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Abstract:  AI Rotoscoping is a transformative project that introduces cutting-edge artificial intelligence 

(AI) technologies to revolutionize the traditional rotoscoping process in video animation. Rotoscoping, a 

fundamental aspect of animation and visual effects, involves meticulously tracing objects frame by frame in live-

action footage to create compelling animations. However, this process is notorious for its time-consuming and 

labor-intensive nature, often impeding the efficiency and creativity of animators. Our project addresses these 

challenges by integrating advanced AI algorithms to automate and enhance the rotoscoping workflow. The AI 

Rotoscoping system employs deep learning models to intelligently track and separate objects from the 

background in video frames, significantly reducing the manual effort required in the traditional rotoscoping 

process. This innovative approach empowers animators and visual effects artists to allocate more time and energy 

to creative aspects rather than getting bogged down in meticulous frame-by-frame detailing. Key features of the 

AI Rotoscoping project include precise object segmentation, leveraging state-of-the-art computer vision 

techniques. The system employs advanced motion tracking algorithms to ensure accurate object movement 

across frames, maintaining consistency and improving overall workflow efficiency. Semantic understanding is 

incorporated into the AI model to distinguish between various elements in the scene, reducing errors and 

enhancing the accuracy of the rotoscoping process. 

 

 

Index Terms - Rotoscoping, Video Segmentation, Manifold Models, Shape. 

 

 

I. INTRODUCTION 

          AI rotoscoping utilizes artificial intelligence algorithms to automate the process of creating matte images 

or masks that isolate objects in video footage. By leveraging machine learning techniques, AI rotoscoping 

accelerates the tedious manual tracing process, allowing for efficient and accurate segmentation of foreground 

elements from the background. This technology enhances productivity in visual effects and animation 

production, enabling artists to focus on creative tasks while achieving high-quality results in less time. AI 

rotoscoping offers a promising solution for streamlining post-production workflows and improving the 

efficiency of compositing tasks in the film, television, and animation industries. In the realm of visual effects 

and animation, the process of rotoscoping stands as a critical and intricate task, demanding precision and 

efficiency in isolating objects or characters from their background. As technology continues to evolve, the 

integration of artificial intelligence (AI) into rotoscoping workflows has emerged as a transformative frontier, 

promising to redefine the very essence of this intricate craft. This project embarks on the ambitious journey of 

developing an AI-driven rotoscoping system, leveraging advanced neural network architectures and innovative 

techniques to surpass the limitations of conventional approaches. The motivation for this endeavor stems from 

the recognition of the challenges inherent in traditional rotoscoping methods, which often entail labor-intensive 
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manual processes and may struggle with the complexities of diverse scenes, intricate motion patterns, and 

varying lighting conditions. By harnessing the power of AI, specifically tailored for rotoscoping tasks. 

        AI rotoscoping revolutionizes the labor-intensive task of creating matte images or masks in video editing 

and animation by harnessing the power of artificial intelligence (AI). Traditionally, rotoscoping involves 

manually tracing over objects frame by frame to isolate them from the background. This process is time-

consuming and requires significant human effort. However, with advancements in AI and machine learning, 

automated rotoscoping algorithms have emerged, promising to streamline the workflow and improve 

efficiency in visual effects and animation production. AI rotoscoping algorithms leverage deep learning 

techniques to analyze video footage and automatically generate matte images that accurately separate 

foreground elements from the background. These algorithms are trained on large datasets of annotated videos, 

learning to recognize and segment objects based on their visual characteristics such as color, texture, and 

motion. 

        By learning from examples, AI rotoscoping models can generalize their understanding of object 

boundaries and produce precise matte images with minimal human intervention. In addition to its efficiency 

and versatility, AI rotoscoping seamlessly integrates into existing post-production workflows, offering a user-

friendly interface that streamlines the adoption process for industry professionals. Many AI rotoscoping tools 

are available as standalone applications or integrated modules within popular video editing and animation 

software, facilitating effortless incorporation into established pipelines. 

        However, despite its transformative potential, AI rotoscoping is not without its challenges. Complex 

scenes featuring overlapping elements or intricate motion patterns may pose difficulties for AI algorithms, 

necessitating human intervention to ensure optimal results. Furthermore, the acquisition of annotated training 

data presents a significant hurdle, as it requires considerable time and resources to compile datasets of sufficient 

quality and diversity. 

