ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

AN UPDATED SURVEY OF PENDANT DOMINATION PARAMETERS IN GRAPHS

Swaroopa Rani N C Assistant Professor , Department Of Mathematics Government College (Autonomous), Mandya , India

Abstract: Let G be any graph. A dominating set S in G is called pendant dominating set if $\langle S \rangle$ contains at least one pendant vertex. The least cardinality of a pendant dominating set in G is called pendant domination number of G, denoted by $\gamma_{pe}(G)$. In this survey, we present recent results on pendant dominating sets of graphs.

Keywords : Dominating set , Pendant dominating set .

1 Introduction

Let G be any graph. The concept of paired domination is an interesting concept introduced by Teresa W. Haynes in with the following application in mind. If we think of each vertex v as the possible location for a guard capable of protecting each vertex in its closed neighborhood, then *domination* requires every vertex to be protected. For total domination, each guard must, in turn, be protected by other guard. But for paired-domination, each guard is assigned another adjacent one, and they are designated as backups for each other. The authors in [9] introduce pendant domination for which at least one guard is assigned a backup.

2 Basic Definitions

Let G =(V,E) be any graph with |V(G)| = n and |E(G)| = m edges. Then n, m are respectively called the order and the size of the graph G. For each vertex $\upsilon \in V$, the open neighborhood of υ is the set N(υ) containing all the vertices u adjacent to υ and the closed neighborhood of υ is the set N[υ] containing υ and all the vertices u adjacent to υ . Let S be any subset of V, then the open neighborhood of S is N(S)= $\bigcup_{v \in S} N(v)$ and the closed neighborhood of S is N[S] = N(S) \cup S.

The minimum and maximum of the degree among the vertices of G is denoted by $\delta(G)$ and $\Delta(G)$ respectively. A graph G is said to be regular if $\delta(G) = \Delta(G)$. A vertex υ of a graph G is called *a cut vertex* if its removal increases the number of components. A *bridge* or *cut edge* of a graph is an edge whose removal increases the number of components. A vertex of degree zero is called an isolated vertex and a vertex of a degree one is called a pendant vertex. An edge incident to a pendant vertex is called a pendant edge. The graph containing no cycle is called a tree. A complete bi-partite graph K_{1,3} is a tree called as *claw*. Any graph containing no subgraph isomorphic to K_{1,3} is called a claw-free graph.

A set $M \subseteq E(G)$ is called a matching of G if no two edges in M are incident in G. The two ends of an edge are said to be matched under M. If every vertex of G is matched under M, then M is called a perfect matching. The cardinality of the maximum matching is called the matching number of G, denoted by m(G).

A subset S of V(G) is a dominating set of G if each vertex $u \in V - S$ is adjacent to a vertex in S. The least cardinality of a dominating set in G is called the domination number of G and is usually denoted by $\gamma(G)$.

A dominating set S of a graph G is said to be paired dominating set of G if the induced subgraph $\langle S \rangle$ contains at least one perfect matching. Any paired dominating set with minimum cardinality is called a minimum paired dominating set. The cardinality of the minimum paired dominating is called the paired

www.ijcrt.org

© 2023 IJCRT | Volume 11, Issue 8 August 2023 | ISSN: 2320-2882

domination number of G and is denoted by $\gamma_{pd}(G)$. A paired dominating set with cardinality $\gamma_{pd}(G)$ is referred as γ_{pd} -set. A dominating set S is called a total dominating set if $\langle S \rangle$ contains no isolated vertex. The cardinality of the minimum total dominating set is called the total domination number of G and is denoted by $\gamma_t(G)$. A total dominating set with cardinality $\gamma_t(G)$ is called as γ_t -set.

The set S of vertices in a graph G is called an independent set if no two vertices in S are adjacent. A dominating set S of a graph G is an independent dominating set if $\langle S \rangle$ has no edges. The minimum cardinality of an independent dominating set is called the independent domination number, denoted by i(G) and the independence number $\beta_0(G)$ is the maximum cardinality of an independent set of G.

