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ABSTRACT_ Air pollution and its prevention are 

constant scientific challenges during the last 

decades. However, they remain huge global 

problems. Affecting the human respiratory and 

cardiovascular system, they are a cause of increased 

mortality and increased risk for diseases for the 

population. Many efforts from both local and state 

governments are done to understand and predict the 

air quality index aiming improved public health. 

This paper is one scientific contribution toward this 

challenge. We compare four simple machine 

learning algorithms, Liner Regression, Lacco CV 

Regressor, support vector machines, and decision 

tree. The following dataset "India Air Quality Data" 

has been analyzed. The results are promising and it 

was proven that implementation of these algorithms 

could be very efficient in predicting air quality 

index. 
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I. Introduction 

Artificial intelligence and machine learning are 

areas of the biggest rise in the last year. The science 

of artificial intelligence where the system decides 

on its own, instead of working only by orders given 

by programmers as traditional programming works, 

gradually started influencing all aspects of our life. 

Starting from early-stage startup companies and 

ending to large platform vendors, for all of them, 

artificial intelligence and its part machine learning 

have become the key focus areas.  

Machine learning is an area where a system that 

implements artificial intelligence gathers data from 

sensors in an environment and learns how to act. 

One of the reasons why we choose machine learning 

to predict the air quality index was the ability to 

adapt machine learning (ML) algorithms.  

In this paper, three supervised learning algorithms 

Liner Regressor (LR), Support Vector Machines 

(SVM) and Decision Tree (DT), and Laso CV are 

compared.  

Many researchers implement some of the algorithms 

we are using, such as NN [1], NN and fuzzy 

systems [2], SVM [3], SVM for regression [4], 

fuzzy logic [5], DT [6], k-NN [7], but none of them 

compare their performance as one research for all of 

them four at the same conditions and the same data.  

Adverse health impacts from exposure to outdoor 

air pollutants are complicated functions of pollutant 

compositions and concentrations [1]. Major outdoor 

air pollutants in cities include ozone (O3), particle 

matter (PM), sulfur dioxide (SO2), carbon 

monoxide (CO), nitrogen oxides (NOx), volatile 

organic compounds (VOCs), pesticides, and metals, 

among others [2,3]. Increased mortality and 

morbidity rates have been found in association with 

increased air pollutants (such as O3, PM and SO2) 

concentrations [3–5]. According to the report from 

the American Lung Association [6], a 10 parts per 

billion (ppb) increase in the O3 mixing ratio might 

cause over 3700 premature deaths annually in the 

United States (U.S.). Chicago, as for many other 

megacities in U.S., has struggled with air pollution 

as a result of industrialization and urbanization. 

Although O3 precursor (such as VOCs, NOx, and 

CO) emissions have significantly decreased since 

the late 1970s, O3 levels in Chicago have not been 

in compliance with standards set by the 

Environmental Protection Agency (EPA) to protect 

public health [7]. Particle size is critical in 

determining the particle deposition location in the 

human respiratory system [8]. PM2.5, referring to 

particles with a diameter less than or equal to 2.5 

um, has been an increasing concern, as these 

particles can be deposited into the lung gas-

exchange region, the alveoli [9]. The U.S. EPA 

revised the annual standard of PM2.5 by lowering 
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the concentration to 12 ug/m3 to provide improved 

protection against health effects associated with 

long- and short-term exposure [10]. SO2, as an 

important precursor of new particle formation and 

particle growth, has also been found to be 

associated with respiratory diseases in many 

countries [11–15]. Therefore, we selected O3, 

PM2.5 and SO2 for testing in this study. 

Meteorological conditions, including regional and 

synoptic meteorology, are critical in determining the 

air pollutant concentrations [16–21]. According to 

the study by Holloway et al. [22], the O3 

concentration over Chicago was found to be most 

sensitive to air temperature, wind speed and 

direction, relative humidity, incoming solar 

radiation, and cloud cover. For example, a lower 

ambient temperature and incoming solar radiation 

slow down photochemical reactions and lead to less 

secondary air pollutants, such as O3 [23]. Increasing 

wind speed could either increase or decrease the air 

pollutant concentrations. For instance, when the 

wind speed was low (weak dispersion/ventilation), 

the pollutants associated with traffic were found at 

the highest concentrations [24,25]. However, strong 

wind speeds might form dust storms by blowing up 

the particles on the ground [26]. High humidity is 

usually associated with high concentrations of 

certain air pollutants (such as PM, CO and SO2) but 

with low concentrations of other air pollutants (such 

as NO2 and O3) because of various formation and 

removal mechanisms [25]. In addition, high 

humidity can be an indicator of precipitation events, 

which result in strong wet deposition leading to low 

concentrations of air pollutants [27]. Because 

various particle compositions and their interactions 

with light were found to be the most important 

factors in attenuating visibility [28,29], low 

visibility could be an indicator of high PM 

concentrations. Cloud can scatter and absorb solar 

radiation, which is significant for the formation of 

some air pollutants (e.g., O3) [23,30]. Therefore, 

these important meteorological variables were 

selected to predict air pollutant concentrations in 

this study. Statistical models have been applied for 

air pollution prediction on the basis of 

meteorological data [31–35]. However, existing 

studies on statistical modeling have mostly been 

restricted to simply utilizing standard classification 

or regression models, which have neglected the 

nature of the problem itself or ignored the 

correlation between sub-models in different time 

slots. On the other hand, machine learning 

approaches have been developing for over 60 years 

and have achieved tremendous success in a variety 

of areas [36–41]. 

