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Abstract:  Brain tumors represent a significant global health challenge, affecting approximately one million 

individuals worldwide in 2023. This study evaluates the efficacy of the object detection algorithm for the 

detection and categorization of brain tumors using MRI images. The evaluation utilized a dataset of MRI 

images from different patients, covering three primary brain tumor types: Pituitary, Meningioma, and Glioma. 

The model demonstrated robust performance, with general high precision, recall, and mAP values on the 

validation dataset. Notably, the model effectively differentiated between the various brain tumor types and 

background, as evidenced by the normalized confusion matrix. Practical testing on brain MRI images 

confirmed the model's ability to accurately identify different tumor regions. In conclusion, the object detection 

algorithm presents a promising automated method for identifying brain tumors and classification in MRI 

images, potentially aiding clinicians in precise diagnosis and treatment planning. Further research using larger 

datasets is recommended to enhance the model's clinical applicability and reliability. 

 

Index Terms - brain tumor, object detection, MRI. 

I. INTRODUCTION 

A brain tumor is characterized as an aberrant proliferation of cells within or in proximity to the cerebral 

region. Primary tumors arise from the brain tissue itself, whereas secondary or metastatic tumors originate from 

malignant cells that have disseminated from other bodily sites. These growths are categorized as either non-

cancerous, with no harmful potential, or cancerous, possessing the capacity to infiltrate and compromise 

adjacent brain tissue. 

Brain tumors are a pressing global health issue, affecting an estimated 1 million people worldwide. In 2023, 

there were 94,390 new primary brain tumor diagnoses, comprising 67,440 non-malignant and 26,940 malignant 

cases. Meningiomas are the most common benign tumors, representing 39.7% of all cases, while glioblastoma 

is the most prevalent malignant tumor, accounting for 14.2% of diagnoses. Over a five-year period, 76% of 

patients survive, with a median diagnostic age of 61. However, survival rates vary significantly by tumor type, 

with non-malignant tumors having a 91.8% survival rate and malignant tumors only 35.7%. With a median 

survival of eight months, glioblastoma has a low five-year survival rate of 6.9%. It was ranked 10th globally in 

terms of cancer fatalities in 2023. 

Pediatrics brain tumors constitute 3.9% of all cases, with an estimated 3,920 new cases in 2023. They are 

the most diagnosed solid cancer in children and the top cause of cancer death in this age group. Childhood brain 

tumors have an 83.1% five-year survival rate, varying by tumor type, with pilocytic astrocytoma having the 

highest survival rates. Adolescents and young adults (AYA) represent 14.3% of primary brain tumors, with 

pituitary tumors being the most common and a five-year survival rate of 90.9%. 

http://www.ijcrt.org/


www.ijcrt.org                                                           © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT2405351 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d266 
 

81.7% of primary brain tumors occur in adults 40 years of age and older; 79,340 new cases are predicted in 

2023. The relative survival rate after five years is 72.5%, brain tumors rank sixth among tumor types and the 

seventh most common and leading cause of cancer-related mortality within this demographic. 

Regarding race and ethnicity, Black individuals have slightly higher incidence rates, while White individuals 

have higher rates of specific tumor types like glioblastoma. Hispanic ethnicity is associated with improved 

survival rates. Brain tumor incidence rates are higher in females, with meningioma in females and glioblastoma 

more common in males. more common in males and meningioma in females. Despite higher incidence rates in 

females, males generally have worse survival outcomes from malignant brain tumors. 

Brain tumors, affecting the brain's control center for movement, emotion, cognition, and sensory perception, 

can severely disrupt these vital functions. 

Treatment methods for brain tumors focus on controlling tumors with minimal damage to healthy brain tissue 

through surgery, radiation therapy, and chemotherapy. Physical, occupational, and speech therapies are 

examples of rehabilitation therapies that help affected people regain or maximize their functional abilities and 

enhance their quality of life. 

Recent interest in artificial intelligence has led to advancements in A computer vision approach called object 

detection locates and recognizes items within digital pictures or video frames. Identifying objects, establishing 

their locations using bounding boxes, and labelling them with class identifiers are all part of object detection. 

The You Only Look Once (YOLO) object identification approach is utilized in this study to identify, locate, 

and categorize brain tumors from MRI data. YOLO's efficiency, real-time performance, and high accuracy 

make it a suitable choice for this task. 

