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Abstract— In this paper, flow of Hyperbolic tangent fluid through a porous medium in a planar channel 
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I. INTRODUCTION 

Extensive study of peristalsis has been carried out for a Newtonian with a periodic train of sinusoidal 

peristaltic waves. The inertia – free      peristaltic transport with long wavelength analysis was given by 

Shapiro et al. (1969). The early developments on the mathematical modeling and experimental fluid 

mechanics of peristaltic flow were given in a comprehensive review by Jaffrin and Shapiro (1971). 

However, the rheological properties of the fluids can affect these characteristics significantly. Moreover, 

most of the physiological fluids are known to be non-Newtonian.  It is well known that some fluids which 

are encountered in chemical applications do not adhere to the classical Newtonian viscosity prescription and 

are accordingly known as non-Newtonian fluids. One especial class of fluids which are of considerable 

practical importance is that in which the viscosity depends on the shear stress or on the flow rate. The 

viscosity of most non-Newtonian fluids, such as polymers, is usually a nonlinear decreasing function of the 

generalized shear rate. This is known as shear-thinning behavior. Such fluid is a hyperbolic tangent fluid (Ai 

and Vafai, 2005). Nadeem and Akram (2009) have first investigated the peristaltic flow of a hyperbolic 

tangent fluid in an asymmetric channel. Nadeem and Akbar (2011) have analyzed the peristaltic transport of 

a Tangent hyperbolic fluid in an endoscope numerically.  Akbar et al. (2012) have discussed the peristaltic 
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flow of a hyperbolic tangent fluid in an inclined asymmetric channel with slip and heat transfer  Based on 

Experimental controls, it was shown that the controlled application of low intensity and frequency pulsing 

magnetic fields could modify cell and tissue behavior. Biochemistry has taught us that cells are formed of 

positive or negative charged molecules. This is why these magnetic fields applied to living organisms may 

induce deep modifications in molecule orientation and in their interaction. An impulse magnetic field in the 

combined therapy of patients with stone fragments in the upper urinary tract was experimentally studied by 

Li et al. (1994). It was found that impulse magnetic field (IMF) activates impulse activity of ureteral smooth 

muscles in 100% of cases. Elshahed and Haroun (2005) have investigated the peristaltic flow of a Johnson-

Segalman fluid in a planar channel under the effect of a magnetic field. Hayat and Ali (2006) have 

investigated the peristaltic motion of a MHD third grade fluid in a tube. Hayat et al. (2007) have first 

investigated the Hall effects on the peristaltic flow of a Maxwell fluid trough a porous medium in channel. 

Magnetohydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with 

heat transfer was studied by Nadeem and Akram (2011).  Prasanth Reddy and Subba Reddy (2012) have 

analyzed the peristaltic pumping of third grade fluid in an asymmetric channel under the effect of magnetic 

fluid. Effect of hall and ion slip on peristaltic blood flow of Eyring Powell fluid in a non-uniform porous 

channel was studied by Bhatti et al. (2016).  Subba Narasimhudu and Subba Reddy (2017) have studied the 

Hall effects on the peristaltic flow of a Hyperbolic tangent fluid in a channel.  Shalini and Rajasekhar (2019) 

have investigated the effect of hall on peristaltic flow of a Newtonian fluid through a porous medium in a 

two-dimensional channel. 

Moreover, flow through a porous medium has been studied by a number of researchers employing 

Darcy’s law Scheidegger (1974).  Some studies about this point have been given by Varshney (1979) and 

Raptis and Perdikis (1983).  The first study of peristaltic flow through a porous medium is presented by 

Elsehawey et al. (1999). Elsehawey et al. (2000) investigated the peristaltic motion of a generalized 

Newtonian fluid through a porous medium. Hayat et al. (2007) have first investigated the Hall effects on the 

peristaltic flow of a Maxwell fluid trough a porous medium in channel. Peristaltic motion of a carreau fluid 

through a porous medium in a channel under the effect of a magnetic field was studied by Sudhakar Reddy 

et al. (2009). Subba Reddy and Prasnath Reddy (2010) have investigated the effect of variable viscosity on 

peristaltic flow of a Jeffrey fluid through a porous medium in a planar channel. Eldabe (2015) have studied 

the Hall Effect on peristaltic flow of third order fluid in a porous medium with heat and mass transfer.  