 

 

There exist various new tools and techniques 

invented by the machine learning community, 

which allow for more refined modeling of a specific 

problem. In particular, model regularization is a 

fundamental technique for improving the 

generalization performance of a predictive model. 

Accordingly, many efficient optimization 

algorithms have been developed for solving various 

machine learning formulations with different 

regularizations in this study, we focus on refined 

modeling for predicting hourly air pollutant 

concentrations on the basis of historical 

metrological data and air pollution data. A striking 

difference between this work and the previous 

works is that we emphasize how to regularize the 

model in order to improve its generalization 

performance and how to learn a complex 

regularized model from big data with 

advanced optimization algorithms. We collected 10 

years’ worth of meteorological and air pollution 

data from the Chicago area. The air pollutant data 

was from the EPA [42,43], and the meteorological 

data was from MesoWest [44]. From their databases, 

we fetched consecutive hourly measurements 

of various meteorological variables and pollutants 

reported by two air quality monitoring stations and 

two air pollutant monitoring sites in the Chicago 

area. Each record of hourly measurements included 

meteorological variables such as solar radiation, 

wind direction and speed, temperature, and 

atmospheric pressure; as well as air pollutants, 

including PM2.5, O3, and SO2. We used two 

methods for model regularization: (i) explicitly 

controlling the number of parameters in the model; 

(ii) explicitly enforcing a certain structure in the 

model parameters. For controlling the number of 

parameters in the model, we compared three 

different model formulations, which can be 

considered in a unified multi-task learning (MTL) 

framework with a diagonal- or full-matrix model. 

For enforcing the model matrix into a certain 

structure, we have considered the relationship 

between prediction models of different hours and 

compared three different regularizations with 

standard Frobenius norm regularization. The 

experimental results show that the model with the 

intermediate size and the proposed regularization, 

which enforces the prediction models of two 

consecutive hours to be close, achieved the best 

results and was far better than standard regression 

models. We have also developed efficient 

optimization algorithms for solving different 

formulations and demonstrated their effectiveness 

through experiments. The rest of the paper is 

organized as follows. In Section 2, we discuss 

related work. In Section 3, we describe the data 

collection and preprocessing. In Section 4, we 

describe the proposed solutions, including 
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formulations, regularizations and optimizations. In 

Section 5, we present the experimental studies and 

the results. In Section 6, we give conclusions and 

indicate future work. 

II. Related Work 

Many previous works have been proposed to apply 

machine learning algorithms to air quality 

predictions. Some researchers have aimed to predict 

targets into discretized levels. Kalapanidas et al. [32] 

elaborated effects on air pollution only from 

meteorological features such as temperature, wind, 

precipitation, solar radiation, and humidity and 

classified air pollution into different levels (low, 

med, high, and alarm) by using a lazy learning 

approach, the case-based reasoning (CBR) system. 

Athanasiadis et al. [45] employed the s-fuzzy lattice 

neurocomputing classifier to predict and categorize 

O 3 concentrations into three levels (low, mid, and 

high) on the basis of meteorological features and 

other pollutants such as SO2, NO, NO2, and so on. 

Kurt and Oktay [33] modeled geographic 

connections into a neural network model and 

predicted daily concentration levels of SO2, CO, 

and PM10 3 days in advance. However, the process 

of converting regression tasks to classification tasks 

is problematic, as it ignores the magnitude of the 

numeric data and consequently is inaccurate. Other 

researchers have worked on predicting 

concentrations of pollutants. Corani [46] worked on 

training neural network models to predict hourly O3 

and PM10 concentrations on the basis of data from 

the previous day. Mainly compared were the 

performances of feed-forward neural networks 

(FFNNs) and pruned neural networks (PNNs). 

Further efforts have been made on FFNNs: Fu et al. 

[47] applied a rolling mechanism and gray model to 

improve traditional FFNN models. Jiang et al. [48] 

explored 

multiple models (physical and chemical model, 

regression model, and multiple layer perceptron) on 

the air pollutant prediction task, and their results 

show that statistical models are competitive with the 

classical physical and chemical models. Ni, X. Y. et 

al. [49] compared multiple statistical models on the 

basis of PM2.5 data around Beijing, and their results 

implied that linear regression models can in some 

cases be better than the other models. MTL focuses 

on learning multiple tasks that have commonalities 

[50] that can improve the efficiency and accuracy of 

the models. It has achieved tremendous successes in 

many fields, such as natural language processing 

[37], image recognition [38], bioinformatics [39,40], 

marketing prediction [41], and so on. A variety of 

regularizations can be utilized to enhance the 

commonalities of the related tasks, including the 

`2,1-norm [51], nuclear norm [52], spectral norm 

[53], Frobenius norm [54], and so on. However, 

most of the former machine learning works on air 

pollutant prediction did not consider the similarities 

between the models and only focused on improving 

the model performance for a single task, that is, 

improving prediction performance for each hour 

either separately or identically. 