        Nonetheless, as AI rotoscoping continues to evolve, these challenges are expected to diminish, paving the 

way for even greater advancements in the field of video editing and animation. In summary, AI rotoscoping 

represents a monumental leap forward in the quest for efficiency, accuracy, and creativity in visual effects and 

animation production, promising to revolutionize the way artists approach the creation of matte images and 

masks in the digital age 

      Delving into the intricacies of data preparation, model architecture, and real-time processing optimization, 

we aim to provide a holistic understanding of the project's multifaceted approach. The integration of contour 

detection algorithms, such as the renowned Canny edge detector, adds an extra layer of sophistication to the 

AI rotoscoping system, enhancing its ability to capture detailed object boundaries with finesse. As we navigate 

through the technical intricacies, the user-centric design philosophy of the project takes center stage. A user 

interface that seamlessly integrates the prowess of AI with the creativity of human artists is envisioned, 

fostering a collaborative workflow that empowers users to interact, provide feedback, and actively participate 

in the refinement of the rotoscoping process. The project's commitment to ongoing testing, validation, and user 

support underscores its dedication to delivering not just a technological solution but a practical and user-

friendly tool that resonates with the diverse needs of industry professionals. Against the backdrop of the ever-

evolving landscape of visual content creation, this AI-driven rotoscoping project emerges as a beacon of 

innovation, seeking to push the boundaries of what is achievable in the intricate realm of object isolation and 

motion tracking. The project's significance lies not only in its technical advancements but in its potential to 

liberate artists and content creators from the constraints of time-consuming manual processes, unlocking new 

dimensions of creative expression. As we venture deeper into the project's core methodologies, the fusion of 

artificial intelligence with contour detection algorithms takes center stage. The inclusion of the renowned 

Canny edge detector is not merely an enhancement but a strategic choice to imbue the AI system with an acute 

awareness of object boundaries, breathing life into the minutiae of visual elements. This synergy of 

technologies is poised to redefine the very essence of how we perceive and execute rotoscoping, promising a 

leap forward in terms of precision, adaptability, and the seamless integration of AI into the creative process. 

Furthermore, this project stands at the intersection of technological prowess and human intuition. It is not 

merely about automating a process but about crafting a tool that resonates with the artistic sensibilities of those 
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who wield it. The envisaged user interface becomes a canvas where the marriage of AI sophistication and 

human creativity is celebrated, offering an intuitive space for collaboration and iterative refinement. The 

collaborative workflow, empowered by the project, transforms the traditional paradigm, placing the artist in 

the driver's seat with AI as a capable and adaptable co-pilot. This AI-driven rotoscoping project aims to 

revolutionize the visual effects and animation industries by seamlessly integrating advanced artificial 

intelligence techniques, including contour detection algorithms like the Canny edge detector, into the 

rotoscoping workflow. The primary goal is to address the limitations of traditional rotoscoping methods, such 

as labor-intensive manual processes and challenges in handling diverse scenes and complex motion patterns. 

The project's foundation lies in a robust dataset that encompasses a wide spectrum of scenes, lighting 

conditions, and motion patterns. By leveraging deep learning architectures tailored for semantic segmentation, 

such as U-Net or DeepLab, and incorporating contour detection algorithms, the project seeks to achieve a new 

level of precision in separating foreground elements from their backgrounds. 

 

 
 

                    Figure1. Sample image                Figure2. Rotocoped image 

Rotoscoping is a technique used in animation and visual effects to trace over live-action footage frame by 

frame. It involves manually creating a matte or mask around objects or characters in a video to separate them 

from the background. This process allows for the integration of animated elements or special effects into live-

action scenes. Rotoscoping can be used for various purposes, including character animation, adding visual effects 

like explosions or creatures, or even for stylistic effect in filmmaking. Traditionally done by hand, rotoscoping 

is labor-intensive and time-consuming, requiring skilled artists to ensure accuracy and quality. However, 

advancements in technology, such as AI and machine learning, are being utilized to automate or assist in the 

rotoscoping process, speeding up production while maintaining precision. Despite technological advancements, 

rotoscoping often requires a combination of automated tools and manual refinement to achieve the desired results, 

blending the efficiency of automation with the artistic touch of human intervention.   

 Matte images and color grading Rotoscoping is a technique used in animation and visual effects to 

create matte images or masks that isolate specific elements within a scene. Matte images produced by rotoscoping 

serve as a fundamental component in compositing, allowing artists to separate foreground objects from the 

background and manipulate them independently. In rotoscoping, artists trace over live-action footage frame by 

frame to create precise outlines of objects or characters. This manual process ensures accurate delineation of 

complex shapes and movements, resulting in high-quality matte images. These mattes define the areas where 

visual effects or animations will be applied, enabling seamless integration of computer-generated elements with 

live-action footage. Matte images generated through rotoscoping are typically black and white, with the 

foreground object represented in white and the background in black. This binary representation simplifies the 

compositing process, as it provides a clear distinction between the foreground and background elements. 

The accuracy and detail of matte images produced by rotoscoping are crucial for achieving realistic visual 

effects. By precisely defining the boundaries of objects, rotoscoped mattes allow for precise adjustments in 

lighting, color grading, and special effects. They also facilitate complex visual manipulations, such as object 

removal, replacement, or enhancement, while maintaining the integrity of the original scene. Rotoscoping is a 

labor-intensive process that requires skilled artists to ensure smooth and accurate outlines, especially for scenes 
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with intricate motion or fine details. While advancements in software tools have automated certain aspects of 

rotoscoping, the human touch remains essential for achieving high-quality results.Overall, matte images 

produced by rotoscoping play a vital role in the post-production pipeline, enabling filmmakers and animators to 

seamlessly blend live-action footage with digital elements to create compelling visual experiences. Through 

meticulous tracing and refinement, rotoscoped mattes provide the foundation for realistic and immersive 

storytelling in film, television, and other visual media. 