 

Motivated by these, the effect of slip and Hall on the peristaltic pumping of a hyperbolic tangent 

fluid in a planar channel under the assumption of long wavelength is investigated. The expressions for the 

velocity and axial pressure gradient are obtained by employing perturbation technique. The effects of 

Weissenberg number, power-law index, Darcy number, Hall parameter, Hartmann number and amplitude 

ratio on the axial pressure gradient, time-averaged volume flow rate and the friction force at the wall are 

analyzed with the help of graphs.  
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II. MATHEMATICAL FORMULATION 

We consider the peristaltic motion of a hyperbolic tangent fluid through a porous medium in a two-

dimensional channel of width 2a  under the effect of magnetic field. The flow is generated by sinusoidal 

wave trains propagating with constant speed c  along the channel walls. A uniform magnetic field 0B  is 

applied in the transverse direction to the flow. The magnetic Reynolds number is considered small and so 

induces magnetic field neglected. Fig. 1 represents the physical model of the channel. 

The wall deformation is given by               

2
( , ) cos ( )Y H X t a b X ct




      ,                (2.1) 

where b is the amplitude of the wave,   - the wave length and X and Y - the rectangular co-ordinates with 

X measured along the axis of the channel and Y perpendicular to X . Let ( , )U V  be the velocity components 

in fixed frame of reference ( , )X Y . 

The flow is unsteady in the laboratory frame ( , )X Y . However, in a co-ordinate system moving with 

the propagation velocity c (wave frame (x, y)), the boundary shape is stationary. The transformation from 

fixed frame to wave frame is given by 

  , , ,x X ct y Y u U c v V                                               (2.2) 

where ( , )u v  and ( , )U V  are velocity components in the wave and laboratory frames respectively. 
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The constitutive equation for a Hyperbolic Tangent fluid is 

     0 tanh
n

      
     
 

      (2.3) 

where   is the extra stress tensor, 
 is the infinite shear rate viscosity, 

o  is the zero shear rate viscosity,   

is the time constant, n  is the power-law index and   is defined as   

  
1 1

2 2
ij ji

i j

           (2.4) 

where   is the second invariant stress tensor. We consider in the constitutive equation (2.3) the case for 

which 0   and 1  , so the Eq. (2.3) can be written as 

        0 0 01 1 1 1
n n

n                              (2.5) 

 The above model reduces to Newtonian for 0   and 0n  . 

 The equations governing the flow in the wave frame of reference are  

0
u v

x y

 
 

 
                    (2.6) 

 
  

 

2

0

2

0

1

yxxx Bu u p
u v mv u c

x y x x y m

u c
k

 




   
        

      

 

                   (2.7) 

 
  

2

0

2

0

1

xy yy Bv u p
u v m u c v

x y y x y m

v
k

  




    
        

      



           

 (2.8) 

where  is the density, k  is the permeability of the porous medium,   is the electrical conductivity, 
0B  is 

the magnetic field strength and  m  is the Hall parameter.   

 The corresponding dimensional boundary conditions are 

xyu c    at y H    (slip condition)                 (2.9) 

0
u

y





 at 0y   (symmetry condition)       (2.10) 

here   is the slip parameter. 

Introducing the non-dimensional variables defined by  
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2

0

0

,  , ,  ,  ,  

,

x y u v a
x y u v

a c c

pa b
p

ac


  


 

    

 

 

0 0 0

,  ,  ,  ,  ,xx yyxx xy xy yy

H ct a
h t

a c c c

 
     

   
      

0

Re ,  ,  ,
ac c a q

We q
a c ac

 





            (2.11) 

into the Equations (2.6) - (2.8), reduce to (after dropping the bars) 

0
u v

x y

 
 

 
          (2.12) 

    

2

2

2

Re

1
1 1

1

xyxxu u p
u v

x y x x y

M
m v u u

Dam


 



   
      

     

   


      (2.13) 

  

3 2

2 2

2

Re

1
1

xy yyv v p
u v

x y y y y

M
m u v v

Dam

 
  

 


    
      

     

  


      (2.14) 

where  
2

k
Da

a
  is the Darcy number,  

 2 1 1xx

u
n We

x
 


      

  21 1xy

u v
n We

y x
  

  
           

 

 2 1 1yy

v
n We

y
  


      

1
2 22 2

2 2 22 2
u u v v

x y x y
   

        
        

         

 and 

0

0

M aB



  is the Hartmann number.  

