IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

On The Correlation Analysis Between Vector Index Of Alkanes

Anand G Puranik^a, Narendra V H_a, P. Mahalakshmi ^b

^a Department of Mathematics, Government Science College, Chitradurga. Karnataka-577 501, India. ^bDepartment of Mathematics, School of Engineering, Dayananda Sagar University, Bangaluru, Karnataka-560078, India

Abstract: The primary aim of this article is to introduce the Zagreba Vector Index for the chemical graphs. Here in this research article, the topological indices were partially replaced by the new approach, Vector index for graphs. The vector index is named as Zagreb vector index, and used to study the physical properties of various chemical compounds (alkanes), their structures, the correlativity with the Vector-Index. In determining the Vector index, I have used total degree of the vertex (du), as the first component of the vector along with two more components to create a vector index. In the vector index of an atom, there will be three components, the first component of the vector is it's total degree du, second component is number of similar atoms adjacent to it d1u and the third component is number of heterogeneous atoms adjacent to it d2u. After a thorough investigate, the Vector index found to be a useful tool in predicting the physical properties of lower alkanes..

Keywords: Vector-Index; Topological index, Chemical graphs, Graph operations AMS Subject Classication: 05C35, 5C90, 05C12.

1 Introduction: From it's inception, the topological index of a graph, is used as a mathematical tool that converts a chemical graph into a real value based set of indexes. The Topological Index gives various impetus over the years, as a mathematical indicator of chemical nature that seeks to correlate chemical structure with various physical properties, chemical reactivity, or biological activity. Clearly, the number of vertices and the number of edges were the two fundamental parameters in topological indices. Numerous topological indices have been developed and used in recent years for a variety of purposes, including isomer discrimination, molecular complexity documentation, similarity/dissimilarity, QSAR/QSPR, drug design, database selection, lead optimization, etc. Even though the topological indices formed a strong valuable tool in predicting properties of certain family of Chemical compounds, still it needs major changes to correlate more precisely with physical properties of substances. The major challenge is to distinguish between isomers of the chemical compounds. This draw back may be rectified in this article by considering the positon of atoms. A new approach of indexing the graph is introduced in this article, to overcome the draw backs of overlooking of the position of the vertices in the graph. In space, the position of a point is described with respect to three rectilinear components, which is as an ordered triple(x, y, z), thus vectors were introduced. Here the in this article, the atom in the straight chain n-Alkane is indexed by a Vector, with three components. Vector is an ordered n-tuple of numbers[13] used to represent various physical quantities and properties, geometrical shapes. Vectors plays important rules in Physics, Chemistry and all branches of life sciences. The quantitative structure activity relationship (QSAR) and the quantitative structure property relationship (QSPA) are also well correlated with new

vector indices. Now in this article, as mentioned in the abstract, I am modified the topological indices as vector indices. Such type of study not only concentrates on the chain form of compounds but also includes the isomers in the study. Vector indices are similar to the Topological indices, but have more than one component and provide very closely estimated values to the practical values. In Vector index of an atom, vertex degree-based numbers are used as in topological indices. The first and second Zagreb indices [1] are two of the most helpful topological graph indices, which are modified here in this article, to include vector indices. In several mathematical and chemical applications, particularly in the study of molecular graphs in chemistry, these type of indices may be employed to offer information about the structural characteristics of the graph. Further the study of applications of Vector indices, connected to various type of graphs like completely connected graphs, degree regular graphs etc will be presented in the forth coming publications. Here, we mention the new vector index, naming it as Zagreb[] Vector Index, and study the variation of indexes in case of straight chain n-Alkanes.

2 Materials and Methods: Most of the materials were brought from the earlier literature on the topological indices. As many scholars defined various topological indices and obtained bounds for those topological indices, my effort is only to use similar topological indices along with the number of similar atoms in adjacent vertices, to create vector indices. While creating vector indices, counting or numbering of edges in the alkanes are started from left side C-H bound and numbered the edges in anti-cyclic way. The study shows these vector indices gives more precise correlation between the vector indices and physical properties of the chemical compounds. Following list provides few type of topological indices that are used in the earlier literatures. But in this article these indices are modified to include corresponding vector indices of Chemical graphs.