The corona of two disjoint graphs G_1 and G_2 is defined to be the graph $G = G_1$ o G_2 formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where the *i*th vertex of G_1 is adjacent to every vertex in the *i*th copy of G_2 . If G and H are disjoint graphs, then the join of G and H denoted by G + H is the graph such that $V(G+H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup uv : u \in V(G), v \in V(H)$. The line graph L(G) of a graph G is the graph whose vertex set corresponds to the edges of G such that two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent.

Any graph G with at least one bridge is called a bridged graph. The *n*-Barbell graph is the simple graph obtained by connecting two copies of a complete graph K_n by a bridge. The *n* Pan graph is the graph obtained by joining a cycle graph C_n to a singleton graph K_1 with a bridge. The ladder graph is a Cartesian product of P_2 and P_n where P_n is a path graph.

Theorem 2.1. [9] Let P_n be a path with $n \ge 2$ vertices and C_n be a cycle with $n \ge 3$ vertices. Then

$$\gamma_{pe}(P_n or C_n) = \begin{cases} \frac{n}{3} + 1, & \text{if } n \equiv 0 \pmod{3}; \\ \frac{n}{3} & \text{if } n \equiv 1 \pmod{3}; \\ \frac{n}{3} + 1 & \text{if } n \equiv 2 \pmod{3}; \end{cases}$$

Theorem 2.2. [9] A dominating set S is a minimal pendant dominating set if and only if for each vertex $u \in S$ one of the following condition holds.

- 1. *u is either an isolate or a pendant vertex of S.*
- 2. each vertex of $S \{u\}$ lies in a cycle.
- 3. there exists a vertex $v \in V S$ for which $N(v) \cap S = \{u\}$.

Theorem 2.3. [9] Let T be any Tree. Then $\gamma_{pe}(T) = \gamma(T)$ if and only if there is a γ -set which is not independent in T.

Theorem 2.4. [9] Let G be any graph. Then $\gamma_{pe}(G) = \gamma(G)$ if and only if G contains a γ set which is either an independent set in G or each vertex of S belongs to some cycle in S.

Proposition 2.1. [9] Let G be any graph with $n \ge 3$ vertices. Then $n-m \le \gamma_{pe}(G) \le n-1$.

Let G be the collection of graphs of following types. A cycle, path, star, wheel and a complete graph each of order 4 and a path, cycle of order 5.

Theorem 2.5. [9] Let G be a connected graph of order n. Then $\gamma_{pe}(G) = n - 2$ if and only if $G \in G$.

Theorem 2.6. [9] Let G be any graph. Then $\left[\frac{n}{1+\Delta(G)}\right] \le \gamma_{pe}(G) \le n - \Delta(G) + 1$. Further if G is a tree,

then $\gamma_{pe}(G) = n - \Delta(G) + 1$ if and only if G is a wounded spider obtained by subdividing even number of edges of a star.

Proposition 2.2. [9] Let G be an acyclic graph. Then $\gamma_{pe}(G) \leq \gamma_t(G) \leq \gamma_{pr}(G)$. Equality holds if G is either a cycle or a path of order 4k.

Theorem 2.7. [9] For any graph G, $\gamma_{pe}(G) \leq i(G) + 1$. Equality holds if G is a claw-free graph. Further, for any positive integer k, there exists a graph H such that $i(H) - \gamma_{pe}(H) = k$.

Theorem 2.8. [9] Let G be a graph connected with n vertices and H be any graph. Then

$$\gamma_{pe}(G \ o \ H) = \begin{cases} n+1, & \text{if } G \text{ is a cycle and } \gamma(H) \ge 2; \\ n, & \text{otherwise} \end{cases}$$

Proof. For any connected graph G and any graph H, we have $\gamma(G \circ H) = n$ and hence $\gamma_{pe}(G \circ H) \leq n + 1$. First, suppose G is not a cycle, then clearly V(G) itself a pendant dominating set in G. Assume G is a cycle. If $\gamma(H) = 1$ then for any vertex $v \in G$, the set $S = (V - \{v\}) \cup \{u\}$ is a pendant dominating set in $G \circ H$, where $\{u\}$ is a γ -set of H. Therefore, $\gamma_{pe}(G \circ H) = n$. Suppose $\gamma(H) \geq 2$, since V (G) contains no pendant vertex, we must

© 2023 IJCRT | Volume 11, Issue 8 August 2023 | ISSN: 2320-2882

ICR

have that $\gamma_{pe}(G \circ H) \ge n + 1$. On the other hand, for any vertex v of H, the set V (G) $\cup \{v\}$ is a pendant dominating set of size n + 1. Therefore $\gamma_{pe}(G) = n + 1$.