Under lubrication approach, neglecting the terms of order   and Re, the Eqs. (2.13) and (2.14) 

become 

 
2

2

1 1

1
1

1

p u u
n We

x y y y

M
u

Dam

       
      

       

 
  

 

                  (2.15)  

0
p

y





                     (2.16) 
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From Eq. (2.15) and (2.16), we get  

 

 

22

2

2

2

1

1
1

1

dp u u
n nWe

dx y yy

M
u

Dam

    
     

     

 
  

 

                 (2.17)  

The corresponding non-dimensional boundary conditions in the wave frame are given by  

1 1 1
u u

u n We
y y


   

      
   

  at  

1 cos2y h x            (2.18) 

0
u

y





  at 0y          (2.19) 

The volume flow rate q  in a wave frame of reference is given by 

 
0

h

q udy  .                   (2.20) The 

instantaneous flow ( , )Q X t  in the laboratory frame is 

 
0 0

( , ) ( 1)

h h

Q X t UdY u dy q h            (2.21)The time averaged 

volume flow rate Q  over one period T
c

 
 
 

 of the peristaltic wave is given by 

0

1
1

T

Q Qdt q
T

            (2.22) 

III. SOLUTION 

Since Eq. (2.17) is a non-linear differential equation, it is not possible to obtain closed form solution. 

Therefore we employ regular perturbation to find the solution. 

For perturbation solution, we expand ,
dp

u
dx

 and q as follows  

  2

0 1u u Weu O We      (3.1) 

  20 1
dp dpdp

We O We
dx dx dx

     (3.2) 

  2

0 1q q Weq O We                 (3.3) 

Substituting these equations into the Eqs. (2.17) - (2.19), we obtain 
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3.1. System of order 0We  

   
2 2

0 0

02 2

1
1 1

1

dp u M
n u

dx Day m

 
     

  
             (3.4)  

and the respective boundary conditions are 

  0

0 1 1
u

u n
y




   


  at y h       (3.5) 

0 0
u

y





  at 0y                      (3.6) 

3.2. System of order 1We
 

 
22 2

1 1

12 2

1
1

1

oudp u M
n u

dx y y Day m

     
        

       

       (3.7) 

and the respective boundary conditions are 

 
2

01

1 1 0
uu

u n n
y y

 
 

    
  

 at y h        (3.8) 

1 0
u

y





  at 0y                      (3.9) 

3.3 Solution for system of order 0We  

Solving Eq. (3.4) using the boundary conditions (3.5) and (3.6), we obtain   

 
0

0 2

1 cosh
1 1

cosh (1 )sinh1

dp y
u

dx h n hn



  

 
   

   
     (3.10) 

where 
2

2

1 1

1 1

M

n Dam


 
  

  
  . 

The volume flow rate 
0q  is given by 

 

 0

0 3

sinh cosh (1 )sinh1

cosh (1 )sinh1

h h h n hdp
q h

dx h n hn

    

  

   
  

   
    (3.11) 

From Eq. (3.11), we have 

 
    

 

3

00
1 cosh (1 )sinh

sinh cosh (1 )sinh

q h n h n hdp

dx h h h n h

   

    

   


    
    (3.12)  

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                  © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882 

IJCRT2402253 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c189 
 

3.4 Solution for system of order 1We  

Substituting Eq. (3.10) in the Eq. (3.7) and solving the Eq. (3.7), using the boundary conditions (3.8) 

and (3.9), we obtain 

   

 

1

1 2

2

0

1

1 cosh
1

cosh (1 )sinh1

3

dp y
u

dx h n hn

dp

n dx
g y

c



  

 
  

    

 
 
 



          (3.13) 

Where   
3

1 1 cosh (1 )sinhc n h n h          

  

 

 

 

 

 

2

sinh 2 2sinh cosh

2sinh sinh 2 cosh

2 cosh 2 cosh cosh

1 sinh cosh

sinh 2sinh sinh 2

h h y

y y h

g y h h y

n h y

h y y

  

  

  

  

  

   
  

   
 

   
  

    
   
  

. 

The volume flow rate 
1q  is given by  

 

 

 
1

1 3

2

0

2

sinh cosh (1 )sinh1

cosh (1 )sinh1

h h h n hdp
q

dx h n hn

dp
c

dx

    

  

   
  

    

 
 
 

        

         (3.14) 

where
   

3

2 3 34

4 3cosh 2sinh 2 sinh

cosh 2 cosh

6 1 cosh (1 )sinh

h h h

h h

c
c n

n h n h

  

 

   

     
  

  
 

  
   

 
 
 
 

 and 

 
 

3 3

3sinh cosh 2 1
1

2sinh

h h
c n

h

 




  
     

.   