 
                          Figure 3.Matte image        Figure 4.color grading    

Color grading through rotoscoping is a technique used to selectively apply color adjustments to specific 

elements within a scene. Unlike traditional color grading methods that affect the entire image uniformly, 

rotoscoping allows for precise control over color correction and enhancement by isolating individual objects or 

characters.In the context of color grading, rotoscoping involves creating matte images or masks that define the 

areas where color adjustments will be applied. Artists manually trace over the elements of interest frame by 

frame, ensuring accurate delineation and preserving fine details. These matte images serve as guides for applying 

targeted color grading effects, allowing for nuanced adjustments tailored to specific parts of the scene. 

Rotoscoping-based color grading offers several advantages over conventional methods. Firstly, it enables 

selective color manipulation, allowing artists to enhance or alter the appearance of particular objects or characters 

without affecting the entire image. This level of control is particularly useful for emphasizing focal points, 

enhancing visual storytelling, or achieving stylistic effects. Additionally, rotoscoping facilitates complex color 

grading tasks that may be challenging or impractical to achieve with traditional techniques. For example, artists 

can isolate moving objects against dynamic backgrounds and apply customized color treatments to enhance their 

visibility or integrate them seamlessly into the scene.  

Furthermore, rotoscoping-based color grading allows for precise adjustments in situations where 

automated or global color grading algorithms may produce undesirable results. By manually defining the 

boundaries of objects, artists can ensure that color corrections are applied only to the intended areas, minimizing 

artifacts and preserving visual coherence. However, it's important to note that rotoscoping for color grading is a 

labor-intensive process that requires time, skill, and attention to detail. Artists must meticulously trace each frame 

to achieve smooth outlines and accurate matte images, which can be particularly challenging for scenes with 

complex motion or fine details.In summary, color grading through rotoscoping offers a powerful method for 

selectively enhancing and manipulating the colors of specific elements within a scene. By providing precise 

control over color adjustments, rotoscoping-based color grading enables artists to achieve tailored visual effects 

and enhance the overall impact of their work. This AI-driven rotoscoping project aims to revolutionize the visual 

effects and animation industries by seamlessly integrating advanced artificial intelligence techniques, including 

contour detection algorithms like the Canny edge detector, into the rotoscoping workflow. 

   

 

II.  LITERATURE SURVEY 

 The research paper by Luis Bermudez and team [1] proposes an innovative method for enhancing the 

rotoscoping process in multi-shape systems through a learning-based approach. The focus of the research is on 

developing parametric models that can adapt to the complexities of multiple shapes within a given scene. The 

approach incorporates machine learning techniques to automatically learn and refine parameters, improving the 

accuracy and efficiency of the rotoscoping process. By leveraging this learning-based strategy, the paper 
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introduces a more adaptive and automated solution for handling intricate shapes in visual content, contributing 

to advancements in the field of rotoscoping. 

 The research paper by Wenbin Li and team [2] introduces an innovative framework, Roto++, designed to 

expedite and enhance the professional rotoscoping process. The key focus is on leveraging shape manifolds, 

mathematical representations of shapes, to accelerate the rotoscoping workflow. The proposed method aims to 

reduce the manual effort involved in tracing complex shapes by providing automated tools that exploit the 

underlying structure of the shapes. Through the integration of shape manifolds and advanced optimization 

techniques, Roto++ offers a more efficient and accurate solution for professional rotoscoping, ultimately 

contributing to increased productivity and improved results in visual content production.  

The research paper by John Canny [3] explores methods and techniques for edge detection in images using 

a computational approach. The focus is on identifying boundaries within images by detecting abrupt changes in 

intensity. The paper delves into various computational algorithms, such as the Canny edge detector, and evaluates 

their effectiveness in accurately locating edges. Additionally, it discusses the significance of parameter tuning 

and the trade-offs involved in edge detection algorithms. The research contributes to the understanding of 

computational strategies for edge detection, providing insights into the challenges and considerations in 

implementing these techniques for image analysis and computer vision applications. 

The research paper by Aseem Agarwala, Aaron Hertzmann, David H. Salesin, and Steven M. Seitz [4] 

explore keyframe-based tracking techniques specifically tailored for rotoscoping and animation tasks. 

Rotoscoping involves tracing over live-action film footage to create animated sequences, while animation 

involves creating movement and actions in digital environments. Keyframe-based tracking is crucial for 

accurately capturing the motion and nuances of objects or characters in these processes. Keyframes are pivotal 

frames selected by animators to represent significant moments in motion sequences. 

The research paper by Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang [5] explores methods and 

techniques to propose a deep learning framework for human pose estimation that achieves high-resolution 

representation learning. Human pose estimation involves predicting the skeletal pose of a person from an image 

or video, which is crucial for various applications such as action recognition, human-computer interaction, and 

surveillance. It discusses the challenges associated with accurately estimating human poses from images or 

videos, including occlusions, complex poses, and variations in scale and viewpoint. 

