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Abstract:  The increasing significance of remote control has spurred the development of Unmanned Aerial 

Vehicle (UAV) capable of flight, ranging from small insect sized drones to large conventional airplanes. These 

UAVs find diverse applications in agriculture, surveillance, environmental monitoring, search and rescue, 

aerial photography, infrastructure inspection and scientific research. This study aims to optimize the 

aerodynamic shape of a fixed wing UAV by enhancing lift-to-drag ratio at 0-degree angle of attack (AOA) 

using a completely automated workflow. Our research, including Genetic Algorithm (GA), mimics the 

evolutionary process of natural selection to discover optimal solutions within complex problem space and 

PyFluent, a robust Computational Fluid Dynamics (CFD) tool. The work is structured into three stages: Initial 

stage, Optimization stage and Simulation stage. The optimal airfoil configuration achieves a lift-to-drag ratio 

of 24.8 at 0-degree AOA, particularly at a velocity of 40 m/s. 

 

Index Terms - UAV, lift-to-drag ratio, 0-degree AOA, Genetic Algorithm (GA), PyFluent   

 

I. INTRODUCTION 

 

Unmanned Aerial vehicle (UAV) is an aircraft without human pilot on board and can be controlled 

remotely or autonomously programmed for specific flight paths. UAVs, also known as Unmanned Aerial 

Systems (UAS), encompass cameras, sensors, communication equipment and other payload devices. The 

UAV market expands and applications diversify, there is a growing demand to enhance flight capabilities and 

adaptability for complex tasks[1]. Initially UAVs are developed for military purposes, now widely used in 

both military and civilian contexts, contributing to border protection and various applications. Their unique 

capability to access remote or hazardous areas, coupled with advanced sensing technologies, enables high-

resolution imagery for various civilian and humanitarian missions[2].The classification of UAVs based on 

design, capability and intended purposes, with two main categories, they are Rotary-wing UAVs and Fixed 

wing UAVs. The Fixed wing UAVs are known for their extended endurance, payload capabilities, and ability 

to achieve high cruising speeds during flight [3], [4]. Aerodynamics plays a crucial role in optimizing the 

performance and efficiency of UAVs by influencing factors such as lift-to-drag ratio, flight range, and 

endurance. Efficient aerodynamic considerations enable UAVs to achieve longer flight times and cover larger 

areas by ensuring stability, controllability, and maneuverability [5], [6]. Airfoils are pivotal in aerodynamics, 

as they generate lift, control lift-to-drag ratio, and influence stall behavior. The lift force is generated by the 

difference in air pressure between the upper and lower surfaces of an airfoil. 
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In recent studies, (Laghari et al) stated lift-to-drag ratio is a critical factor influencing the aerodynamic 

efficiency of UAV wings [1]. (Rashid et al) Revealed that adjusting the angle-of-attack significantly impacts 

lift and drag forces [7]. (Chakraborty et al. n.d.) Compared the Boeing 737 and NACA 2412 airfoils, indicating 

the latter’s superior lift-to-drag ratio under typical operating conditions [8]. (Khalid) Studied the NACA 0012 

airfoil, emphasizing the impact of flow separation on the lift coefficient at various angle of attack [9]. (Adawy 

et al.) emphasized the importance of a phased approach in UAV design optimization[10]. (Kontogiannis et 

al.) suggested enhancing aerodynamics through increased wingspan and aspect ratio to improve UAV 

aerodynamics[11]. (Gowda) Highlighted the NACA 2412 airfoil’s advantage in a UAV mission profile with 

a broader range of angle of attack[12]. (Chumbre et al) conducted a comprehensive study on various airfoil 

sections, focusing on the coefficients of lift and drag, concluded that an increase in the angle of attack results 

in proportional increase in lift force[13]. (Panagiotou et al) This analysis aimed to identify the factors 

influencing aerodynamic performance, especially in the low-speed subsonic regime the study includes a 

detailed examination of the drag contributions from various components of the UAV[14]. (Ramanan et al.) 

aimed to enhance UAV operations in defense areas through improved airfoil design using genetic 

algorithm[15]. (Gibert Martinez et al.) demonstrated that optimizing UAV wing shape not only improve flight 

performance but also reduced material requirements, contributing to overall efficiency[16]. (QIAO et al.) 