II. LITERATURE REVIEW 

This section examines the most recent developments in machine learning-based brain tumor detection. 

Multi-layer perceptron (MLP) and naïve Bayes classification algorithms were investigated in a study by 

Sharma, K., Kaur, A., & Gujral, S. to distinguish malignant from benign brain tumors. The study focused on 

analysing textural data from medical pictures to obtain accurate tumor classification. 

Xuan, X., & Liao, Q. developed a technique for extracting characteristics from brain images, such as texture, 

symmetry, and intensity. They utilized the AdaBoost algorithm to classify MR images as normal or abnormal, 

achieving a classification accuracy of 96.82%. 

In a different study by Amin, S.E., & Mageed, M., neural networks were used to identify three different 

forms of brain cancer from MRI pictures: acoustic glioma, optic glioma, and astrocyte glioma. Using a dataset 

of 30 MRI images, the researchers were able to achieve an average detection rate of 78%. 

Jafari, M., & Shafaghi, R. presented a hybrid method for classifying brain images that combines support 

vector machines (SVM) with genetic algorithms. Utilizing wavelet, statistical, and frequency transformation 

features, this method produced an average accuracy of 83.22%.  

Mercaldo, Brunese, Martinelli, Santone, and Cesarelli proposed an automated method for detecting and 

localizing brain cancer using magnetic resonance imaging (MRI) analysis. They utilized the YOLOv8 (You 

Only Look Once) model for automated detection and localization. In their analysis of 300 brain images, they 

achieved a precision of 0.943 and a recall of 0.923 for brain cancer detection, along with a mean Average 

Precision (mAP) of 0.941 for brain cancer localization. 

Selvy, P.T., Dharani, V., & Indhuja, A. experimented with different segmentation algorithms and proposed 

a method to detect brain pictures connected to cancer. They used a two-step process for segmentation and 

classification. 

Montalbo proposes transfer learning and fine-tuning for YOLOv4 to detect brain tumors from MRI scans. 

Trained on a dataset of 3064 MRI scans, the YOLOv4-Tiny model achieved a mean average precision of 

93.14%, outperforming previous versions. This work aids in automating brain tumor detection to assist medical 

experts in diagnostics. 

In their study, Arunachalam & Sethumathavan propose an enhanced YOLOV5 technique for brain tumor 

detection using MR images, achieving a notable mAP of 90.24%. They employ Hyperparameter Optimization 
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and McCulloch’s algorithm for segmentation accuracy evaluation, outperforming standard YOLOV5 models. 

Their method demonstrates potential for efficient brain tumor identification in medical image analysis.   

Abdusalomov, A.B., Mukhiddinov, M., and Whangbo, T.K. addressed brain tumor detection in MRI scans 

using a YOLOv7 model fine-tuned through transfer learning. Their approach improved performance in 

identifying gliomas, meningioma, and pituitary tumors, achieving a remarkable 99.5% accuracy. Further 

research is warranted for detecting small tumors, aiming to enhance diagnostic capabilities and support medical 

practitioners in battling brain cancers. 

III. METHODOLOGY 

This section outlines our method for using brain MRI scans to automatically detect and locate brain tumors. 

Our focus is on brain MRIs, but the approach we suggest can be modified to analyze other biomedical images, 

such as those of the lungs or other organs. A high-quality dataset with accurate tumor region annotations is 

essential for a brain tumor detection and localization model from MRI scans. The foundation for training an 

accurate object detection model is this well-annotated dataset. It makes sure the model picks up on the ability 

to locate and identify cancer-specific areas in MRI scans, allowing for accurate predictions on fresh, 

unobserved data. 

 

To create a reliable and accurate model that can forecast unseen images, we compiled an extensive image 

dataset of several forms of brain tumors, including gliomas, meningiomas, and pituitary tumors, taken from 

different perspectives and in varied lighting conditions. Resizing each image to a uniform size requires 

preprocessing to prepare them for additional analysis. Upon acquiring the pictures, we established three 

categories for the identification of the bounding boxes that are specifically focused in the presence of these 

Pituitary, Meningioma and Glioma brain tumor.  

 

Annotation of every MRI picture with bounding boxes around any tumors that were found. The LabelImg 

tool, which was created especially for data annotation tasks, was used to carry out this annotation process. 

 

 
Figure 1 The work flow of the implemented method. 

