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Abstract 

Throughout this paper, we consider the cost of null controllability for a large class of linear equations of parabolic 
or dispersive type in one dimension in small time. We are able to give precise upper bounds on the time-
dependence of the fast controls when the time of control T tends to 0. We also give a lower bound of the cost of 
fast controls for the same class of equations, which proves the optimality of the power of T involved in the cost 
of the control. These general results are then applied to treat notably the case of linear KdV equations and 
fractional heat or Schrodinger equations. 
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5.1 Introduction 

5.1.1 Presentation of the problem 

This paper is devoted to studying fast boundary controls for some evolution equations of parabolic or dispersive 

type, with the spatial derivative not necessarily of second order. 

Let H be an Hilbert space (the state space) and U be another Hilbert space (the control space). Let A: D(A) ⟶ H 

be a self-adjoint operator with compact resolvent, the eigenvalues (which can be assumed to be different from 0 

without loss of generality) are called (λk)k≥1, the eigenvector corresponding to the eigenvalue λkis called ek. We 

assume that – A generates on H a strongly continuous semigroup S: t ↦ S(t) = e−tA. The Hilbert space D(A∗)′(=
D(A)′) is from now on equipped with the norm 

‖x‖D(A)′
2 = ∑

<x,ek>H
2

λk
2 . 

We call BϵLc(U,D(A)
′) an admissible control operator for this semigroup, i. e. such that there exists some time 

T0 > 0, there exists some constant C > 0 such that for every zϵD(A), 

∫ ‖B∗S(t)∗z‖U
2 ≤ C‖z‖H

2T0
0

.  
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We recall that if B is admissible, then necessarily the previous inequality holds at every time, that is to say for 

every time T > 0, there exists some constant C(T) > 0 such that for every zϵD(A), one has 

∫ ‖B∗S(t)∗z‖U
2 ≤ C(T)‖z‖H

2T0
0

.  

From now on, we consider control systems of the following form: 

yt + Ay = Bu  

Or 

yt + iAy = Bu , 

Where A will always be supposed to be positive in the parabolic case (i.e. for Equation (5.1.1)). 

Then, it is well-known (see for example [Cor07, chapter 2, Section 2.3], the operators -A or -iA generates a 

strongly continuous semigroup under the hypothesis given before thanks due  to the Lummer-Phillips or Stone 

theorems) that if uϵL²((0, T), U), System (5.1.1) or (5.1.2) with initial condition y0ϵH has a unique solution 

satisfying yϵC0([0, T], H). Moreover, control uϵL²((0, T0), U) such that y(T0, . ) ≡ 0), then there exists a unique 

optimal (for the optimal null control cost at time T0 (or in a more concise form the cost of the control) and 

denoted CT0, which is also the smallest constant C > 0 such that for every y0ϵH, there exists some control u 

driving y0 to 0 at time T0 with 

‖u‖L2((0,T0).U ≤ C‖y
0‖H. 

Our goal in work is to estimate precisely the cost of the control CT when the time T ⟶ 0 for some families of 

operators A which are null controllable in arbitrary small time, and is of great interest in itself but it may also be 

applied to study the uniform controllability of transport-diffusion in the vanishing viscosity limit as explained in 

[Lis12]. (the strategy described in [Lis12] might probably be extended to the study of other problems of uniform 

controllability, for example in zero dispersion limit or in zero diffusion limit as in [GG08] or [GG09]) It is obvious 

that CT must tend to ∞ when 𝑇 ⟶ 0. 

5.2 Proofs of Theorems  

5.2.1 Proof of Theorem 5.1.1 

The following lemma is a refinement of the estimates proved in [𝐹𝑅71, 𝐿𝑒𝑚𝑚𝑎 3.1] and is strongly inspired 

by [𝑇𝑇07, 𝐿𝑒𝑚𝑚𝑎 4.1]. 

Lemma 5.2.1. Let (𝜆𝑛)𝑛≥1 be a regular increasing sequence of strictly positive numbers versifying moreover that 

there exists some 𝛼 ≥ 2 and some constant 𝑅 > 0 such that (5.1.3) holds. 

Let Φ𝑛 be defined as follows : 

Φn(𝓏) ∶=∏(1 −
𝓏

𝜆𝑘 − 𝜆𝑛
)

𝑘≠𝑛

. 