The Cartesian product of two graphs G_1 and G_2 is the graph, denoted by $G_1 \times G_2$, with $G_1 \times G_2 = V(G_1) \times V(G_2)$ (where × denotes the Cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V(G_1 \times G_2)$ whenever $[u_1 = v_1 \text{ and } (u_2, v_2) \in E(G_2)]$ or $[u_2 = v_2$ and $(u_1, v_1) \in E(G_1)]$. If each G_1 and G_2 is a path P_m and P_n (respectively), then we will call $P_m \times P_n$, a $m \times n$ grid graph. For notational convenience, we denote $P_m \times P_n$ by $P_{m,n}$.

Theorem 2.9. [7] For all $n \ge 2$, $\gamma_{pe}\left(P_{2,n}\right) = \left\lceil \frac{2n}{3} \right\rceil$. **Theorem 2.10** [7] For all $n \ge 4$, $\gamma_{pe}\left(P_{3,n}\right) = n$. **Theorem 2.11.** [7] For all $n \ge 5$, $\gamma_{pe}\left(P_{4,n}\right) = \left\lceil \frac{4n}{3} \right\rceil$.

Theorem 2.12. [7] *For all* $n \ge 6$.

$$\gamma_{pe}\left(P_{5,n}\right) = \begin{cases} \frac{5n}{3}, & \text{if } n \equiv 0, 3 \pmod{6}; \\ \left\lceil \frac{5n+1}{3} \right\rceil, & \text{otherwise.} \end{cases}$$

Theorem 2.13. [8] Let G be a path with n vertices. Then

$$\gamma_{pe}(\mathfrak{I}(G)) = \begin{cases} 3, & \text{if } n = 5; \\ 2 \lfloor \frac{n}{3} \rfloor, & \text{otherwise} \end{cases}$$

Theorem 2.14. [8] Let $G \cong S_n$ be a crown graph with 2n vertices. Then $\gamma_{pe}(\mathfrak{I}(G)) = \gamma(\mathfrak{I}(G))$.

Theorem 2.15 [8] Let $G \cong H_n$ be a helm graph. Then $\gamma_{pe}(\mathfrak{Z}(G)) = 2n - 2$.

Definition 2.1. [8] For $m \ge 3$, Jahangir graph $J_{n,m}$ is a graph of order nm + 1, consisting of a cycle of order nm with one vertex adjacent to exactly m vertices of C_{nm} at a distance n to each other. Jahangir graph $J_{2,8}$ is shown in Fig.2.

Fig.2. Jahangir graph $J_{2,8}$

Theorem 2.16. [8] Let $G \cong J_{n,m}$ be a Jahangir graph with $m \ge 3$ and $n \cong 0$ or $1 \pmod{3}$, then

$$\gamma_{pe}\left(\Im\left(J_{n,m}\right)\right) = \begin{cases} 2 \left\lfloor \frac{nm}{3} \right\rfloor, & \text{if } m = 3; \\ 2 \left\lfloor \frac{nm}{3} \right\rfloor - 2, & \text{otherwise} \end{cases}$$

Theorem 2.17. [8] Let $G \cong J_{n,m}$ be a Jahangir graph with $m \ge 3$ and $n \cong 2 \pmod{3}$, then

$$\gamma_{pe}(\mathfrak{I}(G)) = \begin{cases} 2\left\lceil \frac{nm}{3} \right\rceil, & \text{if } m \cong 0 \text{ or } 1 \pmod{3}; \\ 2\left\lfloor \frac{nm}{3} \right\rfloor, & \text{if } m \cong 2 \pmod{3} \end{cases}$$

Definition 2.2. [8] The gear graph is a wheel graph with a vertex added between each pair adjacent graph vertices of the outer cycle. The gear graph G has 2n + 1 vertices and 3n edges. In Fig.3. we display G₈. *Theorem 2.18.* [8] Let G_n be a gear graph with $n \ge 3$. Then

$$\gamma(\mathfrak{I}(G_n)) = \begin{cases} \left| \frac{4n}{3} \right|, & \text{if } n \cong 0 \text{ or } 1 \pmod{3} \\ \left| \frac{4n}{3} \right| + 1, & \text{if } n \cong 2 \pmod{3} \end{cases}$$