Therefore, we decided to use meteorological and 

pollutant data to perform predictions of hourly 

concentrations on the basis of linear models. In this 

work, we focused on three different prediction 

model formulations and used the MTL framework 

with different regularizations. To the best of our 

knowledge, this is the first work that has utilized 

MTL for the air pollutant prediction task. We 

exploited analytical approaches and optimization 

techniques to obtain the optimal solutions. The 

model’s evaluation metric was the root-mean-

squared error (RMSE). 

 

III. Methodology 

There are two primary phases in the system: 1. 

Training phase: The system is trained by using the 

data in the data set and fits a model (line/curve) 

based on the algorithm chosen accordingly. 2. 

Testing phase: the system is provided with the 

inputs and is tested for its working. The accuracy is 

checked. And therefore, the data that is used to train 

the model or test it, has to be appropriate. The 

system is designed to detect and predict AQI levels 

and hence appropriate algorithms must be used to 

do the two different tasks. Before the algorithms are 

selected for further use, different algorithms were 

compared for their accuracy. The well-suited one 

for the task was chosen. 

 

IV. Data preprocessing and normalization 

a) Data Source  

To predict the air quality index of a particular 

region, we need the pollutant concentration of all 

the gases which will be available in the cpcb.nic.in 

the website, which holds all the data that pollutes 

the cities every year. The AQI formulae will be 

applied to calculate the AQI. Datasets will be 

imported inside the directory and null values will be 

set to the infinite data. The predicted and actual 

values will be represented using the Bar-graph 

analysis to remove the outliers. 
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Fig 1: Flow Diagram 

 

b) AQI Calculation 

The AQI is an index for reporting daily air quality. 

It tells you how clean or polluted your air is, and 

what associated health effects might be a concern 

for you. The AQI focuses on health affects you may 

experience within a few hours or days after 

breathing polluted air. EPA calculates the AQI for 

five major air pollutants regulated by the Clean Air 

Act: ground-level ozone, particle pollution Air 

quality directly affects (also known as particulate 

quality of life. matter), carbon monoxide, sulfur 

dioxide, and nitrogen dioxide. For each of these 

pollutants, EPA has established national air quality 

standards to protect public health. 

 
Fig 2: AQI formula 

AQI is calculated in the range of 0-500, we are 

scaling the values according to the AQI calculation 

formula 

The index category for SO2 is scaled between 0-

1600. So on applying the formula which is used to 

calculate AQI 

The index category for NO2 is scaled between 0-

400. So on applying the formula which is used to 

calculate AQI 

The index category for rspm is scaled between 0-

400. So on applying the formula which is used to 

calculate AQI 

The index category for rspm is scaled between 0-

430. So on applying the formula which is used to 

calculate AQI 

The index category for rspm is scaled between 0-

430. So on applying the formula which is used to 

calculate AQI 

The purpose of the AQI is to understand what local 

air quality means to your health. Also, it is scaled 

from 0 to 500. 

 

V. Proposed System 

 

Step 1: Extraction of the historical dataset. 

Step 2: Data preprocessing and normalization.  

Step 3: Training ad TestingModel  

Step 4: Algorithms  

Step 5: Details of Hardware & Software with GIU  

 

1. Extraction of the historical dataset 

a) Missing values being filled in columns 

Since we already know that our dataset contains 

missing values, we need to fill them for our further 

analysis. We will be using Imputation to fill in our 

missing values. Imputation is the process of 

replacing missing data with substituted values. 

Because missing data can create problems for 

analyzing data, imputation is seen as a way to avoid 

pitfalls involved with listwise deletion of cases that 

have missing values. 

 

b) Understanding the pollutants briefly. 

NO2: Nitrogen Dioxide and is emitted mostly from 

combustion from power sources or transport. 

SO2: Sulphur Dioxide and is emitted mostly from 

coal burning, oil burning, and manufacturing of 

Sulphuric acid. 

spm: Suspended particulate matter and is known to 

be the deadliest form of air pollution. They are 

microscopic in nature and are found to be suspended 

in the earth's atmosphere. 

rspm: Respirable suspended particulate matter. A 

subform of spm and are responsible for respiratory 

diseases. 

pm2_5: Suspended particulate matter with 

diameters less than 2.5 micrometers. They tend to 

remain suspended for longer durations and are 

potentially very harmful. 

VI. CONCLUSIONS 

We have successfully performed a comparative 

study of the algorithms for this thesis. SVR has the 

best results as compared to the other algorithms. 

The linear Regression algorithm has the worst 

accuracy. Thus, by performing a comparative study 

of algorithms we have successfully boosted the 

overall accuracy of the system. In the future, more 

complex or hybrid-based boosting algorithms can be 

used for obtaining higher accuracy. 
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