Explored through CFD, the aerodynamic attributes influencing flight performance, including lift-to-drag ratio 

and static stability, are scrutinized for formation UAVs[17]. (Murariu et al) discussed the use of genetic 

algorithm in designing a UAV prototype for optimal payload and flight time[18]. (Kohar et al) showcased the 

effectiveness of genetic algorithm in optimizing fixed-wing UAV aerodynamics[19].  

 

This research aims to enhance the aerodynamic performance of fixed-wing UAVs. Utilizing the NACA 

2412 as a reference, the study parameterizes wing shapes and employes a genetic algorithm to iteratively 

optimize them based on lift-to-drag ratio, which serves as fitness value. Notably, the fitness values are 

evaluated using PyFluent, representing a departure from conventional methods and highlighting the novelty 

of our approach. This innovative methodology eliminates manual intervention, streamlining the process of 

discovering optimal aerodynamic configurations, Ultimately, our seeks to advance efficiency and mission 

capabilities in the field of UAV technology. 

 

II. METHODOLOGY 

The methodology employed is delineated through a Figure II-1, which encompass three distinct stages: 

Initial stage, Optimization stage and simulation stage. The Initial stage constitutes the foundational 

groundwork of the study. The optimization stage employs Genetic algorithm, to systematically refine the 

design parameters. This iterative process aims to optimize the performance metrics associated with the chosen 

airfoil, enhancing its efficiency by increasing lift-to-drag ratio. The Simulation stage involves crucial part, 

which is evaluation of fitness value which is used for genetic algorithm rather than using conventional 

approach. Here PyFluent plays a pivotal role in both simulation process and calculation of fitness value 

achieved by construction of 3d geometry of wing through CadQuery then perform tasks like Meshing, Solver 

setup and Post-processing of Simulation results. 
2.1 Initial Stage 

The wing serves as the primary aerodynamic surface for lift generation in UAVs with fixed-wing 

configurations embodying a specific subtype defined by their static and non-moving structures, distinguishing 

them from other types of UAV designs Fixed-wing UAVs have rapidly emerged as the dominant platform 

due to their enhanced stability, efficiency, and extended range. Notably, they boast significantly longer flight 

endurance compared to rotary-wing or multirotor UAVs[20]. Fixed-wing UAVs encompass various types, 

including Medium-Altitude Long-Endurance (MALE) UAV, High-Altitude Long-Endurance (HALE) UAV, 

Tactical UAV, small UAV, Mini UAV and Micro UAV. Each type offers unique capabilities suited to diverse 

mission requirements and operational environments. 

2.1.1 Abbreviations 

 yc: Camber line equation 

 yt: Thickness line equation 

 m: Maximum camber  

 p: Location of maximum camber 

 t: Maximum thickness  

 c: Chord length 

 L: Lift force 

 u: Random number  

 ηc: Distribution index for crossover 

 P1 and P2: Parent solutions 

 O1 and O2: Offspring solutions 

 δ: Mutation factor 

 r: random number in mutation 

 ηm: Distribution index for mutation 
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 D: Drag force 

 ρ: Air density 

 V: Free stream velocity 

 S: Wing planform area 

 CL: Coefficient of lift 

 CD: Coefficient of drag 

 β: Crossover rate 

 

 ub: Upper bound of variable 

 lb: Lower bound of variable 

 xu: Upper surface x-coordinates 

 yu: Upper surface y-coordinates 

 xl: Lower surface x-coordinates 

 yl: Lower surface y-coordinates 

 θ: Angle of the slope of camber line 

 

 

2.1.2 Reference Airfoil 

The National Advisory Committee for Aeronautics (NACA) airfoil designation system uses a series of 

digits to represent key parameters of the airfoil, such as its camber, thickness, location of maximum thickness 

and location of maximum camber. After a thorough literature review, the NACA 2412 airfoil Shown in Figure 