From Eq. (3.14) and (3.12), we have  
  

 

23

1 01

4

1 cosh (1 )sinh

sinh cosh (1 )sinh

q N n h n h dpdp
c

dx dxh h h n h

  

    

    
   

      
 

              

 (3.15) 

where 
   

  

3

4 2 2

4 3cosh 2sinh 2 sinh

cosh 2 cosh

6 1 cosh (1 )sinh

sinh cosh (1 )sinh

h h h

h h c
c n

n h n h

h h h n h

  

 

   

    

 
   

 
  

   
 
    

.  
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Substituting Equations (3.12) and (3.15) into the Eq. (3.2) and using the relation 0 1
dp dpdp

We
dx dx dx

   and 

neglecting terms greater than  O We , we get 

    

 

 

3

2

4 5

1 cosh (1 )sinh

sinh cosh (1 )sinh

q h n h n hdp

dx h h h n h

Wec q h c

   

    

   
 

    



         

         (3.16) 

Where 

 

2

3

5

cosh
1

(1 )sinh

cosh
sinh

(1 )sinh

h
n

n h
c

h
h h

n h




 


 

 

  
  

  
     
       

 

The dimensionless pressure rise per one wavelength in the wave frame is defined as 

 
1

0

dp
p dx

dx
            (3.17) 

 Note that, as Da  and 0   our results coincide with the results of Subba Narasimhudu and 

Subba reddy (2017). 

IV. DISCUSSIONS OF THE RESULTS 

Fig. 2 shows the variation of the axial pressure gradient 
dp

dx
 with We  for 0.5n  , 0.2m , 0.1  ,

1M  , 0.1Da  , 0.6   and 1Q   . It is observed that, the axial pressure gradient 
dp

dx
 increases with 

increasing Wiessenberg number We .  

The variation of the axial pressure gradient 
dp

dx
 with n  for 0.01We  , 0.2m , 1M  , 0.1  , 0.1Da  , 

0.6   and 1Q    is depicted in Fig. 3. It is found that, the axial pressure gradient 
dp

dx
 decreases with an 

increase in power-law index n .  

Fig. 4 illustrates the variation of the axial pressure gradient 
dp

dx
 with   for 0.5n  , 0.01We  , 1M  , 

0.2m , 0.1Da  , 0.6  and 1Q   . It is noted that, the axial pressure gradient 
dp

dx
 decreases with increasing 

slip parameter  .  

The variation of the axial pressure gradient 
dp

dx
 with Da  for 0.5n  , 0.01We  , 1M  , 0.1  , 0.2m , 

0.6  and 1Q    shown in Fig. 5. It is noted that, the axial pressure gradient 
dp

dx
 decreases with increasing 

Darcy number Da .  
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Fig. 6 depicts the variation of the axial pressure gradient 
dp

dx
 with m  for 0.5n  , 0.01We  , 1M  , 

0.1  , 0.1Da  , 0.6  and 1Q   . It is noted that, the axial pressure gradient 
dp

dx
 decreases with increasing 

Hall parameter m .  

The variation of the axial pressure gradient 
dp

dx
 with M  for 0.5n  , 0.2m , 0.01We  , 0.1  , 

0.1Da  , 0.6  and 1Q    is depicted in Fig. 7.  It is observed that, on increasing Hartmann number M  

increases the axial pressure gradient 
dp

dx
.  

Fig. 8 shows the variation of the axial pressure gradient 
dp

dx
 with   for 0.5n  , 0.2m , 0.1  , 1M 

, 0.01We  , 0.1Da   and 1Q   . It is found that, the axial pressure gradient 
dp

dx
 increases with increasing 

amplitude ratio  .  

The variation of the pressure rise p  with Q  for different values of We  with 0.5n  , 0.2m , 0.1  , 

1M  , 0.1Da   and 0.6   is shown in Fig. 9. It is noted that, the time-averaged volume flow rate Q  

increases with increasing Wiessenberg number We  in pumping  0p  , free-pumping  0p   and co-

pumping  0p   regions.   

Fig. 10 illustrates the variation of the pressure rise p  with Q  for different values of n  with 0.01We 

, 0.2m , 0.1  , 0.1Da  , 1M   and 0.6  . It is noted that, the time-averaged flow rate Q  decreases with 

increasing n  in both the pumping and free pumping regions, while it increases with increasing n  in the co-

pumping region.    

The variation of the pressure rise p  with Q  for different values of   with 0.5n  , 0.01We  , 

0.2m  , 0.1Da  , 1M   and 0.6   is presented in Fig. 11. It is found that, the time-averaged flow rate Q  

decreases with increasing   in both the pumping and the free pumping regions, while it increases with 

increasing   in the co-pumping region.    

Fig. 12 depicts the variation of the pressure rise p  with Q  for different values of Da  with 0.5n  , 

0.01We  , 0.1  , 0.2m , 1M   and 0.6   is presented in Fig. 11. It is found that, the time-averaged flow 

rate Q  decreases with increasing Da  in the pumping region, while it increases with increasing Da  in both 

the free pumping and the co-pumping regions.     