Then 

1. If 𝓏 ∈ ℂ, 

Φ𝑛(𝓏) ≲ 𝑒
𝜋

√𝑅 sin(π/α )
|𝓏|

1
𝛼

𝑃(|𝓏|), 

where 𝑃 is a polynomial. 

2. If If 𝓏 ∈ ℝ , 

Φn(−𝑖𝑥 − 𝜆𝑛) ≲ 𝑒
𝜋

2√𝑅 sin(π/α )
|𝑥|

1
𝛼

𝑃(𝜆𝑛, |𝑥|), 
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Where 𝑃 is a polynomial. 

(In the previous inequalities, the implicit constant may depend on 𝛼 but not on 𝓏, 𝑥 or 𝑛) 

Remark 5.2.1. One can see numerically that inequalities (5.2.1) and (5.2.2) are optimal for 𝛼 ≥ 2, but are false 

for 𝛼 ∈ (1,2) (but one could find a less precise estimate). 

Proof of lemma 5.2.1. Without loss of generality, we can assume that 𝑅 = 1 (one can go back to the general case 

by an easy scaling argument). We have then the existence of some constant 𝐶 > 0 such that |𝜆𝑛 − 𝑛
𝛼| ≤ 𝐶𝑛𝛼−1. 

From now on we call 𝛾 ∶= 𝛾((𝜆𝑛)𝑛 ≥ 1). As in [TT07, Page 81], one has. 

ln|Φn(𝓏)| ≤ ∫ ∫
𝐿𝑛(𝑠)

(𝑡 + 𝑠)2

∞

𝛾

|𝓏|

0

𝑑𝑠𝑑𝑡, 

where 

𝐿𝑛(𝑠) ≔ #{𝑘‖𝜆𝑘 − 𝜆 ≤ 𝑠}. 

Let us estimate precisely 𝐿𝑛(𝑠). 

One has 

|𝜆𝑘 − 𝜆𝑛| ≤ 𝑠 

if and only if 

𝜆𝑘 − 𝜆𝑛 ≤ 𝑠 

and  

𝜆𝑘 − 𝜆𝑘 ≤ 𝑠. 

1. Assume that (5.2.4) holds. Then 

𝑘𝛼−1(𝑘 − 𝐶) ≤ 𝜆𝑛 + 𝑠. 

Let 

𝑅(𝑋) = 𝑋𝛼−1(𝑋 − 𝐶). 

We call 𝐷 = 𝜆𝑛 + 𝑠. By studying function 𝑅(0) = 0, 𝑅(+∞) = +∞ and that 𝑅 is strictly decreasing on 

[0, 𝐶(1 − 1/α) ] and then strictly increasing on [𝐶(1-1/α), ∞]. Hence the equation 𝑅(𝑋) ≤ 𝐷 is equivalent to 

0 ≤ 𝑋 ≤ 𝑋̃. Moreover, 

𝑅 (𝐷
1
𝛼) − 𝐷 = −𝐶𝐷

𝛼−1
𝛼 < 0 

and  

𝑅 (𝐷
1
𝛼) − 𝐷 = (𝐷

1
𝛼 + 𝐶)

𝛼−1

𝐷
1
𝛼 −𝐷 = 𝐷 ((1 + 𝐶𝐷−

1
𝛼)

𝛼−1

− 1) > 0. 

So 𝑋̃ ∈ [𝐷1/α, 𝐷1/α + 𝐶] and  

0 ≤ 𝑘 ≤ 𝑋̃ 

Implies 

𝑘 ≤ (𝜆𝑛 + 𝑠)
1
𝛼 + 𝐶. 

2. Assume now that (5.2.5) holds. 
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𝜆𝑛 − 𝑠 ≤ 𝑘
𝛼−1(𝑘 + 𝐶). 

We call 𝐸 = 𝜆𝑛 − 𝑠. If 𝜆𝑛 − 𝑠 < 0 then inequality (5.2.7) is always true. If 𝜆𝑛 + 𝑠 ≥ 0, we introfuce 

𝑅̃(𝑋) = 𝑋𝛼−1(𝑋 + 𝐶). 

By studying function 𝑅̃, we see that 𝑅̃(0) = 0, 𝑅̃(+∞) = +∞ and that 𝑅̃ is strictly increasing on [0,∞). 