The Gutman and Trinajestic[] were defined the Zagreb indices as

$$M1(G) = \sum_{uv \in E(G)} [du + dv]$$

$$M2(G) = \sum_{uv \in E(G)} [du . dv]$$

The Kulli et al.[4,5] defined the first Gourava index as follows

$$GO1(G) = \sum_{uv \in E(G)} [du + dv] + du. dv$$

Many academics are working on the Zagreb indices [],[]. Due to their applicability in the realm of chemical sciences, their extended versions ended up being the most fascinating aspect of the recent research articles like, Narendra and Mahalakshmi; Asian Res. J. Math., vol. 19, no. 10, pp. 103-113, 2023; Article no.ARJOM.104981 research[][]. The V L index was created in 2020 and was inspired by the works of the Zagreb indices. Invoking Veerabhadraiah Lokesha index introduced by Deepika T. The VL index is defined as[]: V L(G) = $\sum_{uv \in E(G)} [de + df + 4]$ where de=du+dv -2 and df=du ·dv -2, such that du and dv are the degree vertices of u and v in G, respectively. In this article also, all the above type of activities are considered on the same lines, but the topological indices were replaced by vector indices of the vertices. A vector index of a vertex u in the graph is defined as lu=(du, d1u, d2u), where du is the degree (total number of atoms adjacent to u) of the vertex u, d1u is the number of similar atoms adjacent to the vertex u, d2u is the number of different atoms adjacent to u. Further similar to the Zagreb index, I define First and Second Zagreb vector index as follows

$$MV1(G) = || \sum_{uv \in E(G)} (lu + lv) ||$$

$$MV2(G) = \|\sum_{uv \in E(G)} (l(u) + l(y))\|$$

Where $\|(a, b, c)\|$ is the two norm of the vector (a, b, c), that is $(a, b, c) = \sqrt{a^2 + b^2 + c^2}$

Lemma 1: The Zagreb vector index of the Methane is $||(20, 0, 20)|| = \sqrt{800}$

Prrof: The Methane molecule has the following chemical structure, with the chemical formula CH₄,

4) and vector index of each H atom is (1, 0, 1). So the Zagreb vector index of entire Methane molecule is

$$\sum_{H-C\in E(G)}(l(C)+l(H))=4\{(4,0,4)+(1,0,1)\}=(20,0,20)$$

Lemma 2: The Zagreb vector index of the Ethane is $||(38, 8, 30)|| = \sqrt{2408}$.

Prrof: The Ethane molecule has the following chemical structure, with the chemical formula C₂H₆,

here the vector index of C atom is (4, 1, 3) and vector index of each H atom in the edges E1, E2, E4, E5, E6, E7 is (1, 0, 1). So the Zagreb vector index of entire Ethane molecule is

$$\sum_{H-C\in E(G)} (l(C)+l(H))+(l(C)+l(C))=6\{(4,1,3)+(1,0,1)\}+\{2(4,1,3)\}=(30,6,24)+(8,2,6)=(30,8,30)$$

Lemma 3: The Zagreb vector index of the Alkane $C_nH_{(2n+2)}$, (when n is greater than or equal to 3) is ||(n-3)(8,4,4) + 2(8,3,5) + (n-2)(5,2,3) + 6(5,1,4)||

Proof: Alkanes $C_nH_{(2n+2)}$ in it's chain form has (2n+3) edges (where $n \ge 3$). There are four cases to consider

- 1. Total C C edges except E3 and E2n-1 edges are (n-3). Hence for these edges $\sum_{(u,v) \in E_c(G)} (l(C) + l(C)) = (n-3)(8, 4, 4)$
- 2. The two edges E3 and E2n-1 where each C-atom is connected to only one C atom $=\sum_{(u,v)\in E_C(G)}(l(C)+l(C))=2(8,3,5)=(16,6,10)$
- 3. Out of all those C-H edges except on the 1st and nth C-atom $\sum_{(u,v)\in E_c(G)}(l(C)+l(H))=(n-2)(5,2,3)$
- 4. Six edges with C-H bonding on the 1^{st} and nth C-atom = 6(5, 1, 4)

Hence for the total (2n + 3) edges

$$\sum_{(u,v)\in E(G)}(l(u)+l(v))=(n-3)(8,4,4)+2(8,3,5)+(n-2)(5,2,3)+6(5,1,4).$$

Hence the result. We use maxima software to calculate the above values, for n=3 to n=10, as follows. The function f(n):=(n-3)*[8,4,4]+2*[8,3,5]+(n-2)*[5,2,3]+6*[5,1,4]; is used, with the arguments as n. Then we find the norm each resulting vector. The results obtained gives the ZAGREB vector indexes for each straight chain alkanes, which are listed in the table 1 as MV1 index.

