
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a799

hAirLenGth Chainage Storage Wage (GLH)

1Mr. Buddh Bhagwan Sahu, 2Assistant Professor

Dept. of Computer Science & Engineering, Columbia Institute of Engineering and Technology,

Near Vidhan Sabha, Tekari-493111, Raipur (C.G.), India3

CHAPTER-01

Abstract: Hair Length Technology is one of the techniques of storage of data in the form of computer

language. It will store the data as like a hair length. Dot bounded or chainage methods it’s stabled in the one

small point and can be able to store more data from the other ROM or Storage devices. The mapping and

storage is a major different from the other methodology that technique is more challenging and cannot be

defeat by any other formula at that time. The digital data will be stored in the form of hair grow. Hair grow

on the route like data will be stored on the route occupied less point spaces & can be stored big data. The

basic understanding of how software functions is helpful for anyone who interacts with technology. With a

background in programming, you can get an implantation by coding, designing software, data architecture,

or creating intuitive user interfaces.

Keywords: Procedural programming languages, Functional programming languages, Object-oriented

programming languages, Scripting languages, Logic programming languages, Front-end language, Back-

end languages.

INTRODUCTION

While you'll find dozens of ways to classify various

programming languages, they generally we are

describing and implementing using following key

and programming languages that will be PPl, FPL,

OOPL, SL, LPL, FeL, BeL etc.. A procedural

language follows a sequence of statements or

commands in order to achieve a desired output

functional languages focus on the output of

mathematical functions and evaluations [5].

This type of language treats a program as a group of

objects composed of data and program elements,

known as attributes and methods. Objects can be

reused within a program or in other programs.

Scripting languages to automate repetitive tasks,

manage dynamic web content, or support processes

in larger applications. Some common scripting

languages include [7].

A logic programming language expresses a series of

facts and rules to instruct the computer on how to

make decisions. The front end deals with all of the

text, colours, buttons, images, and navigation that the

user will face when navigating your website or

application. Back-end languages deal with storage

and manipulation of the server side of software. By

combining all of the above methods we can

implement Hair Length Chainage Storage wage.

The optimization of distributed-ROM-based finite

state machine (FSM) implementations as an

alternative to conventional implementations based on

look-up tables (LuT). In distributed-ROM

implementations with constant output value is called

constant look-up tables and LuT’s with the same

content is called equivalent look-up tables can be

saved [6]. A popular test of working memory is the

complex span task, in which encoding of memoranda

alternates with processing of distracters. A recent

model of complex span performance, the Time-

Based-Resource-Sharing (TBRS) model has

seemingly accounted for several crucial findings, in

particular the intricate trade-off between

deterioration and restoration of memory in the

complex span task working memory has often been

characterized as a system for the simultaneous

maintenance and processing of information [4].

This working definition is reflected in the complex

span paradigm, which has become the most popular

method for psychometric measurement of working

memory capacity

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a800

And which also serves in many experimental

investigations of working memory processed in

reading span, participants read a series of sentences

and try to remember the last word of each sentence.

The number of sentences in each series is gradually

increased, and a participant’s span is determined as

the maximum number of sentence-final words they

can recall correctly in the order of presentation and

capping more size of stage space.

It is not a solution to increase its storage capacities

why we should not try to increase its functional

medium. In this research we are giving theory how to

increase storage in the different medium i.e.

hAirLenGth Chainage Storage Wage [9].