II-2 (with maximum camber of 2% at 40% chord length, and maximum thickness of 12% chord length) was 

selected as the reference due to its widespread use, moderate characteristics suitable for various applications, 

ease of manufacturing, and well-documented stall behavior. In this study, the NACA four-digit equation was 

employed to calculate the coordinates of airfoil’s upper and lower surfaces. To compute the mean camber line 

coordinates, the equation for yc are utilized by substituting the values of m and p. This process is performed 

for each x coordinate, delineated from 𝑥 = 0 to 𝑥 = 𝑐. The thickness distribution above and below the mean 

line is then determined using the equation incorporating the given t value. Finally, the airfoil’s upper and 

lower surface coordinates (xu, yu and xl, yl) are calculated using provided relationships:  

       𝑦𝑐 = {

𝑚

𝑝2
(2𝑝𝑥 − 𝑥2)                                        𝑓𝑟𝑜𝑚 𝑥 = 0 𝑡𝑜 𝑥 = 𝑝

𝑚

(1−𝑝)2
[(1 − 2𝑝) + 2𝑝𝑥 − 𝑥2]           𝑓𝑟𝑜𝑚 𝑥 = 𝑝 𝑡𝑜 𝑥 = 𝑐

   

(II.1) 

    

 

   ±𝑦𝑡 =
𝑡

0.2
(0.2969√𝑥 − 0.1260𝑥 − 0.3516𝑥2 + 0.284𝑥3 − 0.1015𝑥4)  (II.2) 

  

 

Figure II-1. Methodology Flowchart 

 

 

 

 

 

Figure II-2. Naca 2412 airfoil 
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 𝑥𝑢 = 𝑥 − 𝑦𝑡 sin 𝜃  

 𝑦𝑢 = 𝑦𝑐 + 𝑦𝑡 cos 𝜃  

 𝑥𝑙 = 𝑥 − 𝑦𝑡 sin 𝜃  

 𝑦𝑙 = 𝑦𝑐 − 𝑦𝑡 cos 𝜃   where 𝜃 = tan−1 (
𝑑𝑦𝑐

𝑑𝑥
) 

2.1.3 Objective Function 

In this study, the lift-to-drag(L/D) ratio not only pivotal for assessing fixed-wing UAVs aerodynamic 

performance but also serves as the fitness value for the optimization process. It represents the efficiency of 

the lift generation relative to drag and plays a central role in guiding the iterative refinement conducted by the 

Genetic Algorithm (GA). Through parameterizing UAV wing shapes and leveraging PyFluent simulations to 

compute lift (CL) and drag (CD) coefficients, the methodology aims to maximize the L/D ratio as the primary 

objective function. The L/D ratio calculated as the ratio of the lift coefficient to the drag coefficient. 

         
𝐿

𝐷
=

1

2
(𝜌𝑉2𝑆𝐶𝐿)

1

2
(𝜌𝑉2𝑆𝐶𝐷)

=
𝐶𝐿

𝐶𝐷
     (II.3)  

      

2.1.4 Design Parameters 

The study focuses on investigating several key design parameters that significantly impact the 

aerodynamic performance of UAVs. These parameters include maximum camber, position of maximum 

camber, maximum thickness, wing span, root chord, and tip chord. Through systematic variation and 

optimization within specified ranges, the aim is to enhance the lift-to-drag ratio. Table II-1 provides an 

overview of the key design parameters essential for NACA four-digit airfoil and Wing, with desirable ranges. 

2.2 Optimization Stage 

2.2.1 Genetic Algorithm 

In the Optimization stage, a genetic algorithm is employed to iteratively refine and enhance the 

aerodynamic shapes of the fixed-wing UAV. Python emerges as the most suitable language for automation 

and simulation tasks due to its versatility and extensive library ecosystem. Additionally, python’s 

compatibility with PyFluent enables the generation of large-scale design evaluations and performance analysis 

with minimal manual intervention. Visual Studio enhances our workflow by providing robust tools for code 

editing, debugging, and project management, ensuring efficient collaboration and code maintenance. Genetic 

Algorithm, inspired by natural selection principles to optimize complex problems. Real-Coded Genetic 

Algorithm (RCGA) are preferred for their ability to handle real-valued parameters effectively. A novel 

approach integrates Fitness Value evaluation using PyFluent, deviating traditional fitness value evaluation 

using Fitness Function (Equation).   