The variation of the pressure rise p  with Q  for different values of m  with 0.5n  , 0.01We  , 0.1  , 

0.1Da   , 1M   and 0.6   is illustrated in Fig. 13. It is observed that, the time-averaged flow rate Q  
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decreases with increasing m  in the pumping region, while it increases with increasing m  in both the free 

pumping and co-pumping regions.    

Fig. 14 depicts the variation of the pressure rise p  with Q  for different values of M  with 0.5n  , 

0.1  , 0.2m , 0.1Da  , 0.01We   and 0.6  .  It is observed that, the time-averaged flow rate Q  increases 

with increasing M  in the pumping region, while it decreases with increasing M  in both the free-pumping 

and co-pumping regions.    

The variation of the pressure rise p  with Q  for different values of   with 0.5n  , 0.2m , 0.1  , 

0.1Da  , 1M   and 0.01We   is depicted in Fig. 15. It is found that, the time-averaged flow rate Q  increases 

with increasing   in both the pumping and free pumping regions, while it decreases with increasing n  in the 

co-pumping region for chosen  0p  .    

 

V. CONCLUSIONS 

In this chapter, we studied the effects of slip and Hall on the peristaltic flow of a hyperbolic tangent 

fluid through a porous medium in a planar channel under the assumption of long wavelength. The 

expressions for the velocity and axial pressure gradient are obtained by employing perturbation technique. It 

is found that, the axial pressure gradient and time-averaged flow rate in the pumping region increases with 

increasing the Weissenberg number We , the Hartmann number M  and the amplitude ratio  , while they 

decreases with increasing power-law index n , slip parameter  , Darcy number Da  and Hall parameter m .  

 

Fig. 2 The variation of the axial pressure gradient 
dp

dx
 with We  for 0.5n  , 0.2m , 0.1  , 1M  , 0.1Da  , 

0.6   and 1Q   .     
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Fig. 3 The variation of the axial pressure gradient 
dp

dx
 with n  for 0.01We  , 0.2m , 1M  , 0.1  ,  0.1Da  , 

0.6   and 1Q   .  

 

Fig. 4 The variation of the axial pressure gradient 

dp

dx
 with   for 0.5n  , 0.01We  , 1M  , 0.2m , 0.1Da  , 0.6   and 1Q   .     
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Fig. 5 The variation of the axial pressure gradient 
dp

dx
 with Da  for 0.5n  , 0.01We  , 1M  , 0.2m , 0.1  ,  

0.6   and 1Q   .     

 

 

Fig. 6 The variation of the axial pressure gradient 
dp

dx
 with m  for 0.5n  , 0.01We  , 1M  , 0.1  , 0.1Da  , 

0.6   and 1Q   .     
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Fig. 7 The variation of the axial pressure gradient 

dp

dx
 with M  for 0.5n  , 0.2m , 0.01We  , 0.1Da  , 0.1  , 0.6   and 1Q   .     

 

Fig. 8 The variation of the axial pressure gradient 
dp

dx
 with   for 0.5n  , 0.2m , 1M  , 0.1  , 0.1Da  , 

0.01We   and 1Q   .     
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Fig. 9 The variation of the pressure rise p  with Q  for different values of We  with 0.5n  , 0.1  , 0.2m , 

0.1Da  , 1M   and 0.6  .     

 

 

 Fig. 10 The variation of the pressure rise p  with Q  for different values of n  with 0.01We  , 0.1  , 0.2m

, 0.1Da  , 1M   and 0.6  .     
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Fig. 11 The variation of the pressure rise p  with Q  for different values of   with 0.5n  , 0.2m ,  0.01We 

, 0.1Da  , 1M   and 0.6  .     

 

Fig. 12 The variation of the pressure rise p  with Q  for different values of Da  with 0.5n  , 0.2m ,  

0.01We  , 0.1  , 1M   and 0.6  .     
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Fig. 13(i) The variation of the pressure rise p  with Q  for different values of m  with 0.5n  , 0.1  ,  

0.01We  , 0.1Da  , 1M   and 0.6  .     

 

 Fig. 13(ii) Enlargement of Fig. 13(i). 

 

 Fig. 14 The variation of the pressure rise p  with Q  for different values of M  with 0.5n  , 0.1  , 0.2m , 

0.1Da  , 0.01We   and 0.6  .     
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Fig. 15 The variation of the pressure rise p  with Q  for different values of   with 0.5n  , 0.1  , 0.2m , 

0.1Da  , 1M   and 0.01We  .     
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