The research paper by Xuehan Xiong and Fernando De la Torre [6] explores methods and techniques to 

introduce and demonstrate the effectiveness of the Supervised Descent Method (SDM) for face alignment. Face 

alignment involves the process of locating facial landmarks, such as eyes, nose, and mouth, in images, which is 

a fundamental task in computer vision with applications in face recognition, facial expression analysis, and 

augmented reality. It discusses the challenges associated with accurately localizing facial landmarks in images, 

including variations in pose, illumination, and facial expressions. SDM is a cascade regression technique that 

learns a sequence of descent directions from annotated training data to iteratively refine the initial estimate of 

facial landmarks. 

The research paper by Shizhan Zhu, Cheng Li, Chen-Change Loy, and Xiaoou Tang[7] explores methods 

and techniques to address the challenge of unconstrained face alignment, which involves accurately locating 

facial landmarks in images with varying poses, expressions, and lighting conditions. Face alignment is a 

fundamental task in computer vision with applications in face recognition, facial expression analysis, and 

augmented reality. It discusses the challenges associated with accurately localizing facial landmarks in 

unconstrained settings, such as large pose variations and occlusions. This hierarchical approach allows the model 

to capture both global and local variations in facial appearance. The research contributes to the understanding of 

computational strategies for edge detection, providing insights into the challenges and considerations in 

implementing these techniques for image analysis and computer vision applications. 
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III. PROPOSED METHOD 

3.1 DESIGN  
 

We designed a new tool to work with artists to accelerate the rotoscoping workflow while also 

overcoming some of the main limitations and respecting the artists’ requirements. 

 Tracker Drift Tracking is known to reduce required keyframe count when it works well but the most 

common failure mode is for the tracker to drift in difficult situations. This yields roto-shapes which depart 

significantly in shape from the edited keyframes. The strong regularization of Agarwala et al. [2004] can help to 

prevent drift but limits the output to smooth interpolations of the keyframes. 

 Manifold Shape In order to get over this restriction, we suggest combining the tracker's output with a 

strong prior on the potential roto-shapes. From the artist's existing keyframes, we derive a statistical shape model. 

We then constrain the intermediate frames to be as close to the tracker output as possible while still being valid 

shapes from the shape model. This implies that the user will still see satisfactory results even if the tracker output 

deviates from the range of acceptable roto-shapes. Our shape model gets more and more accurate as the user adds 

more keyframes, which leads to increasingly better estimations for the intermediate roto-shapes. This model is 

represented as a low-dimensional, generative manifold. The original keyframes are points in this space and our 

hypothesis is that other regions of the manifold will generate distinct but similar shapes that are likely to include 

the correct shapes for the intermediate frames. Figure 3 provides an illustrative example of our shape manifold. 

A 2D manifold has been embedded with the roto-curve defining the lower arm, and the highlighted spots 

correspond to the locations that produce the distinct roto-shape in each frame. The line connecting the points 

together denotes the passage of time from frame to frame.  

Choice of Manifold Model We use a Gaussian Process Latent Variable Model (GP-LVM) [Lawrence 

2005] as part of our global model of the joint probability between the control points both within and between 

frames since it is generative, Bayesian and non-linear. Previous approaches only regularise trackers with local 

proxies such as smoothing over neighboring keypoints in time and space. Linear subspace models, such as ASMs, 

are trained with a large dataset. Since non-linearity is known to capture more variance in fewer dimensions, our 

strategy, which benefits from being Bayesian, is aimed at a small number of training samples (the keyframes) 

[Prisacariu and Reid 2011]. Our model actually subsumes linear models and is more general. Other models, such 

as [Agarwala et al. 2004], are neither Bayesian nor generative and therefore cannot be used to provide user 

suggestions or the intelligent drag tool. 

 Keyframe Recommendation Another advantage of constraining our predicted roto-shapes to come from 

our shape model is that we can identify frames when the tracking result departs heavily from our shape model. 

This could mean one of two things, either the tracker has drifted and needs to be reinitialized, or the shape model 

is not sufficiently well-defined to include all the valid shapes. Thankfully, both of these situations are remedied 

by the user labelling the frame as a keyframe. To make use of this result, we provide the artist with helpful 

feedback. We suggest which keyframe will most help the most to improve the tracker, the shape model, or both 

to produce better interim shapes.  

To update the shape manifold it is necessary to know when a new keyframe is added. We therefore asked 

the user to formally specify when they have finished editing a keyframe. When a new keyframe is added, the 

shape model is updated and the tracker is recalculated, all in realtime. This improves the unedited curves and 

updates the frame recommendation. 

 

3.2  User Interface 

    

We implemented an interactive tool, Roto++, to evaluate our approach, as shown in Figure 4. The interface aims 

to provide a familiar look and feel to existing tools while adding our advanced functionality behind the scenes 

Our Bezier curve based tool is made up of ´ of a Timeline, a Design View, and a number of Roto and Design 

Tools combined. 