DISTRIBUTED-ROM-BASED IMPLEMENTATION

The (The time-based resource-sharing theory) theory makes the following basic assumptions:

Representations in working memory decay over time, but they can be refreshed by directing

attention to them. Attention is conceptualized as a domain-general mechanism that can be devoted

to only one process at a time, and hence creates a bottleneck. In tasks like the complex span task,

the cognitive system must devote attention to carrying out each step of the processing task

interleaved with encoding of the memoranda [3]. In between processing steps, however, the

attention mechanism can be used to refresh memory items. Thus, during each processing period the

attention bottleneck is assumed to rapidly switch between carrying out a processing step and

refreshing one or more memory items. Each series of steps is called a procedure, and a program

written in one of these languages will have one or more procedures within it. The architecture of

the time-based resource-sharing theory is a two-layer connectionist network with one layer

dedicated to the representations of positions and the other to the representation of the items. The

two layers are fully interconnected, and their weights initialized at zero and commonly use of

procedural languages includes [9]:

1. C/C++

2. Java

3. Pascal

4. BASIC

Each function–a reusable module of code–performs a specific task and returns a result. The result

will vary depending on what data you input into the function. For calculating the weight changes

for response suppression, only the activation of the item selected for output is maintained in the

item layer on popular functional programming languages include [2]:

1. Scala

2. Erlang

3. Haskell

4. Elixir

5. F#

This makes it a popular language type for complex programs, as code is easier to reuse and scale. In

between encoding of items, a series of processing operations must be carried out like simple

arithmetic computations or two-alternative forced-choice tasks common object-oriented languages

include [10]:

1. Java

2. Python

3. PHP

4. C++

5. Ruby

Programmers use scripting languages to automate repetitive tasks, manage dynamic web content, or

support processes in larger applications. To calculate the necessary variables for the simulations,

we start from an estimate of mean processing duration for a given experimental condition scripting

languages include:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN:

2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a801

1. PHP

2. Ruby

3. Python

4. Perl

5. Node.js

We do not use the mean duration as the duration of each individual processing step, because we

want to simulate a distribution of durations of attention capture, analogous to the distribution of

durations of other processes A logic programming language expresses a series of facts and rules to

instruct the computer on how to make decisions like examples of logic languages include [11]:

1. Prolog

2. Absys

3. Datalog
4. Alma-0

TECHNICAL IMPLEMENTATIONS

The complex span paradigm requires many

modelling decisions about which processes

occur when. Among the most important initial

decisions is a consideration of the nature of task

switching in a complex span task. Any complex

span task involves at least two tasks, namely

encoding of the memoranda and processing of

the distracters. Each item peaks when it is

refreshed and drops again while other items are

refreshed [12].

Occasionally, an item fails to be retrieved for

refreshing and drops out; the gradual decelerated

decline illustrates the effect of decay when

unbridled by refreshing.

After the final burst of processing operations,

items are recalled and then suppressed (which

can reduce their strength to be below baseline;

thus the beginning of recall can be identified by

the “below-zero” dips of activation). During

recall of each item, the remaining items continue

to decay. Each trial begins with the encoding of

the first memory item by associating it to the

first position marker [1].

After encoding of the first item, refreshing can

only apply to that item, so refreshing effectively

means continued encoding of the first item,

which is of little consequence because the item

has reached nearly asymptotic memory strength

already [14].

During the presentation time of later memory

items, refreshing in the remaining presentation

time includes earlier items and thereby

contributes to counteracting decay of these

earlier items. We instantiated a refreshing

schedule that started from the first list item and

proceeded.

in forward order, resetting to the first item

whenever refreshing was interrupted.

The decision to use this refreshing schedule was

not arbitrary but the selection was based on

consideration of several alternatives refreshing

Schedules selective-refreshing scheme would

still require a stepping through the list to retrieve

the items in order before their strength can be

ascertained [15]. Thus, the processing steps of

the selective-refreshing approach are identical to

the one we implemented, and its outcome is

identical as well, because items whose strength

is close to asymptote do not gain strength from

refreshing whether they are skipped or not. One

consequence of cumulative refreshing is that the

distribution of refreshing time over memory

items across a trial is very uneven. Before the

second item is presented, all refreshing is

concentrated on the first item. After presentation

of the second item, refreshing time is divided

roughly equally between the first two items

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a802

 Fig.: HairLenGth Chainage Storage Wage

This memory also displays write-before-read behaviour, common in static memories. What is that? It means

that during a write-cycle the data being returned is the same as that being written. Without this, the data

returned through the data out port would be the data just being overwritten. Not ideal. This model

synthesises into internal block memories in the majority of FPGA architectures. To summarise the key code

points from this RAM model, we have data edge to storage edge on end point [16]. That end point will

calculate the forwarded data in read mode, read mode will go through the read and write mode to chainage

the forwarded data in between route ES/1...n-UD/1----n data edge.