Proposition 2.3. [8] Let G be any connected graph of order n. Then $1 \le \gamma(G) \le \gamma_{pe}(G) \le \gamma(\mathfrak{I}(G)) \le \gamma_{pe}(\mathfrak{I}(G)) \le 2n$. Further, $\gamma_{pe}(\mathfrak{I}(G)) = 2$ if and only if G contains an edge of degree atleast n - 2. **Proposition 2.4.** [8] Let G be any graph. If diam(G) = 2 then $\gamma_{pe}(\mathfrak{I}(G)) \le \delta(G) + 1$. Equality holds if G is a path.

Proposition 2.5. [8] Let G be a connected graph of order $n \ge 2$. Then $\gamma_{pe}(\mathfrak{I}(G)) \le \gamma(\mathfrak{I}(G)) + \delta(\mathfrak{I}(G))$

3 Vertex Removal

We observe that the pendant domination parameter value of a graph G may be increases or decreases or remains same when a point is removal from G. For an example in a complete graph K_m (m > 2) or complete bipartite graph $K_{m,n}$ removal of any one point it does not affect the number of γ_{pe} . In a sunlet graph the removal of a vertex of degree one it decreases the value of γ_{pe} by one. In barbell graph v_1 , v_2 are the adjacent vertices connected two copies of complete graphs. If we removal of the vertex v_1 in barbell graph increases the value of γ_{pe} by 2. Hence we can define the point set V (G) of G into three subsets

$$V_{pe}^{0} = \{(u, v) \in V : \gamma_{pe}(G - v) = \gamma_{pe}(G)\}$$

$$V_{pe}^{-} = \{(u, v) \in V : \gamma_{pe}(G - v) < \gamma_{pe}(G)\}$$

$$V_{pe}^{+} = \{(u, v) \in V : \gamma_{pe}(G - v) > \gamma_{pe}(G)\}$$

Theorem 3.1. [6] If $G \cong P_n$ and $n \ge 3$, then we have (i) If $n \equiv 0 \pmod{3}$ or $n \equiv 1 \pmod{3}$ then

$$v_i \in \begin{cases} V_{pe}^0, & \text{if i} = 1 \text{ or n;} \\ V_{pe}^+, & \text{if i} = 1 \text{ or } 2 \text{ or } 3 \pmod{3} \end{cases}$$

(ii) If
$$n \equiv 2 \pmod{3}$$
, then
 $v_i \in \begin{cases} V_{pe}^-, & \text{if } i = 1 \text{ or } n; \\ V_{pe}^+, & i \equiv 0 \pmod{3} \end{cases}$

 V_{pe}^{0} , $i \equiv 1 \text{ or } 2 \pmod{3}$. **Theorem 3.2.** [6] If C_n is a cycle with $n \ge 4$ vertices, then

$$V(C_n) \in \begin{cases} V_{pe}^-, & \text{if } n \equiv 2 \pmod{3}; \\ V_{pe}^0, & \text{Otherwise} \end{cases}$$

4 Edge Removal

In this section, we analyse the effect of edge removal in the pendant domination number $\gamma_{pe}(G)$ of graph G. As in the case of vertex removal, we can observe that the pendant domination number $\gamma_{pe}(G)$ of a graph G may increase or decrease remain same when an edge is removed from G. Hence we can partition the edge set E(G) of G into 3 subsets as E_{pe}^+ , E_{pe}^- and E_{pe}^o below.

$$E_{pe}^{-} = \{(u, v) \in E : \gamma_{pe}(G - uv) \le \gamma_{pe}(G)\}$$

$$E_{pe}^{0} = \{(u, v) \in E : \gamma_{pe}(G - uv) = \gamma_{pe}(G)\}$$

$$E_{pe}^{+} = \{(u, v) \in E : \gamma_{pe}(G - uv) \ge \gamma_{pe}(G)\}$$

Theorem 4.1. [6] Let P_n be a path with $n \ge 3$ vertices, then we have (*i*) If $n \equiv 0 \pmod{3}$, then

$$(v_i, v_{i+1}) \in \begin{cases} E_{pe}^-, & i = 1 \text{ or } n-1; \\ E_{pe}^+, & \text{if } i \equiv 0 \pmod{3}; \\ E_{pe}^0, & \text{if } i \equiv 1 \pmod{3}. \end{cases}$$