Correlation between MV1-Index and the Physical Properties of lower alkanes are analysed to find relations between the physical properties - Boiling points, molar volumes, molar refractions, heats of vaporization, critical temperatures, critical pressures and surface tensions considering their molecular graphs. Following Table 1 gives the MV1-index of molecular graphs of the considered lower straight chain alkanes along with

the boiling points, melting points, and similar properties. For the analysis the experimental values of the physical properties - Boiling points (bp) °C, molar mass, molar refractions (mr) cm3, heats of vaporization (hv) kJ, critical temperatures (ct) °C, critical pressures (cp) atm, and surface tensions(st) dyne cm-1 of considered alkanes are taken from Seybold et al. [13] and Needham et al. [14] (the same values can be found in the research articles [6, 15]).

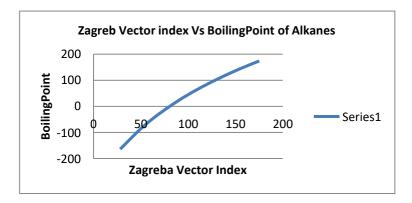
Table 1:

Alkane	MV!-	Bp/C	Molar	Melti	St/d
	index		Mass	ng	yne
				point	cm ⁻¹
Methane(CH ₄)	28.3	-164	16	-188	Gas
Ethane(C ₂ H ₆)	49.07	-89	30	-186	0.48
Propane(C ₃ H ₈)	64.54	-42	44	-183	7.0
Butane(C ₄ H ₁₀)	80.20	-1	58	-138	13
Pentane	95.94	36.1	72	-130	16
Hexane	111.7	68.7	86	-95	18.4
and the second second	5	The same			2
Heptane	127.5	98.4	100	-91	20.2
18/10	9	10.0	State Sec	滅	6
Octane	143.4	125.	114	-57	21.7
	4	7	1	17.	6
Nonane	159.3	1 50.	128	-54	22.9
	2	8	1		2
Decane	175.2	174	142	-30	24.7
140	0				5

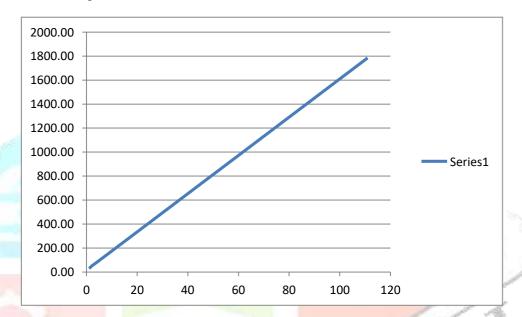
The co-relation coefficient between MV1 – index and Boiling point is 0.988396. Similarly the co-relation coefficient of MV1 – index with Molar Mass, Melting Point, and surface tension are 0.999658, 0.960999 , 0.951689 respectively. Hence all the physical properties are positively co-related with MV1 – index, with the co-relation coefficient nearly equal to 1. This shows the close proximity of MV1 – index with basic properties straight chain Alkanes.

The following table gives the predicted values of n – Alkanes (Straight chain Alkanes), Zagreb Vector index MV1. A slight deviation in the Zagreb vector index for Alkanes shows that the chemical is not a Straight chain n-Alkane. Hence the Zagreb vector index for Alkanes can be used to distinguish the isomers from it's straight chain n-Alkanes. The formula connecting MV1 – index and the various parameters like Boiling point, Melting point, Surface tension etc are obtained using mathematical modelling techniques. Then the values are approximated upto n=111, are with a close proximaty to practical values.

