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ABSTRACT

This study delves into the comparative analysis of Linear Regression and Multi-Layer Perceptron (MLP)
classifiers in the context of predicting flow rates. The focus lies on independent features such as temperature,
pressure, square root of differential pressure, differential pressure, viscosity, and specific gravity, with the
dependent feature being the flow rate 'Qv'. The Linear Regression model assumes a linear relationship
between the independent and dependent variables, aiming to minimize the Root Squared Error (RSE).
Meanwhile, the MLP classifier incorporates non-linearities through hidden layers, featuring 3 nodes in one
layer and 2 nodes in another.

The Linear Regression model is represented by a linear equation, while the MLP classifier employs a multi-
layered architecture for enhanced predictive capabilities. The study reveals that the MLP classifier achieves a
significantly higher accuracy of 98% compared to Linear Regression. This higher accuracy underscores the
MLP's ability to capture intricate patterns and non-linear relationships within the dataset, making it a more
effective tool for flow rate predictions. The findings suggest that, in scenarios where complex relationships
exist among variables, the MLP classifier outperforms traditional Linear Regression methods.

Keywords:

Flow rate predictions, Linear Regression, Multi-Layer Perceptron (MLP), Root Squared Error (RSE), Non-
linear relationships.

[JCRT2402631 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 342


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882
1.INTRODUCTION

In this study, we delve into the intricate realm of predicting laminar fluid flow rates through an orifice,
employing a sophisticated combination of Multilayer Perceptron (MLP) and regression techniques. The
dataset hails from the renowned Iranian Oil Field, presenting a formidable set of 1038 features. Among these,
the independent variables encompass crucial parameters like Temperature (T), Pressure (P), viscosity,
differential pressure (AP), specific gravity, while the crux of our investigation lies in the dependent feature -
the fluid flow rate (Qv).

Our pursuit revolves around harnessing the power of artificial intelligence, specifically MLP, to unravel the
intricate relationships embedded within this extensive dataset. The MLP model, with its ability to comprehend
complex patterns and non-linear dependencies, stands as a formidable tool for grasping the nuances of laminar
fluid dynamics. Simultaneously, the incorporation of regression techniques adds a layer of interpretability,
aiding in discerning the impact of each independent variable on the fluid flow rate.

The unique challenge posed by the Iranian Oil Field dataset necessitates a meticulous approach to feature
selection, model training, and validation. Temperature, pressure differentials, viscosity, and specific gravity
each play pivotal roles in determining laminar flow, requiring our models to decipher their collective influence
accurately.

As we navigate through this computational journey, our primary aim is to develop a robust predictive model
capable of estimating fluid flow rates with precision. The holistic understanding of these intricate interactions
not only advances our comprehension of fluid dynamics but also holds immense practical significance for the
oil and gas industry. This research amalgamates cutting-edge techniques with real-world data, offering a
glimpse into the future of predictive modeling for complex fluid systems.

2.SIGNIFICANCE

The significance of flow rate in oil and gas fields is paramount, serving as a critical metric that underpins
various operational aspects. Flow rate, often denoted as the volume of fluid passing through a specific point
per unit of time, holds key importance in the oil and gas industry for several reasons.

Production Monitoring and Optimization

Flow rate is a pivotal parameter for monitoring and optimizing production processes in oil and gas fields. It
provides real-time insights into the quantity of hydrocarbons extracted, allowing operators to adjust
production strategies to meet demand and maximize resource recovery.

Reservoir Management

Understanding and controlling flow rates are essential for effective reservoir management. Accurate
measurement of flow rates aids in evaluating reservoir performance, estimating reserves, and implementing
strategies to enhance the recovery of oil and gas resources.

Equipment Sizing and Design

Properly sizing and designing infrastructure, such as pipelines and processing facilities, hinge on precise flow
rate calculations. The capacity of equipment and pipelines is directly influenced by the anticipated flow rates,
ensuring efficient and safe transportation of hydrocarbons.

Economic Analysis

Flow rate directly impacts the economic viability of oil and gas projects. Accurate assessments of flow rates
are crucial for economic analyses, influencing investment decisions, project planning, and financial
forecasting.

Health, Safety, and Environment (HSE) Considerations
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Monitoring flow rates is essential for maintaining safe operating conditions. Deviations from expected flow
rates can indicate potential issues such as leaks, blockages, or equipment malfunctions, helping to mitigate
safety hazards and minimize environmental impact.

Requlatory Compliance

Many regulatory requirements in the oil and gas industry necessitate accurate measurement and reporting of
flow rates. Compliance with these regulations is vital for maintaining operational licenses and ensuring
responsible resource management.

