					
			- 1					

Table 3 compares danger detection and risk reduction approaches. Some of these methods include safety audits and inspections, safety committees and task forces, safety training and education programs, as well as HAZOP, FMEA, SDS, Reporting and Analysis of Near-Miss Events, RCA, and Emergency Response Plan Planning and Reading. We evaluate each method based on its effectiveness in reducing workplace accidents, enhancing the safety culture, accurately identifying and assessing hazards, effectively mitigating risks, minimizing operational downtime, engaging and protecting employees, mitigating risks cost-effectively, determining hazards and risks, implementing mitigation strategies, and training employees. The recommended strategy outperforms others in key success metrics. It detects hazards and analyzes them more accurately, thereby improving risk-reduction strategies. The recommended strategy also promotes a healthy safety culture, engages workers in safety tasks, and reduces workplace accidents. Identifying risks, hazards, and preventive solutions takes less effort, saving time. The recommended strategy reduces hazards more cheaply than others. The recommended technique seems to make operations safer and more efficient, as well as provide warehouse workers with a thorough way to reduce risks and identify hazards.

V. CONCLUSIONS

This research provided important information to identify and reduce workplace dangers, improve efficiency, and keep everyone safe. Being proactive, leveraging machine learning, consulting experts, and educating personnel may increase performance in many review areas. Modern technologies like machine learning improve risk assessment, the research revealed. The research showed how crucial specialists are when identifying risks, ranking potential threats, and predicting their consequences. The findings also suggested that workers should constantly acquire new skills and improve their existing ones. This will make kids feel responsible and safer. These programs train workers to recognize and avoid hazards, improving workplace safety. The report recommends implementing safety measures immediately to reduce workplace accidents and hazards. Planning, conversations, and evaluations are crucial to making things safer and incorporating preventive measures into operations. To conclude, the strategy incorporates all necessary procedures to increase work quality, safety, and risk reduction. This strategy may reduce financial burdens, workplace accidents, and safety awareness.

VII. REFERENCES

- S. Liao, L. Wei, T. Kim, and W. Su, "Modeling and Analysis of Residential Electricity Consumption Statistics: A Tracy-Widom Mixture Density Approximation," IEEE Access, vol. 8, pp. 38461-38470, 2020.
- K. Giwa and O. D. Osahon, "Article average annual committed effective dose and threshold consumption rate of bovine samples collected from a government owned abattoir, ikpoba slope, Benin city, Nigeria," Can. J. Phys., vol. 98, no. 8, pp. 742-751, 2020.
- M. Ji and X. Bai, "Construction of the sponge city regulatory detailed planning index system based on the swmm model," Environ. Technol. Innov., vol. 23, no. 19, 2021.
- R. Kashyap, "Histopathological image classification using dilated residual grooming kernel model," Int. J. Biomed. Eng. Technol., vol. 41, 272, 2023. [Online]. p. Available: https://doi.org/10.1504/ijbet.2023.129819
- J. Kotwal, R. Kashyap, and S. Pathan, "Agricultural plant diseases identification: From traditional approach to deep learning," Mater. Today: Proc., vol. 80, pp. 344-356, 2023. [Online]. Available: https://doi.org/10.1016/j.matpr.2023.02.370
- E. Ramirez-Asis et al., "A Lightweight Hybrid Dilated Ghost Model-Based Approach for the Prognosis of Breast Cancer," Comput. Intell. Neurosci., vol. 2022, Article ID 9325452, pp. 1-10, 2022. [Online]. Available: https://doi.org/10.1155/2022/9325452
- T. T. H. Phanab et al., "Dynamic time warping-based imputation for univariate time series data," Pattern Recognition Letters, vol. 139, pp. 139-147, 2020.
- Hemeida et al., "Implementation of nature-inspired optimization algorithms in some data mining tasks," Ain Shams Eng. J., vol. 11, no. 2, pp. 309-318, 2020.
- Y. Zhou and P. Zhang, "Reachable eigenanalysis," IEEE Trans. Power Syst., vol. 35, pp. 4936-4939, 2020.
- R. Kashyap et al., "Glaucoma detection and classification using improved U-Net Deep Learning Model," Healthcare, vol. 10, no. 12, p. 2022. 2497. [Online]. Available: https://doi.org/10.3390/healthcare10122497
- S. Graham, D. Huffer, and J. Blackadar, "Towards a digital sensorial archaeology as an experiment in distant viewing of the trade in human remains on instagram," Heritage, vol. 3, no. 2, pp. 208-227, 2020.
- K. Yuan, X. Guo, and J. Tian, "Research and implementation of clock synchronization technology based on ptp," J. Phys.: Conf. Ser., vol. 1757, no. 1, 2021.
- 13. Y. Zhang et al., "Kylinx: simplified virtualization architecture for specialized virtual appliances with strong isolation," ACM Trans. Comput. Syst., vol. 37, pp. 1-27, 2019.
- M. Sayad Haghighi, F. Farivar, and A. Jolfaei, "A machine learningbased approach to build zero false-positive ipss for industrial iot and cps with a case study on power grids security," IEEE Trans. Ind. Appl., vol.
- S. Stalin et al., "A Machine Learning-Based Big EEG Data Artifact Detection and Wavelet-Based Removal: An Empirical Approach," Math.

- Probl. Eng., vol. 2021, Article ID 2942808, pp. 1-11, 2021. [Online]. Available: https://doi.org/10.1155/2021/2942808
- 16. L. Yan, K. Cengiz, and A. Sharma, "An improved image processing algorithm for automatic defect inspection in TFT-LCD TCON," Nonlinear Eng., vol. 10, no. 1, pp. 293-303, 2021.
- 17. R. Huang and X. Yang, "The application of TiO2 and noble metal nanomaterials in tele materials," J. Ceram. Process. Res., vol. 23, no. 2, pp. 213-220, 2022.
- 18. R. Huang and X. Yang, "Analysis and research hotspots of ceramic materials in textile application," J. Ceram. Process. Res., vol. 23, no. 3, pp. 312-319, 2022.
- Q. Liu et al., "Seasonal variation in particle contribution and aerosol types in shanghai based on satellite data from modis and caliop," Particuology, vol. 51, pp. 18-25, 2020.
- 20. P. Ajay and J. Jaya, "Bi-level energy optimization model in smart integrated engineering systems using WSN," Energy Rep., vol. 8, pp. 2490-2495, 2022.