Data edge and storage edge to inflector CU-Dryer (Cluster Up) will host or work as a consortium like sever

data. Before releasing the end data it will leave here clone storage ball for the forwarded data point to U-D

hanger (Up-Down Data Hanger). For example that VHDL is resolving the many types of data or

RAM/ROM/Cache storage technology and its technical implementations using its tools. That is taken for the

learning and understanding purposes [13].

entity sync_ram is

 port (

 clock : in std_logic;

 we : in std_logic;

 address : in std_logic_vector;

 datain : in std_logic_vector;

 dataout : out std_logic_vector

);

Unconstrained ports

Std_logic_vector to integer conversion

Data E-S-Edge

Data Clone-Storage Ball

Data Route U-D Hanger Route ES/1...n-UD/1...n

Data E-S-Edge-

Inflector CU-Dryer

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a803

Write-before-read

End of the classifying the implementation of storage method and clarifying its data signal over data routes.

This VHDL post presents a VHDL code for a single-port RAM (Random Access Memory) [18][17]. The

VHDL test bench code is also provided to test the single-port RAM in Xilinx ISIM. The RAM's size is

128x8 bit. You also can use many libraries like IEEE, Kaggle, and GitHub etc...

end entity sync_ram;

architecture RTL of sync_ram is

 type ram_type is array (0 to (2**address'length)-1) of std_logic_vector(datain'range);

 signal ram : ram_type;

 signal read_address : std_logic_vector(address'range);

begin

1. RAM_CLOCK: the clock signal for sequentially writing data to the single-port RAM.

2. RAM_DATA_IN: 8-bit input data to be written to RAM at the provided input address RAM_ADDR

when it is enabled.

3. RAM_WR: Write enable signal for writing to RAM, only if RAM_WR = 1, RAM_DATA_IN is

written to the RAM at the rising edge of the clock signal.

4. RAM_ADDR: 6-bit Address where 8-bit input data are written to and data are read out.

5. RAM_DATA_OUT: 8-bit output data read out from the provided input address RAM_ADDR.

Logic Design to talk about the implementation of many simply types of RAM in the Hardware Description

Language (HDL) that we covered during my series which is VHDL! I promised to do Verilog will come in

to understand what I will be talking about I highly suggest you to refresh your knowledge using my series

that contains simulating the circuits and even the implementation of more complex units like the ALU that

does mathematical operations for CPU's!. RAM is defined as Random-Access Memory and allows us to

read and write information to a physical location inside of the RAM which is the so called memory array

[20][19].

-- A 128x8 single-port RAM in VHDL

entity Single_port_RAM_VHDL is

port(

 RAM_ADDR: in std_logic_vector(6 downto 0); -- Address to write/read RAM

 RAM_DATA_IN: in std_logic_vector(7 downto 0); -- Data to write into RAM

 RAM_WR: in std_logic; -- Write enable

 RAM_CLOCK: in std_logic; -- clock input for RAM

 RAM_DATA_OUT: out std_logic_vector(7 downto 0) -- Data output of RAM

);

end Single_port_RAM_VHDL;

architecture Behavioral of Single_port_RAM_VHDL is

-- define the new type for the 128x8 RAM

type RAM_ARRAY is array (0 to 127) of std_logic_vector (7 downto 0);