3. TYPES OF FLOWS

Turbulent flow:

Fig. 1. Direction of turbulent flow of fluid

Turbulent flow is a fluid motion characterized by chaotic and irregular fluctuations in velocity, pressure, and
other fluid properties [3]. In contrast to laminar flow, where fluid particles move in orderly layers, turbulent
flow is marked by eddies, vortices, and swirls, creating a more complex and unpredictable pattern.

Darcy Weisbach equation:

The Darcy-Weisbach equation describes the relationship between flow rate, frictional head loss, and various
parameters in a fluid system, commonly used for calculating flow rates in pipes. The equation is expressed
as:

K.A\2gh;

- (3)

Whereas,

Q is the volumetric flow rate

k is a dimensionless constant (often 1 for S.I units)
A is the cross-sectional area of the flow

g is the acceleration due to gravity

hr is the head loss due to friction

f is the Darcy-Weisbach friction factor

D is the diameter of the pipe

Do is a reference diameter.
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Laminar flow:

Fig. 2. Direction of laminar flow of fluid

Laminar flow refers to a smooth, orderly flow pattern in a fluid, typically characterized by parallel layers
moving in the same direction [3]. This type of flow occurs at relatively low velocities and is in stark contrast
to turbulent flow, which is chaotic and characterized by irregular fluctuations.

The fundamental governing equation for laminar flow in a pipe or channel is described by Poiseuille’s Law.
This law is derived from the Navier-Stokes equations under the assumption of steady, incompressible flow.
For a Newtonian fluid, such as water or oil, Poiseuille's Law is expressed as:

nr*AP
8nL

Whereas,

Q is the volumetric flow rate

r is the radius of the pipe or channel

AP is the pressure drop along the length L of the pipe or channel

n is the dynamic viscosity of the fluid.

4. METHODS AND ALGORITHMS APPLIED AND COMPARED
MinMax Scaling method

MinMax scaling, also known as feature scaling, is a data preprocessing technigue commonly used in machine
learning to scale numerical features within a specific range. The method transforms the data, ensuring that it
falls between a predetermined minimum and maximum value. This is particularly useful when dealing with
algorithms sensitive to the scale of input features, such as gradient-based optimization algorithms.

The MinMax scaling formula is straightforward and can be expressed as:

X—-X;
Xscaled = X—mm

max — X min

Here, X represents the original feature value, Xmin is the minimum value of the feature in the dataset, and
Xmax IS the maximum value. The resulting Xscaled iS the rescaled value within the range [0, 1].

The process of MinMax scaling is applied to each feature independently. This ensures that all features
contribute equally to the learning process, preventing dominance by features with larger scales.
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Temperature Pressure Specific Gravity AP (APYA0.5  Viscosity qv
0 MamM MaM MaM Mam NaM MaM MNaN
1 G5.0 15.0 0.2950 11.34225 3.367328 2231 31038.749558
2 220 18.0 0.8965 837225 2803484 127.60 28742 518004
3 G5.0 16.0 0.2975 8.83600 2972541 2231 27419351077
4 70.0 13.0 0.8975 828100 2877673 19.80 26476.381408
1033 g97.0 65.0 0.8270 163.21600 12775602 15.73 115467 655851
1034 96.0 g67.0 08220 183.21600 12775602 15.97 115430.703234
1035 g97.0 65.0 0.8285 164.43025 12.8230386 1573 115799.997339
1036 97.0 67.0 0.8590 184.83800 12.838847 1573 115911.442927
1037 97.0 70.0 0.2250 16000000 1264911 1573 114456.626206
After MinMax Scaling
Temperature Pressure AP (APYD.S  Viscosity qwv
1 0. 500000 0.0558922 0066063 0244772 0040527 0246929
2 007343231 0059021 0.043693 0207872 0. 411253 0227271
3 0500000 0.050995 0051405 0214022 0040527 0215944
4 0.549020 0.0423957 0.048159 0205642 0031689 0207271
5 0519603 0.040931 0075411 0264453 0036759 02685883
1033 0.813725 0257624 0954566 09756320 0017359 0959716
103534 0203922 0.285650 0954565 0973630 0012204 0959477
1035 0.813725 0257624 0961669 0920320 0017359 0972561
10356 0813725 0.285650 0964043 0981550 0017359 0973515
1037 0813725 02776282 0935751 0965790 0017359 0951050

Format method

The format method in Python is a powerful tool for formatting strings, enabling the customization of how data
is displayed. In the context of converting continuous data into discrete data for classification, the format
method can be used to control the precision of the numerical values, making them more suitable for
classification tasks without explicit discretization.