   • Design Tools: a common subset of curve-drawing operations of leading commercial software. 
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  • Timeline: a thumbnail-sized view of the shot. Color coding on a thumbnail’s border shows the status of that 

frame. We also use this view to indicate to the artist our recommendation for the next frame to edit to improve 

the result. 

  Instrumentation To provide a detailed evaluation of our method, the tool is highly instrumented to 

maintain a detailed log of all the user operations performed down to the level of individual mouse operations. 

Accurate timestamps were recorded allowing us to determine the time spent performing different operations. We 

also logged the current state of the roto-curves periodically to allow us to determine the accuracy of the roto 

output as a function of artist time expended. 

 

 

 

 
 

 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

3.3 Interactions 
 

 The features presented in Section 3.1 aim to reduce the number of key frames that an artist needs to supply 

to produce an accurate output. While this is clearly advantageous, it is only half the story. Furthermore, we 

would like to spend less time labeling each key frame in order to increase efficiency even more. Beating the 

baseline is a challenging task since artists are highly trained and have, in many cases, years of experience 

using these techniques. Furthermore, they have exacting requirements on interaction the most relevant are the 

need for intuition and instantaneous feedback combined with predictable results that do not corrupt previously 

edited results. The limiting factor on the editing time of a key frame for baseline methods occurs when 

deformable shape changes occur that cannot be accurately tracked. In most cases, the artist is then forces to 

edit the roto-curve control points or tangent vectors in small groups or individually. This can require a very 

large number of mouse operations to select the points in turn and move them to their correct locations. 

 Intelligent Drag Mode To assist with this editing, we can once again exploit our shape manifold. Once 

the manifold has been trained, new shape proposals can be generated very efficiently from locations on the 

manifold. This means that we can generate new sets of plausible shapes to match any input from the user. As 

the user selects a point on the curve and drags it, our solver uses the manifold to suggest the new best fitting 

shape in real time.  

Figure3: An example manifold for the arm roto sequence. 
As we move across the manifold the shape of the arm 
changes smoothly. Even though the roto-curve contains 
87 control points (to account for the ripples in the shirt) 
the sequence can be perfectly recovered from a 2D shape 
manifold. (Note: we observe a complete change in object 
appearance as the character moves from light to 
shadow; this sort of sequence represents a significant 
challenge to techniques that track edges or make use of 
color models). 

 

Figure 4: A screenshot of our interactive tool Roto++. 

This user interface consists of a design view, design tools, 

roto tools and a timeline. This timeline encodes our frame 

selection feedback by using colored borders. A full user 

guide to our tool is included in the supplemental material 

Design View 
Main design Zone 

Sniper View 
10X zoom in 

Timeline 
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We give the artist additional freedom when using Roto++ by allowing them to first choose which control 

points on the curve they want to update. The other points will remain fixed ensuring the requirement that if a 

user is happy with part of the outline, another editing operation will not corrupt it. Once the points to move 

are selected, they can be dragged to a new location. In real time we run a cut-down version of our tracking 

solver which replaces the tracker result with the new curve location under the drag operation and then solves 

for the new shape recommended by the manifold. Figure 1 shows the same result achieved by a large number 

of control point moves being performed in a single operation with our intelligent drag tool. The operation of 

the tool is perhaps more clearly demonstrated in the video included in the supplemental material. 

 

 

IV. Technical Approach  

 

 In this section we describe how we implement the new features in our Roto++ tool described in Section 3. 

We first describe the notation used throughout this section. Subsequently we detail how we obtain our shape 

manifold from a set of keyframes edited by the artist. We then provide details on how to combine our shape 

manifold with an existing tracker to create the Roto++ solver that estimates the roto-shapes for the unlabeled 

frames. Finally we show how this solver may be used to provide the intelligent drag tool. 

 

4.1 Notation  

In Appendix A details the notation used in this section. Throughout, we assume that we are operating on a 

single, closed roto-curve in a single shot. Our results can be applied in parallel to multiple roto-curves in a straight 

forward fashion. We also assume that there is no distinction between an interpolation control point and an tangent 

control point on a Bezier curve. Our closed roto-curves ´ are made up of a closed sequence of cubic Bezier curves, 

each of ´ which contains 4 control points with the last control point of the curve forming the first control point of 

the subsequent curve. The kth keyframe spline is denoted Uk where 

 

                                                      𝑈𝑘 = [
𝑈𝑥1,

𝑘 𝑈𝑥2,
𝑘 𝑈𝑥3,

𝑘 … … 𝑈𝑥𝑛,
𝑘

𝑈𝑦1
𝑘 , 𝑈𝑦2

𝑘 , 𝑈𝑦3
𝑘 … … 𝑈𝑦𝑛

𝑘 ] 

 
 

 This is seen in Appendix A's Figure 13. The output splines are given as {Yn}. Note that for 

consistency, we enforce that Yk = Uk for all keyframes k; we would like to produce good estimates for the 

remaining output splines. All the keyframe splines must have the same number of control points (M). This is 

straight forward to maintain; if the artist would to add a new control point on any keyframe, the appropriate 

Bezier ´ curve is subdivided at the same parametric location in all other keyframes. The manifold may then be 

recomputed with the increased number of control pointsIt is important to note that we need a minimum of two 

keyframes (ideally three) before we can begin to construct a shape manifold. For this reason, the artists are asked 

to produce keyframes for the first and last frame before progressing. This allows the shape model to initialize; 

before these keyframes are present the system operates without the shape. 