 

 

Table II-1. Design Parameter Ranges 

Parameter Range (mm) 

 Maximum 

Camber (m) 
0.01 to 0.09 

Position of 

Maximum 

Camber (p) 

0.1 to 0.5 

Maximum 

Thickness (t) 
0.08 to 0.20 

Wing Span (b) 500 to 2000 

Root Chord (CR) 100 to 1000 

Tip Chord (CT) 50 to 500 

 

 

 

 

 

 

Table II-2. Input Parameters 

Input Parameters Value 

Iterations 60 

Population size 10 

Crossover Rate 0.8 

Crossover Distribution 25 

Mutation Rate 0.3 

Mutation Distribution 15 

Velocity, V      m/s 40 

Angle of Attack, θ 0 0 

Number of Solver 

Iterations, n 

500 

Turbulence Model K- ω 

SST 
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Table II-2, consists of set of input parameters for genetic algorithm optimization process, begins by 

generating a population of potential wing designs, incorporating parameters like airfoil characteristics, wing 

span, root chord, tip chord. Random sampling within predefined parameter ranges ensures the feasibility and 

validity of designs, with each individual representing a unique combination of six design parameters. These 

parameters are used to create 3D wing models, and PyFluent analysis evaluates their fitness based on the L/D 

ratio. The roulette wheel selection method is employed to select parent populations for subsequent genetic 

operations. Selection probabilities for each individual is proportional to individual fitness. This method ensures 

higher fitness individuals have a greater chance of being selected as parents for next generation. Crossover, a 

fundamental genetic operator, combines genetic material from parent solutions to generate offspring with 

potentially improved characteristics. In our study, Simulated Binary Crossover (SBX) is employed in real-

coded GA. SBX mimics mating in biological systems, inheriting traits from both parents to explore diverse 

solution spaces. The SBX process begins with the selection of two parent solutions from current population. A 

random number ‘u’ is generated to compute the scaling factor ‘β’, which determines degree of crossover 

between the parents. Depending on the value of ‘u’, ‘β’ are calculated to either promote exploration or 

exploitation within the search space. Fine-tuning parameters like the scaling factor and distributive index 

enables SBX operator to suit the specific requirements of optimization task. 

     𝛽 = {
(2𝑢)

1

(𝜂𝑐+1)
                 if u≤0.5

(
1

2(1−𝑢)
)

1

(𝜂𝑐+1)
   𝑒𝑙𝑠𝑒  

     (II.4)  

          

 

 Generate Offspring 𝑂1 = 0.5[(1 + 𝛽)𝑃1 + (1 − 𝛽)𝑃2] 
   𝑂2 = 0.5[(1 + 𝛽)𝑃1 + (1 − 𝛽)𝑃2] 

 

Mutation in evolutionary algorithms, such as genetic algorithm, is a genetic operator crucial for 

introducing diversity into the population space. It plays a vital role in maintaining genetic diversity, preventing 

premature convergence, and facilitating the exploration of potential beneficial solutions. In this study, 

Polynomial mutation is utilized as the mutation operator. Unlike uniform mutation, which randomly alters 

genes within specified ranges, polynomial mutation induces smoother transitions between solutions. The 

procedure of polynomial mutation involves initializing mutation parameters. The mutation probability 

determines the likelihood of mutation for each gene, while ηm controls the intensity of mutation, influence 

extent of changes applied to the genes. 

     𝛿 = {
(2𝑟)

1

(𝜂𝑚+1)−1
                              𝑖𝑓 𝑟 < 0.5

1 − [2(1 − 𝑟)]
1

(𝜂𝑚+1)
        𝑖𝑓 𝑟 ≥ 0.5

    (II.5) 

         

 Generate Offspring 

     𝑂 = 𝑂 + (𝑢𝑏 − 𝑙𝑏)𝛿 
 

In the genetic algorithm’s optimization process,  the initial populations known as Mu(µ) data and 

corresponding fitness values merge with a new set of offspring population emerges through mutation forming 

Lambda(ℷ) data. This µ + ℷ strategy combines diverse genetic material from the original population and 

mutated individual. The combined dataset becomes the foundation for the next iteration  of  genetic algorithm 

in loop of roulette wheel selection, crossover and mutation. 
2.3 Simulation Stage  