-- initial values in the RAM

signal RAM: RAM_ARRAY :=(

 x"55",x"66",x"77",x"67",-- 0x00:

 x"99",x"00",x"00",x"11",-- 0x04:

 x"00",x"00",x"00",x"00",-- 0x08:

 x"00",x"00",x"00",x"00",-- 0x0C:

 x"00",x"00",x"00",x"00",-- 0x10:

 x"00",x"00",x"00",x"00",-- 0x14:

 x"00",x"00",x"00",x"00",-- 0x18:

 x"00",x"00",x"00",x"00",-- 0x1C:

 x"00",x"00",x"00",x"00",-- 0x20:

 x"00",x"00",x"00",x"00",-- 0x24:

 x"00",x"00",x"00",x"00",-- 0x28:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a804

 x"00",x"00",x"00",x"00",-- 0x2C:

 x"00",x"00",x"00",x"00",-- 0x30:

 x"00",x"00",x"00",x"00",-- 0x34:

 x"00",x"00",x"00",x"00",-- 0x38:

 x"00",x"00",x"00",x"00",-- 0x3C:

 x"00",x"00",x"00",x"00",-- 0x40:

 x"00",x"00",x"00",x"00",-- 0x44:

 x"00",x"00",x"00",x"00",-- 0x48:

 x"00",x"00",x"00",x"00",-- 0x4C:

 x"00",x"00",x"00",x"00",-- 0x50:

 x"00",x"00",x"00",x"00",-- 0x54:

 x"00",x"00",x"00",x"00",-- 0x58:

 x"00",x"00",x"00",x"00",-- 0x5C:

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00"

);

begin

process(RAM_CLOCK)

begin

 if(rising_edge(RAM_CLOCK)) then

 if(RAM_WR='1') then -- when write enable = 1,

 -- write input data into RAM at the provided address

 RAM(to_integer(unsigned(RAM_ADDR))) <= RAM_DATA_IN;

 -- The index of the RAM array type needs to be integer so

 -- converts RAM_ADDR from std_logic_vector -> Unsigned -> Interger using numeric_std library

 end if;

 end if;

end process;

 -- Data to be read out

 RAM_DATA_OUT <= RAM(to_integer(unsigned(RAM_ADDR)));

end Behavioral;

RAM is a synchronous circuit which means that the information will be stored into it (or the requested send

to the output) after a clock event. If the application we have needs to be able to read at the same clock

without having to wait for a clock event or even a whole clock period, then we can simply define only a

write signal (1 -> write, 0 -> not write) and make the output show us directly what the specified address has,

which means that we read all the times, without having to specify that we want to! Keep in mind that this

implementation should contain a memory enable signal [21].

1. Data Input -> information to write

2. Data Output -> information to read

3. Address -> we need to know where to read or write

4. Read/Write -> specifying if we want to read or write from an address

5. Enable -> we enable the RAM only when needed to "save power".

6. Clock -> RAM is of course a synchronous circuit and so needs a Clock Input.

Depending on the application we may want to read and write at the same time, and maybe even on different

addresses. This can of course be done by having 2 addresses and two separate read and write signals. This

means that RAM can also be splitted into these categories:

1. Single-Port RAM with separate read and write signals (no enable needed)

2. Single-Port RAM with a single read/write signal and RAM enable

3. Dual-Port RAM with separate signals (that may be combined R/W signals) for each "line".

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a805

We can of course continue on and insert 3, 4 or even more lines as we wish, but I guess that after a point a

second or even third memory might be better [22].