 

We use the YOLO model for object detection in this study. First presented in 2016 [24] by J. Redmon et al., 

YOLO is a ground-breaking one-stage deep learning detector. It is specifically made to be able to carry out 

accurate object localization and image classification at the same time. 

 

One characteristic that distinguishes YOLO from other networks is its independent pipeline, which manages 

the entire process on its own. An image is used as the input in YOLO, and the output is made up of two primary 

parts: for each cell, a vector representing a bounding box and the corresponding class prediction. 

 

Every image is separated into a S × S grid of cells during the analysis. When an object lies in the centre of 

a cell, that cell oversees identifying it. The five components of the bounding box prediction are (x, y, w, h, 

confidence). The (x, y) coordinates show the centre of the enclosing box with respect to the cell's grid location, 

which are normalized to values between 0 and 1. In relation to the image size, the box's size (w, h) is normalized 

to values between 0 and 1. In total, S × S × B × 5 outputs are produced by the bounding box predictions, where 

B signifies the quantity of predicted bounding boxes for each cell. 
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Compared to current object detection models, YOLO has established exceptional speed. The main reason 

for this efficiency is that YOLO can complete the recognition task in one step, negating the need for additional 

phases. YOLO forecasts classifications of things present in the input image input image, bounding boxes, and 

object probabilities directly, in contrast to models that have distinct stages for object classification and region 

proposal. In contrast to alternative models for object detection, YOLO's speed is greatly increased by this 

simplified methodology. It is important to mention that the YOLO model has several versions. For this 

research, we focused on and implemented YOLOv9c using the ultralytics framework. 

 

We chose the YOLOv9c model because it significantly improves upon previous YOLO versions in several 

areas, including the following: 

• Programmable Gradient Information (PGI): Designed to combat information loss in deep neural 

networks, PGI aids in preserving essential data across the network. This ensures reliable gradient 

generation, enhancing model convergence and overall performance. 

• Reversible Functions: These are vital for maintaining an uninterrupted flow of information within deep 

learning models. By leveraging reversible functions, YOLOv9c prevents information degradation, 

particularly in the network's deeper layers, ensuring the preservation of critical data for accurate object 

detection. 

• Generalized Efficient Layer Aggregation Network (GELAN): YOLOv9c includes the Generalized 

Efficient Layer Aggregation Network (GELAN), an architectural breakthrough that allows for better 

parameter utilization and computational efficiency. Because of its flexible design, which enables the 

integration of different computational blocks, the model is applicable to a variety of scenarios without 

compromising accuracy or speed. 

Together, these features—PGI, Reversible Functions and GELAN—enable YOLOv9c to achieve 

exceptional accuracy, efficiency, and adaptability in real-time object detection, setting new benchmarks in the 

field. 

 

In classification of medical images, there are many advantages and benefits to using YOLO: 

• Real-time Detection: Yolo makes it possible to quickly spot anomalies in medical images, which 

speeds up diagnosis and treatment preparation. 

• Accurate Object Localization: YOLO helps with precise diagnosis by precisely localizing 

abnormalities in addition to classifying them. 

• Multi-class handling: the ability to identify and categorize several medical disorders from an image. 

• Effective Single-pass Method: YOLO's single-pass architecture improves computational efficiency 

and speed, making it perfect for big datasets of medical images. 

• Adaptive Transfer Learning: YOLO uses a limited amount of labelled data to adapt general image 

features to medical specific images by using pre-trained models for extracting features. 

 

The two primary parts of the YOLOv9c architecture are the head and the backbone, each of which is 

essential to the overall object detection procedure. 

 

The key purpose of the backbone is to figure out crucial features from the input image. It begins with an 

initial placeholder layer that sets the foundation for subsequent operations. Following this, the architecture 

employs two convolutional down sampling layers, with the first down sampling the input image by a factor of 

two and the second further reducing its size. These down sampling stages are crucial for extracting hierarchical 

features of different scales from the input. Subsequently, the architecture incorporates the ELAN-1 block, a 

component that leverages the GELAN architecture to process the extracted features. This block is followed by 

an average and convolutional down sampling layer that further refines the feature map. The backbone then 

employs two ELAN-2 blocks, each with its specific channel configurations, to perform more intricate feature 

extraction and processing. Each of these blocks is followed by an average and convolutional down sampling 

layer, further reducing the feature map size, and enhancing its representational power. 
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Figure 2 The architecture of YOLOv9c 