 

4.2 Overview 

   Our solver may be broken down into three stages. We first estimate a rotation, translation and scale for each 

key frame spline. We then remove this rigid body transformation to a produce a set of normalized key frame 

splines which are aligned with one another. With our shape manifold, we wish to capture the changes in 

deforming shape, which are now the only variations between the normalized splines.  

 Next, we fit a generative manifold model to the geometry of the normalized key frame splines. 

This model embeds the high dimension spline data (the collection of all the Bezier control points) into ´ a very 

low dimensional space such that every location in the low dimensional space interpolates and extrapolates from 

the key frames to a distinct shape. Furthermore, this low dimensional space is smooth such that smooth changes 

in the manifold space represent smooth changes in the high dimensional splines. Finally, once we have learned 

the manifold model we are able to run our solver. Here, we may use the form manifold and tracking data from 
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any source to create a reliable output with smoothly varying representative shapes for the roto-shapes., even when 

the tracking fails. This allows the user to insert key frames and produce their desired shape quickly, even when 

parts of the spline are unable to track edges or other image features. 

 

 

 

4.3 Keyframe Alignment  

                                                                                                                                                                                                   

We align the keyframe splines by estimating a rotation θk, translation tk, and scale sk for every keyframe. We 

do this to a high degree of accuracy by using an energy model to estimate the transformation and a reference 

shape at the same time as a generalized Procrustes analysis problem. We denote the mean reference spline as R. 

For each keyframe k, our alignment energy is    

 

𝐸𝑎𝑙𝑖𝑔𝑛
(𝑘) (𝑈𝑘 , 𝜃𝑘 , 𝑡𝑘, 𝑠𝑘, 𝑅) = ∑ [[

𝑈𝑥𝑚
(𝑘)

𝑈𝑦𝑚
(𝑘)] − (𝑠𝑘𝑄𝑘 [

𝑅𝑥,𝑚

𝑅𝑦,𝑚
] + 𝑡𝑘)]

𝑀

𝑚=1

 

 

 where Qk is the 2D rotation matrix, 
    

 

𝑄𝑘 = [
cos(𝜃𝑘)     − sin(𝜃𝑘)
sin(𝜃𝑘)        cos(𝜃𝑘)

] 

 

 

 over all keyframes to find the optimal {θk,tk,sk}. We initialize with the mean shape and linear estimates for 

the transformation variables before applying the non-linear least squares Ceres solver directly to Equation 4 

using the Gauss-Newton L-BFGS method. 

 

V.   ALGORITHM AND EXPLANATION  
 

5.1 Canny Edge Detection Algorithm 

 Canny edge detection is a multi-stage algorithm employed in image processing to identify and accentuate 

the edges present within an image. The algorithm begins with a preprocessing step where the image is subjected 

to Gaussian smoothing, using a convolution operation with a Gaussian kernel. This step helps reduce noise and 

unwanted details in the image. 

 Subsequently, the gradient of the smoothed image is computed using convolution with derivative kernels. 

The gradient magnitude and direction for each pixel are then determined. The gradient magnitude represents the 

rate of change of intensity, highlighting areas with significant transitions. Non-maximum suppression is a critical 

step following gradient computation. In this stage, the algorithm examines the gradient magnitudes and retains 

only local maxima along the edges while suppressing non-maximum values. This effectively thins the edges, 

preserving only the most pronounced ones.  

To trace and connect the edges accurately, hysteresis thresholding is employed. Two thresholds, a high 

threshold (strong edge) and a low threshold (weak edge), are utilized. Strong edges are those pixels whose 

gradient magnitudes are higher than the high threshold. Pixels with magnitudes between the high and low 

thresholds are considered weak edges. To ensure connectivity in the final edge map, weak edges are included if 

they are adjacent to strong edges; otherwise, they are suppressed.  

Canny edge detection is highly regarded for its ability to produce well-defined, continuous edges while 

suppressing noise and spurious details. Its adaptability to various imaging conditions, ability to handle complex 

scenes, and capacity to produce thin, accurate edges make it a cornerstone in computer vision and image analysis 

applications, including edge-aware filtering, feature extraction, and object recognition. 