SI no	Formul a	Alkane	MV1 – index
2	C ₂ H ₆	Ethane	49.07
3	C ₃ H ₈	Propane	64.54
4	C ₄ H ₁₀	n-Butane	80.1997506
5	C ₅ H ₁₂	n-Pentane	95.9479025 3
6	C ₆ H ₁₄	n-Hexane	111.74972C 4
7	C7H16	n-Heptane	127.585265
8	C ₈ H ₁₈	n-Octane	143.443368
9	C ₉ H ₂₀	<i>n</i> -Nonane	159.317293 5
10	C ₁₀ H ₂₂	<i>n</i> -Decane	175.202739
11	C ₁₁ H ₂₄	<i>n</i> -Undecane	191.096834
12	C ₁₂ H ₂₆	<i>n</i> -Dodecane	206.997584
13	C ₁₃ H ₂₈	<i>n</i> -Tridecane	222.903566 6
14	C ₁₄ H ₃₀	n-Tetradecane	238.813734
15	C ₁₅ H ₃₂	n-Pentadecane	9 254.727305 2
16	C ₁₆ H ₃₄	n-Hexadecane	270.643677
17	C ₁₇ H ₃₆	n-Heptadecane	286.562384
18	C ₁₈ H ₃₈	n-Octadecane	302.483057
19	C ₁₉ H ₄₀	n-Nonadecane	318.405402
20	C ₂₀ H ₄₂	n-Eicosane	334.329179
21	C ₂₁ H ₄₄	n-Heneicosane	350.254193
22	C ₂₂ H ₄₆	n-Docosane	366.180283
23	C ₂₃ H ₄₈	<i>n</i> -Tricosane	382.107314
			8


-	24	C ₂₄ H ₅₀	<i>n</i> -Tetracosane	398.035174 3
	25	C ₂₅ H ₅₂	<i>n</i> -Pentacosane	413.963766 5
	26	C ₂₆ H ₅₄	<i>n</i> -Hexacosane	429.893009 9
	27	C ₂₇ H ₅₆	n-Heptacosane	445.822834
	28	C ₂₈ H ₅₈	n-Octacosane	461.75318C 8
	29	C ₂₉ H ₆₀	<i>n</i> -Nonacosane	477.683996
	30	C ₃₀ H ₆₂	<i>n</i> -Triacontane	493.615234 8
	31	C ₃₁ H ₆₄	n-Hentriacontane	509.546857
	32	C ₃₂ H ₆₆	<i>n</i> -Dotriacontane	525.478829 3
	33	C33H68	<i>n</i> -Tritriacontane	541.411119 2
	34	C ₃₄ H ₇₀	<i>n</i> -Tetratriacontane	557.343700 1
	35	C ₃₅ H ₇₂	<i>n</i> -Pentatriacontane	573.276547 6
	36	C ₃₆ H ₇₄	<i>n</i> -Hexatriacontane	589.209640 1
	37	C ₃₇ H ₇₆	<i>n</i> -Heptatriacontane	605.142958 3
	38	C ₃₈ H ₇₈	n-Octatriacontane	621.076484 8
	39	C ₃₉ H ₈₀	<i>n</i> -Nonatriacontane	637.010204
	40	C ₄₀ H ₈₂	<i>n</i> -Tetracontane	652.944101 7
	41	C ₄₁ H ₈₄	<i>n</i> -Hentetracontane	668.878165
	42	C ₄₂ H ₈₆	<i>n</i> -Dotetracontane	684.812383 1
	43	C ₄₃ H ₈₈	<i>n</i> -Tritetracontane	700.746744 6
	44	C44H90	<i>n</i> - Tetratetracontane	716.68124C 2
	45	C ₄₅ H ₉₂	<i>n</i> -Pentatetracontane	732.615861 1
-				