-- VHDL testbench code for the single-port RAM

ENTITY tb_RAM_VHDL IS

END tb_RAM_VHDL;

ARCHITECTURE behavior OF tb_RAM_VHDL IS

 -- Component Declaration for the single-port RAM in VHDL

 COMPONENT Single_port_RAM_VHDL

 PORT(

 RAM_ADDR : IN std_logic_vector(6 downto 0);

 RAM_DATA_IN : IN std_logic_vector(7 downto 0);

 RAM_WR : IN std_logic;

 RAM_CLOCK : IN std_logic;

 RAM_DATA_OUT : OUT std_logic_vector(7 downto 0)

);

 END COMPONENT;

 --Inputs

 signal RAM_ADDR : std_logic_vector(6 downto 0) := (others => '0');

 signal RAM_DATA_IN : std_logic_vector(7 downto 0) := (others => '0');

 signal RAM_WR : std_logic := '0';

 signal RAM_CLOCK : std_logic := '0';

 --Outputs

 signal RAM_DATA_OUT : std_logic_vector(7 downto 0);

 -- Clock period definitions

 constant RAM_CLOCK_period : time := 10 ns;

BEGIN

 -- Instantiate the single-port RAM in VHDL

 uut: Single_port_RAM_VHDL PORT MAP (

 RAM_ADDR => RAM_ADDR,

 RAM_DATA_IN => RAM_DATA_IN,

 RAM_WR => RAM_WR,

 RAM_CLOCK => RAM_CLOCK,

 RAM_DATA_OUT => RAM_DATA_OUT

);

 -- Clock process definitions

 RAM_CLOCK_process :process

 begin

 RAM_CLOCK <= '0';

 wait for RAM_CLOCK_period/2;

 RAM_CLOCK <= '1';

 wait for RAM_CLOCK_period/2;

 end process;

 stim_proc: process

 begin

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a806

 RAM_WR <= '0';

 RAM_ADDR <= "0000000";

 RAM_DATA_IN <= x"FF";

 wait for 100 ns;

 -- start reading data from RAM

 for i in 0 to 5 loop

 RAM_ADDR <= RAM_ADDR + "0000001";

 wait for RAM_CLOCK_period*5;

 end loop;

 RAM_ADDR <= "0000000";

 RAM_WR <= '1';

 -- start writing to RAM

 wait for 100 ns;

 for i in 0 to 5 loop

 RAM_ADDR <= RAM_ADDR + "0000001";

 RAM_DATA_IN <= RAM_DATA_IN-x"01";

 wait for RAM_CLOCK_period*5;

 end loop;

 RAM_WR <= '0';

 wait;

 end process;

END;

In VHDL we will of course only implement static RAM that is build up of memory cells and so creates a

memory array.

DISTRIBUTED-ROM ARCHITECTURES

We will use the multiple methods on HairLenGth Chainage Storage Wage (GLH). ROM is Read-Only-

Memory which means that predefined data/information (mostly) is written inside of it and we can only read

this information and to do so we have to give an address, which corresponds to the point in the storage-array

in which the needed data is stored [23]. This makes ROM non-volatile memory because it keeps the

information stored "forever", unlike RAM which loses the information on a power loss or reset. So, ROM

refers to memory that is hard-wired and cannot be changed after manufacture.

Fig.: Common ROM Architecture.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a807

Modifying the data stored inside of a ROM is very difficult, slow and sometimes not even possible. That's

why such memory is mostly used to store firmware which doesn't need frequent updates [24]. Firmware is

software directly binded/bounded to the Hardware and mostly contains programs that need to be run at the

system start (BIOS). But, restricting ROM from being altered in the manufacturing process makes it useless

when an update is required to fix a security issue or bug that's been detected afterwards.

As you can see from the above image, every one-wire device comes in an open drain configuration which

means every one-wire device (O-W-D) on the 1-wire bus can pull the voltage to the ground, but no device

can drive the bus high and that is why every 1-wire bus includes a pull-up resistor, the resistor value need to

be adjusted according to the number of devices that are connected to the bus [25]. A 1-wire device

transmits, receives, and provides power to the devices with the same bus so it becomes important to set the

resistor value according to the number of devices that are connected to the bus. The resistor value (RV) can

vary from a couple of hundred ohms to kilo/h/m/s.