 

The head of the YOLOv9 architecture processes the features extracted by the backbone to perform object 

detection. It begins with the ELAN-SPP block, which integrates the GELAN architecture with Spatial Pyramid 

Pooling (SPP) to capture features at multiple scales and improve the model's capacity to detect objects of 

varying sizes. This block is followed by an up sample and concatenation operation, which up samples the 

feature map and merges it with the corresponding feature map from the backbone. The head then incorporates 

two more ELAN-2 blocks, each with specific channel configurations, to perform further feature extraction and 

processing. The feature maps generated by these blocks are then averaged, down sampled, and fused with the 

features from the auxiliary branches at P4 and P5 levels. Finally, the detection head, using the features from 

both the backbone and the head, performs the final object detection, categorizing objects into the specified 

number of classes. 

 

In summary, the backbone focuses on feature extraction and down sampling, extracting hierarchical and 

intricate features from the input image. In contrast, the head further refines these features, performs additional 

feature extraction, and carries out the final object detection, ultimately providing the final object detection 

results with improved accuracy and efficiency. The architecture of YOLOv9c is show in Figure 2. 

 

The YOLOv9c model can perform the following tasks on unseen brain MRIs after it has been trained: 

• Determine whether a brain tumor is present and where it is (i.e., localize). 

• Identify the type of tumor: meningioma, glioma, or pituitary. 

• Assign a tumor type probability. 

IV. EXPERIMENTAL SETUP AND ANALYSIS 

In this section, we present the experimental setup and outcomes of our experimental analysis, showcasing 

the ability of the suggested YOLO model to locate and identify brain tumor. 

 

4.1 Dataset 

For this investigation, a large set of data was used.  Comprising 233 individuals’ 3064 T1-weighted, 

contrast-enhanced MRI images. Three distinct forms of brain cancers were depicted in these images: a 

pituitary tumor (930 slices), a meningioma (708 slices), and a glioma (1426 sections). A total of 2124 images 

were selected at random from each tumor class to ensure a balanced representation. The MATLAB (.mat) 

files that collectively make up the dataset have a struct that has fields for each individual image. The MRI 

image data is stored in cjdata.image, cjdata.PID represents the patient ID, cjdata.tumorBorder stores the 
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coordinates of discrete points outlining the tumor border, and cjdata.tumorMask is a binary image 

delineating the tumor region with 1s. These fields include cjdata.label, which indicates the tumor type with 

values 1 for meningioma, 2 for glioma, and 3 for pituitary tumor. 80% of the dataset is used for training, 

10% for validation, and the remaining 10% for testing to ensure a strong and all-encompassing framework 

for brain tumor localization and detection during model training and evaluation. The original source of the 

dataset was Figshare. In Figure 3, some example  brain MRIs has been shown. 

 

 
Figure 3 Brain MRIs with tumor 

 

4.2 Data Preprocessing and Annotation 

The original images in the dataset are of dimensions 512x512 pixels. To ensure compatibility with the 

training model, all images were resized to 640x640 pixels. 

 

Each MRI image was annotated by delineating bounding boxes around the detected tumors. We 

employed the LabelImg tool, a specialized tool for data annotation tasks, to carry out this process. The 

annotations for each image were saved in .txt file format. 

 

Each.txt file in the YOLO annotation format corresponds to an image and has a line for each object 

found in that image. The object class, the normalized height and width of the box, and the normalized x and 

y coordinates of the box's center make up the five space-separated values that make up the structure of the 

line. The integer indices for the object classes in the brain tumor detection task are as follows: 0 for pituitary, 

1 for meningioma, and 2 for glioma tumor. 

 

4.3 Model Training 

 

 
Figure 4 Training batch 1 image. 