 # defining the canny detector algorithm  

def Canny_detector(img, weak_th = None, strong_th = None) 
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5.2 Fully Convolutional Networks(FCN) 

 

Fully Convolutional Networks (FCNs) are a class of deep learning models mostly employed in computer 

vision applications involving semantic segmentation. Unlike traditional convolutional neural networks (CNNs) 

that are designed for classification, FCNs are tailored for pixel-level prediction tasks, where each pixel in an 

input image is classified into different categories.  

FCNs leverage convolutional layers to process the entire input image and generate output feature maps, 

preserving spatial information. The key innovation of FCNs lies in their ability to produce dense predictions by 

employing transposed convolutions or upsampling techniques to recover spatial resolution. This allows FCNs to 

produce output masks that match the input image dimensions, enabling pixel-wise classification.  

The architecture of FCNs typically consists of an encoder-decoder structure. The encoder comprises 

multiple convolutional and pooling layers, which progressively reduce the spatial dimensions of the input image 

while capturing hierarchical features. This encoder extracts abstract representations of the input image, 

preserving spatial information through feature maps.  

The decoder component of FCNs consists of upsampling layers, sometimes combined with skip 

connections, to recover the spatial resolution of the feature maps produced by the encoder. Upsampling 

techniques like transposed convolutions or interpolation are employed to upscale the feature maps to the original 

input image 3+size. Skip connections, borrowed from architectures like U-Net, connect corresponding encoder 

and decoder layers to preserve fine-grained details during upsampling.  

During training, FCNs are optimized using loss functions tailored for segmentation tasks, such as cross-

entropy loss or variants like Dice loss. These loss functions compare the predicted segmentation masks with 

ground truth annotations, encouraging the model to produce accurate pixel-level predictions.  

FCNs have been widely applied in various computer vision tasks, including image segmentation, object 

detection, and image-to-image translation. Their ability to generate dense predictions makes them particularly 

effective for tasks where precise spatial localization is crucial, such as medical image analysis, autonomous 

driving, and scene understanding.  

One of the notable applications of FCNs is semantic segmentation, where the goal is to classify each pixel 

in an image into predefined categories, such as object classes or semantic regions. FCNs have also been extended 

to handle instance segmentation, where the task involves not only categorizing pixels but also distinguishing 

between different instances of the same category.  

Fully Convolutional Networks have become a powerful and widely used tool for various computer vision 

tasks that require dense prediction at the pixel level. Their ability to preserve spatial information and produce 

output maps with the same spatial dimensions as the input image makes them well-suited for tasks such as 

semantic segmentation, image-to-image translation, and dense object detection. 

In summary, Fully Convolutional Networks (FCNs) are deep learning models designed for pixel-level 

prediction tasks, particularly semantic segmentation. By leveraging convolutional layers and upsampling 

techniques, FCNs can produce dense predictions that preserve spatial information, making them suitable for 

various computer vision applications requiring precise localization and understanding of image content. 

 

VI. EXPERIMENTS 

 

6.1 Real World Rotoscoping Dataset 

 To evaluate our method we produced an extensive rotoscoping dataset specifically designed to be truly 

representative of real-world commercial rotoscoping in the post-production industry. The dataset consists of a 

five minute short movie, that has been professionally rotoscoped by a services company that works on 

preparation and compositing for high-end VFX and stereoscopic conversion across film, television and 

commercials. This dataset will be made available under the Creative Commons license agreement (by-nc-sa)1 

for non-commercial use. The short movie depicts a story unfolding around a night club and contains shots 

typical to live-action movies. This illustrates the spectrum of rotoscoping intricacy that one could anticipate in 

the post-production of a live-action movie. The footage covers the space of rotoshapes that would be required, 
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from simple rigid objects, to isolated articulation motion, more complex articulations with occlusions and 

intersections, and thin structures for close-ups of hair. The scene content and camera effects cover locked-off 

and hand-held camera moves, shifts in focus and motion blur, close-up and wide-angle shots, and bright and 

dark environments. They also include isolated and interacting characters, plus complex with water. 

 Errors All of the shots are recorded in HD and a typical error of a few pixels is within the motion blur 

of the majority of scenes at this resolution. For professional artists to achieve sub-pixel accuracy for this footage 

would require feathering to be used which we do not currently have data for. We discuss this as future work.  

     We can be sure that the roto-splines will be parameterized in the same way because we utilize the same input 

keyframes (from the dataset's ground truth) for every technique. This allows us to evaluate the error by 

considering the RMS pixel error between the control points of the estimated curves and the ground truth splines. 

 

 

 
   Complexity Rating            Number in Dataset           Rotoscoping effort 

 

 

 

  

 

   

  

 

 

 

 

 

6.2 Expert Study 

 To evaluate the Intelligent Drag Tool and our Roto++ tool as a whole we conducted an Expert Study. The 

aim was to investigate performance with respect to two baseline workflows in a real-world situation with 

experienced rotoscoping artists and shots from a commercial movie. Figure 8 provides an overview of the expert 

study that we will now discuss in more detail. First we will describe the protocol used and then we will analyze 

the quantitative results.  