As a 1 wire bus is open-drain there is a MOSFET in the I/O line to pull the bus down when it's time to send

data and there is also a buffer B1 to square up the signal in the I/O line. For power, a diode and a capacitor

are used. This is the so-called parasite power and with the help of this feature, multiple 1-wire devices can

operate simultaneously when the I/O line is low [26].

Fig.: Common Internal Power Interface

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a808

EXPERIMENTAL RESULTS

We just need to include the required libraries for the Adriano and we can load up the example sketch for

that. If everything is connected correctly, we can see the output data on the serial monitor window, but let's

just not take the easy way and try to understand how the code works. We initialize our code by including all

the required libraries and we define the pin to which the temperature sensor is connected.

// Include the libraries we need

#include <OneWire.h>

#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino

#define ONE_WIRE_BUS 2

One handles the one wire protocol and the other one handles the pass the one wire instance through the

Dallas Temperature instance [27].

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas

temperature ICs)

OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.

DallasTemperature sensors(&oneWire);

We have our setup () function, in the setup function we enable the serial with the begin method and we print

a statement so that we can be sure that the serial monitor is working properly.

void setup(void)

{

 // start serial port

 Serial.begin(9600);

 Serial.println("Dallas Temperature IC Control Library Demo");

 // Start up the library

 sensors.begin();

}

Next, we have our loop function, in the loop function; we first request data from the sensor with the help of

the sensors. Request temperatures () command. We also print statements on the serial monitor window to

check if the process was completed successfully or not [28].

// call sensors.requestTemperatures() to issue a global temperature

 // request to all devices on the bus

 Serial.print("Requesting temperatures...");

 sensors.requestTemperatures(); // Send the command to get temperatures

 Serial.println("DONE");

Next we store the received read data from the local variable named temperature-C and in the next line, we

check if it was successful or not. If the data acquisition was successful, we print the temperature on the

serial monitor window else we print an error message on the serial monitor window.

// We use the function ByIndex, and as an example get the temperature from the first sensor only.

 float tempC = sensors.getTempCByIndex(0);

 // Check if reading was successful

 if(tempC != DEVICE_DISCONNECTED_C)

 {

 Serial.print("Temperature for the device 1 (index 0) is: ");

 Serial.println(tempC);

 }

 else

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a809

 {

 Serial.println("Error: Could not read temperature data");

 }

}

1. Temperature Sensor Reading- Hear is what you should do

2. Check -ve and +ve leads are connected correctly.

3. Check the Operating voltage of the Device (3.0V to 5V is the normal operating voltage)

4. If you have more Temperature Sensors check the value of the pull-up resistor.

5. If you are interfacing the Temperature Sensor with Adriano check out if you are using the correct

library [29].

REFERENCES

[1] Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The

same or different constructs? Psychological Bulletin, 131, 30–60.

[2] Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control

processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation:

Advances in research and theory (Vol. 2, pp. 90–195). New York: Academic Press.

[3] Baddeley, A. D. (1986). Working memory. Oxford: Clarendon Press.

[4] Barrouillet, P., & Camos, V. (2001). Developmental increase in working memory span:

Resource sharing or temporal decay? Journal of Memory and Language, 45, 1–20.

[5] Bhatarah, P., Ward, G., Smith, J., & Hayes, L. (2009). Examining the relationship between free

recall and immediate serial recall: Similar patterns of rehearsal and similar effects of word

length, presentation rate, and articulatory suppression. Memory & Cognition, 37, 689–713.

[6] Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The

same or different constructs? Psychological Bulletin, 131, 30–60.

[7] Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control

processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation:

Advances in research and theory (Vol. 2, pp. 90–195). New York: Academic Press.

[8] Baddeley, A. D. (1986). Working memory. Oxford: Clarendon Press.

[9] Barrouillet, P., & Camos, V. (2001). Developmental increase in working memory span:

Resource sharing or temporal decay? Journal of Memory and Language, 45, 1–20.