 

In this study, we employed the Ultralytics YOLOv8.2.2 framework, implemented using Python 

version 3.10.12 and Torch version 2.2.1+cu121, for the task of object detection. The model was trained on 

an NVIDIA L4 GPU with 22,700MiB of memory and was configured using the yolov9c.yaml model 

configuration. The model was trained using a batch size of 32 on 500 epochs during the training phase and 

was trained on images resized to 640x640 pixels. The model utilized CUDA device 0 with 8 workers for 

data loading and processing (workers=8). To reduce overfitting, the optimization was carried out with the 

SGD algorithm at a momentum of 0.9, weight decay of 0.0005, and learning rate of 0.01. The initial three 

epochs were utilized for warm-up to stabilize the learning process. To ensure a balanced loss function, the 

following loss weights were incorporated: a box loss weight of 7.5, a class loss weight of 0.5, an objectness 

loss weight of 1.5 (DFL Loss), a pose loss weight of 12.0, an object loss weight of 1.0 (Kobj Loss), and a 

label smoothing of 0.0. 
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The training dataset comprised a collection of labelled images, while the validation set was distinct 

and utilized for assessing model performance. To enhance the robustness of the model, various data 

augmentation techniques were applied. These included HSV adjustments with h=0.015, s=0.7, and v=0.4, 

as well as 0.1 translation, 0.5 scaling, and a 0.4 erasing factor. The training process involved the use of 

Automatic Mixed Precision (AMP) to accelerate training while maintaining model accuracy. Additionally, 

the training process featured plotting and validation functionalities, with a confidence threshold set at 0.7, 

an IoU threshold of 0.7, and a maximum detection limit of 300. The validation set consisted of 211 images. 

The model architecture was detailed with 618 layers, 25,531,545 parameters, 25,531,529 gradients, and an 

operation efficiency of 103.7 GFLOPs. 

 

Due to the lack of improvement seen in the final 100 epochs, early stopping was used, ending the 

training at 285 epochs. 

 

4.4 Result 

 
Figure 5 Result 

 

The training process was stopped early because there was no progress seen in the final 100 epochs; 

epoch 185 produced the best results. In 4.529 hours, the 285 epochs of training were finished. 

 

The validation of the best model (best.pt) was performed using the Ultralytics YOLOv8.2.2 framework, 

with the following summary: a fused architecture of 384 layers, 25,321,561 parameters, 0 gradients, and 

an operation efficiency of 102.3 GFLOPs. For the overall detection performance on the validation set 

comprising 211 images, the model reached a precision (P) of 0.871, recall (R) of 0.868, mAP50 of 0.906, 

and mAP50-95 of 0.529. When evaluated on individual classes, the Pituitary class showed a precision of 

0.852, recall of 0.870, mAP50 of 0.900, and mAP50-95 of 0.492. The Meningioma class exhibited a 

precision of 0.955, recall of 0.986, mAP50 of 0.991, and mAP50-95 of 0.648. Lastly, the Glioma class 

had a precision of 0.804, recall of 0.750, mAP50 of 0.827, and mAP50-95 of 0.447. The processing speed 

per image during inference was recorded at 9.7ms, with 0.2ms for preprocessing and 1.4ms for post-

processing. 

 

Table 4.4 Model Performance 

Metric Overall Pituitary Meningioma Glioma 

Precision 

(P) 

0.871 0.852 0.955 0.804 

Recall (R) 0.868 0.870 0.986 0.750 

mAP50 0.906 0.900 0.991 0.827 

mAP50-95 0.529 0.492 0.648 0.447 

 

In Figure 5, the first plot, known as the Box plot, depicts the trend of the box loss metric during training 

for brain tumor localization and classification into Pituitary, Meningioma, and Glioma. The plot shows 

the training steps, with the epochs on the x-axis and the loss values on the y-axis. In the context of brain 

tumor detection, which involves both the localization and classification of tumors within medical images, 
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bounding boxes are utilized as the primary method for pinpointing the tumor locations. The employed loss 

function calculates the disparity between predicted and true bounding boxes, striving to minimize it across 

epochs for improvement. 

 

In Figure 5, the second plot illustrates the objectness loss specific to the task of brain tumor localization 

and classification into Pituitary, Meningioma, and Glioma. This plot depicts the model's confidence in 

identifying the existence of a tumor within a specified bounding box, known as objectness. Concurrently, 

the class score reflects the likelihood of the tumor belonging to a particular class—Pituitary, Meningioma, 

or Glioma. Multiplying the objectness and class score yields the overall confidence score for each class. 

As training progresses, it is preferable for the objectness to diminish towards zero, indicating the model's 

increasing confidence in precisely localizing the tumors. Thus, the plot delineates the trend of objectness 

scores across epochs during the training phase. 

 

The third plot in Figure 5 focuses on the classification feature of the brain tumor detection task. During 

the training process, this plot highlights the classification of the detected tumors into the specific 

categories of Pituitary, Meningioma, and Glioma. The primary goal of classification is two-fold: firstly, 

to ascertain the presence of a tumor within the image, and secondly, to correctly identify the type of tumor. 