Consider a scenario where you have a set of independent features and dependent features. To convert the
continuous data into discrete data without discretization, you can leverage the format method to control
decimal points. For instance, you might choose to display independent features with two decimal points and
dependent features with zero decimal points.
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Temperature Pressure Specific Grawvity AP [(AP)YO.S WViscOoSsity qwv

1 050 0.06 0.90 007 0.24 0.04 0.0
2 0,03 007 .90 005 0.21 .41 0.0
3 .50 0.06 0.90 0.05 0.21 0.04 0.0
4 0.55 0.05 0.90 0.05 0.21 0.03 0.0
5 052 0.04 0.90 002 0.26 0.04 0.0
1033 0.31 026 0D.39 095 0.958 002 1.0
1034 .20 0.27 0.29 095 0.932 002 1.0
1035 031 026 0D.39 096 0.93 002 1.0
10356 0.81 027 0.89 095 0.93 002 1.0
1037 0.81 0.28 0.8 094 0.97 002 1.0

In this example, {:.2f} ensures that the independent features are displayed with two decimal points, while
{:.0f} ensures that the dependent feature is displayed with zero decimal points.

This formatting approach retains the continuous nature of the data but adjusts the representation for
classification purposes. Keep in mind that this is a visual representation and does not alter the underlying
numerical values. It allows for a clearer display of the data while maintaining the integrity of the continuous
features in a format suitable for classification algorithms.

Multi-Layer Perceptron

Hidden layers

A

Input layer First Hidden layer Second Hidden layer Output layer

¥

X1

X2
— Dependent
Independent wvariable

variables

X4

X5

X6

Fig. 3. Architecture diagram of Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a neural network architecture designed for complex tasks such as pattern
recognition and classification. It comprises an input layer, one or more hidden layers, and an output layer [7].
Each layer consists of nodes (or neurons) interconnected by weighted edges.

The forward pass of an MLP involves the following steps:

1. Input Layer

The input layer receives the feature values (X1, X, ..., Xn) of the input data.
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2. Hidden Layers

Each node in a hidden layer computes a weighted sum of its inputs and passes it through an activation function.
The weighted sum(z) is calculated as:

— n
zj = Yi=1Wij X; + by

Where wij represents the weight of the connection between input note i and output note j, and bj is the bias for
hidden note j.

* The output of the hidden layer is obtained by applying an activation function (f) to the weighted sum:
aj=1(z))
Common activation functions include sigmoid, hyperbolic tangent (tanh), or rectified linear unit (ReLU).

3. Output Layer:

The output layer performs a similar operation. The weighted sum for the output layer is computed as:

m
Zy = Z Wik Q; + bk
j=1

where wijk is the weight connecting hidden node j to output node Kk, and by is the bias for output node k.
* The final output is obtained by applying an activation function to the output layer:
yk = f(z)
Training an MLP involves adjusting the weights and biases using backpropagation and optimization
algorithms like gradient descent to minimize the error between predicted and actual outputs.
Correlation coefficients

Correlation coefficients are valuable statistical measures used to quantify the strength and direction of
relationships between variables. In your specific scenario, the correlation between the independent feature
'Ap' and the dependent feature 'qv' has been evaluated using both Pearson and Spearman correlation
coefficients, resulting in higher values compared to other independent features.

Pearson Correlation Coefficient:

The Pearson correlation coefficient (1) assesses linear relationships between two variables [9]. A coefficient
close to 1 indicates a strong positive linear correlation. In your case, the Pearson correlation coefficient
between 'Ap' and 'qv' is 0.987, signifying a highly positive linear association. This implies that as 'Ap'
increases, 'qv' tends to increase proportionally, and vice versa.

Spearman Correlation Coefficient:

The Spearman correlation coefficient (p) measures monotonic relationships, capturing both linear and
nonlinear associations [10]. A value close to 1 indicates a strong monotonic relationship. Here, the Spearman
correlation coefficient between 'Ap' and 'qv' is 0.996, emphasizing a very strong monotonic association. This
suggests that the variables not only have a linear correlation but also exhibit consistent monotonic behavior,
reinforcing their connection.
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Comparison with Other Independent Features:

The fact that 'Ap' has higher correlation coefficients (0.987 in Pearson and 0.996 in Spearman) compared to
other independent features suggests that 'Ap' has a stronger and more consistent relationship with the
dependent feature 'qv'. This can have implications in predictive modeling, as 'Ap' is likely a more influential
predictor of 'qv' compared to other features.

The high correlation coefficients of 0.987 in Pearson and 0.996 in Spearman between 'Ap' and 'qv' indicate a
robust and significant relationship. This emphasizes the importance of 'Ap' as a potential key factor in
understanding and predicting the variation in the dependent feature 'qv' within the given dataset.
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Linear Regression graph plotted between Ap and Qv.