       Evaluation Protocol We invited seven professional roto-artists, from movie post-production houses, to take 

part in the study; the artists all had between two and nine years of rotoscoping experience. Each team had a 

similar distribution of experience to allow for fair comparisons between the teams. Our Roto++ tool was run in 

three different modes, Mode 1 presents our method; Mode 2 denotes the Blender planar tracker; and Mode 3 is 

the linear interpolation. The artists were unaware of the technical details of any of the differences between any 

of the modes. In addition to our solver, Mode 1 also made the Intelligent Drag Tool available. The roto artists 

were instructed on how to use it but they were free to use it or not during the study. Similarly for the next 

keyframe suggestions. 

  Shape Interaction Using our instrumentation we were able to measure various mouse (pen and tablet) 

operations. We observe that our solver and intelligent drag tool require fewer mouse operations and achieve a 

greater accuracy. This is due to the value of the intelligent drag tool moving the control points to the correct 

location in far fewer moves than editing individual control points.  

 Rotoscoping Time depicts the point error over time for all baselines on the three different shots. Across 

all three tests (differing complexities) our solver improves over the baselines. We also note that an earlier version 

of our solver was used for the expert study that occasionally produced a lag in response (this was commented on 

by the experts when they were debriefed). We have since improved the solver speed by an order of magnitude 

and no have no lag in subsequent tests. The dashed line on the plots represents a replay of the log with the solver 

times set to the new speed; this leads to an additional improvement in performance, really demonstrating the 

value of our tool.  

Complexity Typical Shot Description Rating 

Easy • Single isolated characters 
• Trackable objects 

• Simple manual keyframing 

1 

 

2 

Medium • Limited motion blur 
• Limited articulation 

• Several characters 

 

3 

Hard • Lengthy camera shots 
• High-speed shots with motion blur 
• Many characters with detailed 

articulation 

• Detailed shapes for hair / fur 

4 

 

 

5 

2 38 shots 28 frames / day 

3 94 shots 14 frames / day 

4 14 shots 11 frames / day 

5 12 shots 6 frames / day 

Table 2 : Breakdown of the complexity and 
rotoscoping effort required in the rotoscoping 
dataset. The total effort for the entire dataset was 
734 person days. Ratings and effort provided by 
professional artists. Table 1: Complexity examples for different 

rotoscoping shots. Ratings and descriptions provided 
by professional artists. 

http://www.ijcrt.org/


www.ijcrt.org                                                           © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882 

IJCRT2404957 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i364 
 

 Scale-Aware Loss Function Adding point and part specific scaling improves performance by 12.3% 

over ignoring the scale in the loss function (see Supplementary Figure 10 and Table 4). The majority of the 

benefit is absorbed by the seams and eyebrows (which result in an average MAE of 2.95 and 2.67 when the model 

is not trained with scaling parameters, respectively, versus 2.45 and 2.15 respectively when the model is trained 

with scaling parameters), while the eyes do not appear to benefit. This could be due to greater invariance of the 

eye shape to pose and facial expression. The seams also benefit from point scaling because we can overweight 

their impact on the loss function. 

AI rotoscoping, an emerging field at the intersection of artificial intelligence and visual effects, has garnered 

significant attention from researchers and practitioners alike. Numerous studies have explored various aspects of 

AI-driven rotoscoping, ranging from algorithm development to applications in industry settings. These studies 

aim to advance the state-of-the-art in rotoscoping techniques, improve efficiency, and enhance the quality of 

visual effects and animation production. 

One prominent area of research in AI rotoscoping focuses on algorithm development and optimization. 

Researchers have proposed novel deep learning architectures tailored specifically for rotoscoping tasks, aiming 

to improve segmentation accuracy and efficiency. For example, studies have investigated the use of convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs) for semantic segmentation of video footage, 

demonstrating promising results in automating the rotoscoping process. These algorithms often leverage 

advanced techniques such as transfer learning and data augmentation to improve generalization performance and 

robustness across different types of footage. 

 

VII.  CONCLUSION AND FUTURE WORK 

 

 An AI based Rotoscoping System is developed which uses training models to provide a rotoscoped video. 

UI is developed for easier use and experience. Converts a labor-intensive work into an automated one which 

reduces the workload of artists Output video is generated along with matte frames.AI rotoscoping represents a 

transformative advancement in the field of visual effects and animation, offering unprecedented capabilities 

for automating the process of matte image creation. Through the integration of artificial intelligence and deep 

learning techniques, AI-driven rotoscoping algorithms have demonstrated remarkable efficiency, accuracy, 

and versatility, revolutionizing traditional workflows and enabling new possibilities for creative expression. 

From algorithm development to software integration and industry applications, research in AI rotoscoping has 

made significant strides in advancing the state-of-the-art and addressing practical challenges.future work in AI 

rotoscoping holds immense promise for further innovation and advancement. One avenue for future research 

is the development of more robust and adaptive algorithms capable of handling complex scenes with greater 

ease and accuracy. This may involve exploring advanced deep learning architectures, incorporating additional 

sources of information such as temporal context or semantic cues, and leveraging techniques from computer. 
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