The plot displays the loss associated with this classification, which evaluates the accuracy of classifying 

each predicted bounding box into one of the tumor categories or as "background". For classification tasks, 

the cross-entropy loss is typically used. The plot shows how this loss changes over epochs, reflecting the 

model's learning progress in accurately classifying tumors. 

 

For the validation dataset, trends in box, objectness, and classification losses are displayed in validation 

plots. As the number of epochs rises, we expect these metrics to decline similarly to the training plots. 

The precision and recall metrics for each epoch are plotted in the fourth and fifth plots, Recall and 

Precision, which offer information about the accuracy and completeness of the model in identifying and 

categorizing pituitary, meningioma, and glioma brain tumors. 

 

Precision is measured to assess how well the model predicts positive outcomes when classifying brain 

tumors as Glioma, Meningioma, and Pituitary. It considers false positives, or cases that are mistakenly 

classified as a particular type of tumor. Precision can be calculated as: 

 

Precision = TP / (TP + FP)  (4.1) 

 

In this context, TP represents True Positives, while FP stands for False Positives. 

 

Recall, also known as sensitivity or the true positive rate. Assesses the percentage of real positive brain 

tumor cases – like pituitary, meningioma, and glioma – that the model correctly identified. False negative 

are cases that are mistakenly classified as positive. It takes this into account. Recall can be calculated as: 

 

Recall=TP / (TP + FN)  (4.2) 

 

In this context, TP represents True Positives, while FP stands for False Negatives. 

 

Recall and precision should both trend upward as the number of epochs rises. The graphs showing these 

metrics clearly show the anticipated trend. Notably, when categorising brain tumors into pituitary, 

meningioma, and glioma categories, precision and recall values between 0 and 1 are thought to be ideal. 

The deep learning model has acquired knowledge and performed well in accurately classifying the various 

types of brain tumors, as evidenced by higher values for recall and precision in the last epochs. 

 

A crucial metric for evaluating object detection models' accuracy is Average Precision (AP). It uses 

recall values which varies between 0 to 1 to compute the average precision. This metric is useful for 

assessing the efficacy of object detection algorithms because it provides a thorough analysis of the model's 

functionality at various recall levels. 

 

The composite metric known as Mean Average Precision (mAP) comprises multiple essential elements, 

such as Precision, recall, precision-recall curve, intersection over union (IoU), and average precision (AP). 
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The standardized metric known as IoU is used to assess the overlap between actual and predicted 

bounding boxes. It is calculated as the ratio of two bounding boxes’ union area to intersection area, given 

by the formula: 

 

IoU = Area of Intersection / Area of Union  (4.3) 

 

This measure is essential for assessing how well bounding box predictions perform in object detection 

tasks. 

 

The trade-off between precision and recall across various classification thresholds is illustrated by the 

Precision-Recall curve in Figure 5. This curve provides information about how well the model performs 

at different operating points. 

  

The mean precision, or mAP, is determined at every point on the Precision–Recall curve. It gives an 

overview of the model's general object detection performance. 

. 

The mAP values for two distinct IoU thresholds—0.5 and a range from 0.5 to 0.95—are displayed in 

Table 4.4. The precision obtained by applying an IoU threshold of 0.5 is denoted by mAP@0.5. This 

indicates that the detection is considered successful if there is a greater than 50% overlap between the 

predicted and ground truth bounding boxes. Accurate bounding box detection becomes more difficult as 

the IOU threshold rises. Therefore, compared to mAP@0.5, a higher IOU threshold typically yields a 

lower mAP value, suggesting that accurate bounding box detection will be more challenging to achieve 

with a stricter overlap requirement. 

  

From Table 4.4, the validation results reveal compelling precision and recall metrics. Specifically, the 

overall precision is recorded at 0.871, with the individual class values being 0.852 for Pituitary, 0.955 for 

Meningioma, and 0.804 for Glioma. The overall recall stands at 0.868, distributed as 0.870 for Pituitary, 

an impressive 0.986 for Meningioma, and 0.750 for Glioma. Additionally, the mAP@0.5 demonstrates 

strong performance, registering at 0.906 overall, with class-specific values of 0.900 for Pituitary, 0.991 

for Meningioma, and 0.827 for Glioma. The mAP@0.5:0.95, however, is comparatively lower at 0.529 

overall, with values of 0.492 for Pituitary, 0.648 for Meningioma, and 0.447 for Glioma. 