2.3.1 CadQuery 

In the context of the genetic algorithm (GA) based optimization process, the transformation of randomly 

generated individual design parameters into 3D wing geometries is facilitated by the powerful capabilities of 

the CadQuery library serves as Python-based parametric 3D CAD modelling tool, offering seamless 

integration within the GA framework. Due to the symmetric nature of the wing design and the computational 

constraints associated with the student version of the software, only one half of the wing was modeled and 

analyzed in this study. The aerodynamic simulation was conducted within a rectangular domain, representing 

the airflow around the wing design. This domain was chosen for its simplicity and computational efficiency. 
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The finalized design was exported as a STEP file. The STEP file was imported into Ansys Discovery script 

file for efficient processing. Named selections were assigned within Discovery, like inlet, outlet, wall, 

symmetry, wing, leading edge and trailing edge. Export the geometry after named selections as Discovery file 

type. 

2.3.2 PyFluent 

PyFluent facilitates Pythonic interaction with Ansys Fluent allowing seamless integration of fluent within 

the python ecosystem. It facilitates launching Fluent, using Fluent’s Text User Interface (TUI) commands for 

meshing and solver operations, and accessing Fluent’s built-in postprocessing capabilities [22]. The library is 

comprised of several components, including PyFluent Core, which Provides core functionalities for 

interacting with Ansys Fluent, PyFluent Parametric for accessing Fluent’s parametric workflows, and 

PyFluent Visualization, which offers postprocessing and visualization capabilities using PyVista and 

Matplotlib. To use PyFluent, a licensed copy of Ansys Fluent must be installed locally, with support for Fluent 

versions 2022 R2 and later. 

2.3.2.1 Meshing 

Fluent Meshing integrated into PyFluent, is excellent at making high-quality CFD meshes. With its 

sophisticated built-in intelligence and automation, it streamlines mesh generation processes, notably reducing 

total meshing time while augmenting overall efficiency. The meshing procedure commences with the 

initialization of watertight geometry. It handles surface mesh details well by adjusting minimum and 

maximum mesh size and growth rates. The  utilization of both global and local sizing controls, along with 

mesh refinement strategies, ensures optimal mesh quality while effectively managing computational 

resources. Skewness, a pivotal metric monitored to preserve mesh integrity, adhering to recommended 

thresholds (skewness< 0.7) for superior mesh quality. Moreover, orthogonal quality(with recommended 

thresholds > 0.1)  ensures mesh integrity and  stability in simulations. The workflow is applicable for student 

licenses, which have a limitation of meshes containing either 1,048,576 cells or unmeshed faces.  

2.3.2.2 Solver 

Table II-2, summarizes the Solver setup input Parameters [23], the study employed steady-state simulations 

based on pressure, offering insights into the system’s long-term behavior and its response to consistent pressure 

conditions. The units were standardized to millimeters to ensure dimensional consistence, followed by the 

enable of the energy equation to account for thermal effects. The selection of the k-omega SST turbulence 

model provides robust predictions of turbulent flow behavior. Material properties such as density and viscosity 

were specified to define the fluid medium’s behavior accurately. Boundary conditions, including velocity 

magnitude and components at inlet, no-shear boundary condition on solid surface like wing, and pressure outlet, 

were meticulously defined to accurately represent the physical scenario. Reference values for length and area 

were computed from inlet to ensure consistent scaling of results across simulations. Report Definitions for lift, 

drag and moment calculations were set up to monitor key aerodynamic parameters during the simulation, while 

lift-drag plots were generated for visualization. Residuals were monitored to ensure solution convergence. The 

solver was initialized using a hybrid initialization and run calculations based on no of iterations. The case and 

data files were created to store simulation setup information and solution data, respectively facilitating post-

processing. 

2.3.2.3 Post-Processing 

In the post-process phase, critical aerodynamic parameters such as lift coefficient (CL) and drag coefficient 

(CD) are extracted from the simulation results to evaluate the fitness value (CL/CD) of the wing design. 

Additionally, velocity and pressure distributions across the wing surface are analyzed to understand the flow 

characteristics and aerodynamic loading. Flow patterns and separation phenomena are investigated to uncover 

potential area of flow separation and recirculation. 
2.4 Genetic Algorithm and PyFluent Integration 

During the initial iteration of the Genetic Algorithm (GA), the population comprises multiple individuals, 

each defined by six design parameters representing different wing configurations. These individuals undergo 

fitness evaluation within PyFluent, where the fitness values are obtained from post-processing results. The 

resulting fitness values are then appended to the “mu” dataset, representing the current state of the population. 