46	C46H94	n- Hexatetracontane	748.550599 5		64	C ₆₄ H ₁₃₀	<i>n</i> - Tetrahexacontane	1035.38978 2
47	C ₄₇ H ₉₆	n- Heptatetracontane	764.485447 9		65	C ₆₅ H ₁₃₂	<i>n</i> -Pentahexacontane	1051.32583
48	C ₄₈ H ₉₈	n-Octatetracontane	780.420399 5		66	C ₆₆ H ₁₃₄	<i>n</i> -Hexahexacontane	1067.26191 7
49	C49H100	n- Nonatetracontane	796.355448		67	C ₆₇ H ₁₃₆	n- Heptahexacontane	1083.19804
50	C ₅₀ H ₁₀₂	<i>n</i> -Pentacontane	812.290588 4		68	C ₆₈ H ₁₃₈	n-	1099.13420
51	C ₅₁ H ₁₀₄	<i>n</i> -Henpentacontane	828.225814 6				Octahexacontane	1115.07040
52	C ₅₂ H ₁₀₆	<i>n</i> -Dopentacontane	844.161122		69	C ₆₉ H ₁₄₀	Nonahexacontane	1
53	C ₅₃ H ₁₀₈	n-Tripentacontane	860.096506		70	C70H142	<i>n</i> -Heptacontane	1131.00663 1
54	C ₅₄ H ₁₁₀	n- Tetrapentacontane	876.031962 9		71	C71H144	n- Henheptacontane	1146.94289 3
	C 11	n-	891.967488		72	C ₇₂ H ₁₄₆	<i>n</i> -Doheptacontane	1162.87918 5
55	C ₅₅ H ₁₁₂	Pentapentacontan e	2		73	C ₇₃ H ₁₄₈	<i>n</i> -Triheptacontane	7 1178.81550 7
56	C ₅₆ H ₁₁₄	<i>n</i> -Hexapentacontane	907.903078 5		74	C74H150	n- Tetraheptacontane	1194.75185 7
57	C57H116	n- Heptapentacontan e	923.838730 5	Anna 1	75	C ₇₅ H ₁₅₂	<i>n</i> - Pentaheptacontan e	1210.68823 4
58	C ₅₈ H ₁₁₈	<i>n</i> -Octapentacontane	939.774441		76	C ₇₆ H ₁₅₄	<i>n</i> - Hexaheptacontane	1226.62463 7
59	C ₅₉ H ₁₂₀	<i>n</i> -Nonapentacontane	955.710207 1		77	C77H156	<i>n</i> - Heptaheptacontan e	1242.56106 5
60	C ₆₀ H ₁₂₂	<i>n</i> -Hexacontane	971.646026 1		 78	C ₇₈ H ₁₅₈	n-	1258.49751
61	C ₆₁ H ₁₂₄	n-Henhexacontane	987.581895			07011130	Octaheptacontane	7
62	C ₆₂ H ₁₂₆	<i>n</i> -Dohexacontane	1003.51781		79	C ₇₉ H ₁₆₀	<i>n</i> -Nonaheptacontane	1274.43399 2
63	C ₆₃ H ₁₂₈	<i>n</i> -Trihexacontane	1019.45377		80	C ₈₀ H ₁₆₂	n-Octacontane	1290.37048 9


81	C ₈₁ H ₁₆₄	<i>n</i> -Henoctacontane	1306.30700
82	C ₈₂ H ₁₆₆	<i>n</i> -Dooctacontane	1322.24354
83	C83H168	<i>n</i> -Trioctacontane	1338.18010 7
84	C ₈₄ H ₁₇₀	<i>n</i> - Tetraoctacontane	1354.11668 6
85	C ₈₅ H ₁₇₂	<i>n</i> -Pentaoctacontane	1370.05328 4
86	C ₈₆ H ₁₇₄	<i>n</i> -Hexaoctacontane	1385.98989 9
87	C87H176	n- Heptaoctacontane	1401.92653 2
88	C ₈₈ H ₁₇₈	n-Octaoctacontane	1417.86318 1
89	C ₈₉ H ₁₈₀	<i>n</i> -Nonaoctacontane	1433.79984 7
90	C ₉₀ H ₁₈₂	<i>n</i> -Nonacontane	1449.73652 8
91	C91H184	<i>n</i> -Hennonacontane	1465.67322 4
92	C ₉₂ H ₁₈₆	<i>n</i> -Dononacontane	1481.60993 5
93	C ₉₃ H ₁₈₈	n-Trinonacontane	1497.54666
94	C ₉₄ H ₁₉₀	n- Tetranonacontane	1513.48339 9
95	C ₉₅ H ₁₉₂	<i>n</i> -Pentanonacontane	1529.42015 2
96	C ₉₆ H ₁₉₄	<i>n</i> -Hexanonacontane	1545.35691 7
97	C97H196	<i>n</i> -Heptanonacontane	1561.29369 4
98	C ₉₈ H ₁₉₈	n-	1577.23048 4

		Octanonacontane	
99	C99H200	<i>n</i> -Nonanonacontane	1593.16728 6
10 0	C ₁₀₀ H ₂₀	n-Hectane	1609.10409 9
10 1	C ₁₀₁ H ₂₀	n-Henihectane	1625.04092 3
10 2	C ₁₀₂ H ₂₀	<i>n</i> -Dohectane	1640.97775 7
10 3	C ₁₀₃ H ₂₀	<i>n</i> -Trihectane	1656.91460 3
10 4	C ₁₀₄ H ₂₁	n-Tetrahectane	1672.85145 8
10 5	C ₁₀₅ H ₂₁	<i>n</i> -Pentahectane	1688.78832 3
10 6	C ₁₀₆ H ₂₁	n-Hexahectane	1704.72519 8
10 7	C ₁₀₇ H ₂₁	n-Heptahectane	1720.66208 2
10	C ₁₀₈ H ₂₁	<i>n</i> -Octahectane	1736.59897 5
10 9	C ₁₀₉ H ₂₂	n-Nonahectane	1752.53587 7
11 0	C ₁₁₀ H ₂₂	n-Decahectane	1768.47278 7
11 1	C ₁₁₁ H ₂₂	<i>n</i> -Undecahectane	1784.41
	I		

The following graph shows the relation between Zagreb vector index and boiling point, which is in the form of parabolic curve.