 

Figure 6 shows the precision-recall plot which provide a closer look at the performance that was attained 

in terms of precision and recall. We can assess the accuracy and comprehensiveness of the model's 

performance by looking at these values. A low false positive rate is indicated by a high precision value, 

and a low false negative rate is implied by a high recall value. As a result, creating an object detection 

model that works well requires striking a balance between recall and precision. 

 

Because precision and recall are inherently trade-offs in object detection tasks, the precision-recall plot 

usually shows a monotonically decreasing trend. Since only the most certain predictions are included, 

increasing the threshold for classification as a positive prediction has the potential to improve precision at 

the expense of recall. Conversely, by including more false positives, recall may rise if the threshold is 

lowered to incorporate more predictions at the expense of decreasing precision. However, there may be 

anomalies to this pattern brought about by things like imbalances in the classes, anomalies, or peculiarities 

in the dataset. Even though a monotonically declining trend is typical, each situation calls for a careful 

examination of the unique characteristics of the precision-recall graph. 
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Figure 6 Precision-Recall curve 

 

Examining Figure 6, the precision-recall plot indeed showcases a decreasing trend, aligning with the 

typical behaviour expected. The following are the area under the curve (AUC) values for the precision-

recall curve associated with brain tumor detection: Meningioma (0.991), Glioma (0.827), Pituitary 

(0.900), and an overall average (0.906) (with an AUC mAP@0.5).  

 

 
Figure 7 Normalized confusion matrix 

 

Figure 7 displays the normalized confusion matrix for the YOLO model, offering insights into its 

performance across classes and identifying misclassification patterns to guide model refinement in object 

detection tasks. We can confirm the model's efficacy in identifying and localizing brain tumors, as well 

as differentiating between tumor types and the brain background, based on the normalized confusion 

matrix. The predicted classes are represented by the columns in the YOLO confusion matrix, which have 

been normalized to add up to 1. Specifically, the classes are the various tumor types (Pituitary, 

Meningioma, Glioma) and the brain background, with the latter not being predicted by the model 

according to YOLO developers. 

 

4.5 Prediction Example 

To illustrate how the suggested approach can be used in practice, Figure 8 illustrates the results of 

processing sixteen brain images with the proposed model, where bounding boxes are automatically added 

to highlight areas associated with cancer. A prediction percentage is also included for each bounding box, 

enabling an evaluation of the model's confidence in its predictions. 

The figure demonstrates that the model can generalize the identification of brain tumors across various 

sizes and types, accurately identifying cancerous areas irrespective of their size, coloration, or the 

surrounding area. The tumors, classified into Pituitary, Meningioma, and Glioma, are depicted in different 

shades, including white, grey, or a combination of both. This showcases the model's robust ability to 

effectively identify cancerous regions with diverse characteristics and classify them into specific tumor 

types. 
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Figure 8 Processed MRI images by trained YOLO 

 model. 

 

V. CONCLUSION 

In this study we evaluated the efficiency of the object detection model known as You Only Look Once, or 

YOLO for MRI image-based brain tumor localization and classification. Utilizing a dataset of 3064 MRI 

images from 233 patients with three primary brain tumor types, the Ultralytics YOLOv8.2.2 framework 

demonstrated strong performance. Within the validation dataset, the model attained a precision (P) of 0.871, 

recall (R) of 0.868, mAP50 of 0.906, and mAP50-95 of 0.529. Individual class performance was also notable: 

Pituitary (P: 0.852, R: 0.870), Meningioma (P: 0.955, R: 0.986), and Glioma (P: 0.804, R: 0.750). The 

precision-recall curve analysis validated the model's robustness, with an average precision (AP) of 0.906. The 

YOLO model effectively distinguished between various brain tumors and background, as shown in the 

normalized confusion matrix. Practical application on sixteen brain images confirmed the model's ability to 

identify diverse cancerous regions accurately.  

In summary, the YOLO object detection model presents a viable automated method for identifying and 

categorizing brain tumors in magnetic resonance imaging.  These findings suggest its potential to aid 

clinicians in precise diagnosis, contributing to improved treatment planning and patient outcomes. Further 

research on larger datasets is recommended to enhance the model's clinical applicability and reliability. 
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