(*ii*)If $n \equiv 1 \pmod{3}$, then

$$(v_i, v_{i+1}) \in \begin{cases} E_{pe}^0, & \text{if } i \equiv 2 \pmod{3} \text{ or } i = 1 \text{ or } n - 1; \\ E_{pe}^+, & i \equiv 0 \text{ or } 1 \pmod{3} \end{cases}$$

(iii) if
$$n \equiv 2 \pmod{3}$$
, then
 $\begin{pmatrix} v_i, v_{i+1} \end{pmatrix} \in \begin{cases} E_{pe}^-, & \text{if } i = 1 \text{ or } n - 1; \\ E_{pe}^0, & Otherwise \end{cases}$

REFERENCES

- [1] J.A.Bondy, U.S.R Murty, *Graph theory with application*, Elsevier science Publish-ing Co, sixth printing, 1984.
- [2] T.W.Haynes, S.T.Hedetniemi, P.J.Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, New york, 1998.
- [3] S.T. Hedetniemi and R.C. Laskar, *Topics on Domination*, Discrete Math. 86 (1990).
- [4] F. Harary, Graph Theory (Addison-Wesley, Reading Mass, 1969).
- [5] Ore, Theory of Graphs (American Mathematical Society, Providence, R.I., 1962).
- [6] Purushothama S *Critical and Stable Pendant Domination*, Open Journal of Math- ematical Sciences, Vol. 6 (2022), Issue 1, pp. 187 – 191 ISSN: 2523-0212 (Online) 2616-4906 (Print) DOI: 10.30538/oms2022.01872.
- [7] Nayaka S.R, Puttaswamy and Purushothama S, *Pendant Domination in Grid graphs*, Journal of Applied Mathematics and Statistical Analysis Volume 3 Issue3, HBRP Publication Page 1-8 2022.
- [8] Purushothama S, Puttaswamy and Nayaka S.R. *Pendant Domination in Double Graphs*. Proceedings of the Jangjeon Mathematical Society (Scopus, KCI Journal) Volume 23(2), 2020 (April).
- [9] Nayaka S.R, Puttaswamy and Purushothama S, *Pendant Domination in Graphs*. Journal of Combinatorial Mathematics and Combinatorial Computing, Volume 112, February, (2020), pp. 219-230.
- [10] Nayaka S.R, Puttaswamy and Purushothama S, Complementary Pendant Dom- ination in Graphs, International Journal of Pure And Applied Mathematics (Sco- pus), Volume 113 No. 11 (2017), 179-187.
- [11] *N* ayaka S.R, Puttaswamy and Purushothama S, Independent Transversal Re- strained Domination in Graphs, IJPAM, Volume 113, No. 11, (2017), 170-178.
- [12] Nayaka S.R, Puttaswamy and Purushothama S, *Pendant Domination in Some Generalized Graphs*, International Journal of Scientific Engineering and Science, Volume 1, Issue 7, (2017), pp. 13-15.
- [13] Nayaka S.R, Puttaswamy and Purushothama S Pendant Domination Polynomial of a Graph,IJPAM, Volume 117, No. 11 (2017), 193-199.
- [14] Purushothama S, Puttaswamy and Nayaka S.R, *Bi-Pendant Domination in Graphs*, Global Journal of Pure and Applied Mathematics, Volume 14, No. 7, (2018), 919-925.
- [15] Purushothama S, Puttaswamy and Nayaka S.R, *12. Upper Pendant Domination in Graphs*, Global Journal of Pure and Applied Mathematics, Volume 14, No. 6, (2018), 873-883.
- [16] Purushothama S, Puttaswamy and Nayaka S.R., *Minimum Pendant Dominating Energy Of a Graph*. American International Journal of Research in Science, Tech- nology, Engineering and Mathematics, ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629, (2019).