The GA proceeds to generate offsprings through operations such as selection, crossover and mutation and 

these offspring undergo a similar fitness evaluation process. The fitness values of the offspring are added to 

the “lambda” dataset. In subsequent iterations, the combined “mu + lambda” population is used as inputs for 

the GA operations, allowing for further exploration of design space. This iterative cycle continues until the 

desired number of iterations are reached, leading to the identification of optimal wing configurations for the 

given design objectives, such as maximizing Lift-to-Drag ratio. Due to constraints imposed by Ansys student 
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version, the computational workload was managed efficiently. The initial iteration consumed approximately 

2 hours of runtime. Subsequently, from second iteration onwards, PyFluent active only once per iteration, 

required 1 hour of runtime. Over the course of 60 iterations, the total runtime amounted to 53 hours, 

highlighting the iterative and time-intensive nature of the optimization process. 

 

III. RESULTS AND DISCUSSIONS 

The optimization process revealed significant insights into the aerodynamic performance of the wing design. 

The iterative progression of the genetic algorithm (GA) is depicted in Figure III-1, Showing a steady increase 

in the lift-to-drag (L/D) ratio with each iteration. The final iteration yielded an optimized wing design with 

parameters of m=0.09, p=0.5, t=0.11, wing span of 1660 mm, root chord of 340 mm, tip chord of 200 mm with 

an impressive L/D ratio of 24.84. The NACA designation for the optimized airfoil is NACA 9511, an 

improvement over the reference airfoil of NACA 2412 at 0-degree angle-of-attack. The visualization of the 

optimized wing, planform and side views, including airfoil profile, are provided in  Figure III-2 and Figure 

III-3. The pressure contour around the optimized wing is presented in Figure III-4, providing insights into the 

flow behavior and further validating the aerodynamic performance of the optimized design. These contours 

reveal regions of high and low pressure. The optimization process was conducted with limited computational 

resources, highlighting the efficiency of the methodology utilized in this study. 

In Figure III-5, the lift-to-drag (L/D) plot depicts the efficiency of the NACA 9511 airfoil across various 

angles of attack, showcasing optimal L/D ratio typically observed around 0 to 2 degrees. This indicates a 

favorable balance between lift generation and drag production, crucial for achieving efficient aerodynamic 

performance. Concurrently, in Figure III-6, the individual lift, drag, and moment curves provide additional 

insights into the airfoil’s behavior. The lift curve demonstrates a typical nonlinear trend, with lift coefficients 

increasing with increasing angle of attack, peaking around 10 to 20 degrees before slightly declining. 

Conversely, the drag curve exhibits a gradual increase in drag coefficient with increasing angle of attack, 

reflecting the increased aerodynamic resistance encountered as the airfoil’s angle of attack is elevated. 

Additionally, the moment curve reveals variations in pitching moments experienced by the airfoil, highlighting 

the complex interactions between aerodynamic forces and the airfoil’s structure. 

 

 

Figure III-1. GA Iterations 

 

 

Figure III-2. Optimized Wing Views 

 

Planform View 

Side View 
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IV. CONCLUSION 

In summary, this study successfully optimized the aerodynamic performance of a fixed wing UAV through 

a comprehensive automated workflow. Leveraging the Genetic Algorithm (GA) methodology and PyFluent, 

a Computational Fluid Dynamics (CFD) tool, at a 0-degree angle of attack and a velocity of 40 m/s, a 

remarkable lift-to-drag (L/D) ratio improvement was achieved, surpassing the performance of the reference 

NACA 2412 airfoil. Visual analyses confirmed the aerodynamic enhancements, while comparative 

assessments underscored the efficiency of optimization process. The study demonstrated the potential of 

automated workflows in advancing UAV design. This research contributes valuable insights to the field, 

laying the groundwork for future innovations in fixed-wing UAV aerodynamic optimization. In addition to 

the remarkable achievements highlighted in this study, future research could explore the implementation of 

multi-thread processing techniques to address computational constraints encountered during the optimization 

process. By leveraging parallel computing capabilities, such as multi-core processors can significantly 

enhance the efficiency and scalability of aerodynamic simulations. 
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