A linear regression graph between the independent feature 'Ap' and the dependent feature 'Qv' visually
represents the relationship between these two variables. In the graph, 'Ap' is plotted on the x-axis (horizontal),
and 'QV' is plotted on the y-axis (vertical).

The graph typically exhibits a scatter plot of individual data points, where each point represents a specific
observation of 'Ap' and its corresponding 'Qv' value. The linear regression line is then superimposed on the
scatter plot.

The linear regression line is determined by the coefficients obtained during the training of the linear regression
model. It represents the best-fit straight line that minimizes the sum of squared differences between the
predicted 'Qv' values and the actual 'Qv' values for each 'Ap' observation.
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If the linear relationship between 'Ap' and 'Qv' is strong, the data points should be relatively close to the
regression line. The slope of the line indicates the strength and direction of the relationship, while the intercept
represents the predicted 'Qv' value when 'Ap' is zero.

Interpreting the graph involves assessing the dispersion of data points around the regression line. A tight
clustering of points suggests a strong linear relationship, while a more scattered distribution may indicate the
presence of variability not captured by the linear model.

The linear regression graph visually encapsulates the relationship between 'Ap' and 'Qv', providing a clear
depiction of how changes in 'Ap' correspond to changes in 'Qv' and facilitating a qualitative understanding of
the linear regression model's predictive capability in this context.

120000 1
100000 A1
80000 1

E0000 /

40000 1

FLOWRATE-(QV)

20000 1

D‘

0 % s 75 100 125 150 175
DIFFERENTIAL PRESSURE-(AP)
Linear Regression graph plotted between experimental and predicted flow rates post the removal of
outliers.

The linear regression graph between experimental and predicted flow rates offers a visual assessment of the
predictive accuracy of the model, particularly after the removal of outliers. On the graph, the x-axis typically
represents the experimental flow rates, while the y-axis represents the corresponding predicted flow rates
generated by the linear regression model.

The process begins with the removal of outliers from the dataset. Outliers, being data points significantly
deviating from the general trend, can disproportionately impact the accuracy of the linear regression model.
After outlier removal, the linear regression line is plotted over a scatter plot of the remaining data points.

The linear regression line represents the best-fit straight line that minimizes the sum of squared differences
between the predicted and actual flow rates. If the model accurately captures the relationship between
experimental and predicted values, the data points should align closely with the regression line.

The removal of outliers often results in a more robust and representative linear regression graph. Outliers,
when present, can distort the slope and intercept of the regression line, leading to inaccurate predictions. The
post-outlier removal graph provides a clearer picture of how well the model fits most of the data,

[JCRT2402631 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 350


http://www.ijcrt.org/

www.ijcrt.org © 2024 1JCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

120000

100000

80000

60000

predicted flowrate

40000

20000

0 20000 40000 60000 80000 100000 120000
experimental flowrate

5.RESULT

Linear regression analysis and Multilayer Perceptron (MLP) classifiers serve different purposes in machine
learning, with distinct characteristics and applications.

Linear Regression Analysis

Linear regression is a simple and interpretable model used for predicting a continuous target variable based
on one or more independent variables. It assumes a linear relationship between the inputs and the output [2].
The model is trained by minimizing the residual sum of squares (RSS) or, equivalently, the root mean squared
error (RMSE).

The linear regression analysis yielded a root squared error (RSE) of 0.96. However, linear regression might
face limitations when dealing with complex, nonlinear relationships between features and the target variable.

Multilayer Perceptron (MLP) Classifier

An MLP classifier is a type of artificial neural network designed for classification tasks. It consists of an input
layer, one or more hidden layers, and an output layer. Each layer has nodes with weighted connections, and
nonlinear activation functions are applied to introduce nonlinearity into the model.

The MLP classifier with a configuration of 3 nodes in one hidden layer and 2 nodes in another achieved a
higher accuracy of 98%. This suggests that the MLP classifier is better at capturing intricate patterns and
relationships within the data compared to the linear regression model.

Accuracy

The MLP classifier demonstrated superior performance with 98% accuracy, indicating its ability to handle
complex relationships in the data. In contrast, linear regression might struggle with capturing nonlinear
patterns effectively.

Flexibility

MLP classifiers, with their multilayer architecture and nonlinear activation functions, are more flexible and
capable of learning intricate representations. Linear regression, being linear, is less flexible in capturing
complex relationships.

Interpretability

Linear regression models are generally more interpretable, as the relationship between input features and the
target variable is expressed in a linear equation. MLP classifiers, with their hidden layers and complex
interactions, are often seen as less interpretable.
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6. CONCLUSION

While linear regression provides simplicity and interpretability, the MLP classifier, with its multilayer
architecture, excels in capturing complex patterns, leading to a significantly higher accuracy in our specified
scenario.
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