The following graph shows the variation of the Zagreb vector index with n= the number of Carbon atoms, which is linear for the straight chain n-Alkanes.

4. Conclusions and Advantages: The vector indices consider more than one fact at a time. Hence useful in distinguishing the entities more precisely than the topological indices. Hence the primary intension was to introduce the Vector indices based vertex degree of chemical graphs. The co-relation co-efficient between the vector indices and Physical properties of Alkanes add strength to such studies. As per statistical theories, if we wish to label the strength of the association, for absolute values of r, 0-0.19 is regarded as very weak, 0.2-0.39 as weak, 0.40-0.59 as moderate, 0.6-0.79 as strong and 0.8-1 as very strong correlation. Our calculation yields, the Vector index shows very strong correlation with boiling points, molar volumes, melting points and Surface tension. Hence, we can conclude that the Vector index may be considered as a more useful tool in predicting the physical properties of lower alkanes comparative to the topological indices. One more advantage is, the Vector index distinguishes isomers and straight chain alkanes, rather than as in Topological indices. The vector index remains the same on similar compounds like methane and CCl4. The vector index becomes large number for calculation and needs computing aids as the number of Carbon atoms increases. Thus it has few disadvantages also.

References:

- [1] Ante Mili cevic, Sonja Nikoli c, and Nenad Trinajsti c. On reformulated zagreb indices. Molecular diversity. 2004;8:393–399.
- [2] Austel V, Balaban AT, Danail Bonchev, Charton M, Fujita T, Iwa-mura H, Mekenyan O, Motoc I, Alexandru T Balaban, Ioan Motoc, et al. Topological indices for structure-activity correlations. In Steric effects in drug design. 1983;21–55. Springer.
- [2] Ante Milicevi c, Sonja Nikoli c, and Nenad Trinajsti c. On reformulated zagreb indices. Molecular diversity. 2004;8:393-399.
- [3] Basavanagoud B, Chitra E. On leap hyper-zagreb indices of some nanostructures. Int. J. Math. Trends Tech. 2018;64(1):30–36
- [4] B ela Bollob as and Paul Erdos. Graphs of extremal weights. Ars com Binatoria. 1998;50:225.
- [5] Gena Hahn and Gert Sabidussi. Graph symmetry algebraic methods and applications, volume 497. Springer Science. Business Media; 2013.
- [6] Kinkar Ch Das and Ivan Gutman The first zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004;50(1):83–92.
- [7] Needham DE, Wei IC, Seybold PG. Molecular modeling of the physical properties of alkanes. J Am Chem Soc. 1988;110:4186-4194
- [9] Ranjini PS, Lokesha V, Bindusree M, Phani Raju M. New bounds on zagreb indices and the zagreb coindices. Bol. Soc. Paran. Mat. 2013;31(1):51-55.
- [10] Ranjini PS, Lokesha V, Ismail Naci Cang ul. On the zagreb indices of the line graphs of the subdivision graphs. Applied Mathematics and Computation. 2011;218(3):699–702.
- [11] Seybold PG, May M, Bagal UA. Molecular structure-property relationships. J Chem Educ. 1987;64:575–581.
- [12] Sunilkumar Hosamani, Deepa Perigidad, Shruti Jamagoud, Yallavva Maled and Sharada Gavade, QSPR Analysis of Certain Degree Based Topological Indices. J. Stat. Appl. Pro. 2017;6(2):361-371. Available: https://www.overleaf.com/project/64b8f63e8f8f76a3a1bd448a
- [13] Surjeet Singh and Quazi Zameeruddin. Modern Algebra ISBN-10:8125915400, 8th edition, Vikas Publishing House New Delhi.
- [14] T. Deepika, N TWMS J. App. and Eng. Math. 2021;11(2):374-385
- [16] Xu K, Das KC, Trinajstic N. The Harary Index of a Graph, Springer-Verlag, Berlin, Heidelberg; 2015.