[10] Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in

adults' working memory spans. Journal of Experimental Psychology: General, 133, 83–100.

[11] Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and

cognitive load in working memory. Journal of Experimental Psychology. Learning, Memory,

and Cognition, 33, 570–585.

[12] Barrouillet, P., Gavens, N., Vergauwe, E., Gaillard, V., & Camos, V. (2009). Working

memory span development: A time-based resource-sharing model account. Developmental

Psychology, 45, 477–490.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a810

[13] Bhatarah, P., Ward, G., Smith, J., & Hayes, L. (2009). Examining the relationship between

free recall and immediate serial recall: Similar patterns of rehearsal and similar effects of word

length, presentation rate, and articulatory suppression. Memory & Cognition, 37, 689–713.

[14] Bhatarah, P., Ward, G., & Tan, L. (2008). Examining the relationship between free recall and

immediate serial recall: The serial nature of recall and the effect of test expectancy. Memory &

Cognition, 36, 20–34.

[15] Bjork, R. A., & Whitten, W. B. (1974). Recency-sensitive retrieval processes in long-term

free recall. Cognitive Psychology, 6, 173–189.

[16] Brown, S., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological

Review, 112, 117–128.

[17] Bunting, M. F., Cowan, N., & Saults, J. S. (2006). How does running memory span work?

The Quarterly Journal of Experimental Psychology, 59, 1691–1700.

[18] Camos, V., Lagner, P., & Barrouillet, P. (2009). Two maintenance mechanisms of verbal

information in working memory. Journal of Memory and Language, 61, 457–469.

[19] Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R.

W. (2005). Working memory span tasks: A methodological review and user’s guide.

Psychonomic Bulletin & Review, 12, 769–786.

[20] Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford

University Press.

[21] Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and

reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

[22] Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005).

The demise of short-term memory revisited: Empirical and computational investigation of

recency effects. Psychological Review, 112, 3–42.

[23] Ecker, U. K. H., Lewandowsky, S., Oberauer, K., & Chee, A. E. H. (2010). The components

of working memory updating: An experimental decomposition and individual differences.

Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 170–189.

[24] Zhang, B., Song, S.: Design of CNC oscillator based on field programmable gate array. J.

Xi’an Univ. Posts Telecommun. 4, 72–75 (2017)

[25] Kai, Y., Huang, H., Xing, Y.: Design of CNC oscillator circuit in GPS receiver. Inf. Technol.

9, 58–61+66 (2017)

[26] Xue, O., Zou, W.: ASIC design of NC oscillator using look-up table method. Electron.

Packag. 8, 13–15 (2012).

[27] Nie, Q.: Design and implementation of direct digital frequency synthesizer based on

CORDIC algorithm. Xi’an Univ. Electron. Sci. Technol. (2011).

[28] Li, F.: FPGA implementation of digitally controlled oscillator (NCO). Appl. Electron.

Compon. 11, 42–44 (2010).

[29] S.S. Kamate, A. Naikar, S.S. Malaj, Design and implementation of low power flash ADC

using cadence tool. J. Adv. Sci. Technol. 12(25), (2016).

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 2 February 2024 | ISSN: 2320-2882

IJCRT2402096 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a811

BIOGRAPHY

I am Mr. Buddh Bhagwan Sahu, B.Tech/M.Tech in Computer Technology and Application in

Computer Science & Engineering. At present I am working as an Assistant Professor at Columbia

Institute of Engineering and Technology in Computer Science Department. I have a more then 8 year

teaching excellent experience in Degree cum Technical Academic sector. On behalf of this research paper

we are finding the theorem of How to store 1GB data in a 500kb storage capacity without losing its image or

graphics. By combining the methodology of Ram and ROM including cache cum cloud tactics it is possible

to execute. My basic thought to believe in Innovation, Invention, Research and Relay including Moral,

Emotion, Ethics and Rules/Regulation.

http://www.ijcrt.org/