Hence the equation 𝑅̃(𝑋) = 𝐸 has a unique solution 𝑋̃ ∈ [0,∞) and the inequality 𝑅̃(𝑋) ≥ 𝐷 is 

equivalent to 𝑋 ≥ 𝑋̃. Moreover, 

𝑅̃ (𝐸
1
𝛼) − 𝐸 = 𝐶𝐸

𝛼−1
𝛼 > 0 

and  

𝑅̃ ((𝐸
1
𝛼 − 𝐶)

+

) − 𝐸 = ((𝐸
1
𝛼 − 𝐶)

+

)

𝛼−1

𝐸
1
𝛼 − 𝐸 (((1 − 𝐶𝐸

1
𝛼)

+

)

𝛼−1

− 1) < 0. 

So 

𝑋̃ ∈ [𝐸1/α − 𝐶, 𝐸1/α] 

and 𝑘 ≥ 𝑋̃ implies 

𝑘 ≥ ((𝜆𝑛 − 𝑠)
1
𝛼 − 𝐶)

+

≥ ((𝜆𝑛 − 𝑠)
1
𝛼 − 𝐶). 

Finally, if we have simultaneously the conditions (5.2.4) and (5.2.5) and (5.2.5), then combining inequalities 

(5.2.6) and (5.2.8) necessarily. 

𝑘 ∈ [((𝜆𝑛 − 𝑠)
+)

1
𝛼 − 𝐶, (𝜆𝑛 + 𝑠)

1
𝛼 + 𝐶] 

and 

𝐿𝑛(𝑠) ≤ (𝜆𝑛 + 𝑠)
1
𝛼 − ((𝜆𝑛 − 𝑠)

+)
1
𝛼 + 2𝐶. 

Finally, from (5.2.3) and (5.2.9). 

|Φn(𝓏)| ≲ (1 + |𝓏|/𝛾)
2𝐶𝑒

∫
(𝜆𝑛+𝑠)

1
𝛼−((𝜆𝑛−𝑠)

+)
1
𝛼

(𝑖+𝑠)²

|𝓏|

𝛾
𝑑𝑠𝑑𝑡

 

One has (using the change of variables 𝑣 = 𝑠 / 𝜆𝑛 for the last inequality) 

∫ ∫
(𝜆𝑛 + 𝑠)

1
𝛼 − ((𝜆𝑛 − 𝑠)

+)
1
𝛼

(𝑦 + 𝑠)2

∞

𝛾

|𝓏|

0

≤ |𝓏|∫
(𝜆𝑛 + 𝑠)

1
𝛼 − ((𝜆𝑛 − 𝑠)

+)
1
𝛼

𝑆(𝑠 + |𝓏|)2

∞

𝛾
𝑑𝑠 

≤ 𝜆𝑛
1−
1
𝛼 (𝑈(

|𝓏|

𝜆𝑛
) + 𝑉 (

|𝓏|

𝜆𝑛
)), 

where 

𝑈(𝑥) ≔ ∫
(1 + 𝑠)

1
𝛼 − ((1 − 𝑠)+)

1
𝛼

𝑣(𝑣 + 𝑥)2
𝑑𝑣

1

0
 

and  
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𝑉(𝑥) ≔  ∫
(𝑣 + 1)

1
𝛼

𝑣(𝑣 + 𝑥)
𝑑𝑣

∞

1
 

To prove inequality (5.2.1),, in view of (5.2.10) and (5.1.11) it is  now enough to prove 

𝑥1−
1
𝛼(𝑈(𝑥) + 𝑉(𝑥)) ≤

𝜋

sin (
𝜋
𝛼)
  

For every 𝑥 ≥ 0. 

Let us now prove inequality (5.2.14). Let us first study 𝑥1−1/𝛼𝑉(𝑥). We remark that 

𝑥1−1/𝛼𝑉(𝑥) = 𝑥1−1/𝛼∫
(𝑣 + 1)

1
𝛼

𝑣(𝑣 + 𝑥)
𝑑𝑣

∞

1

= ∫
(𝑣/𝑥 + 1/𝑥)

1
𝛼

𝑣(𝑣/𝑥 + 1)
𝑑𝑣

∞

1

. 

By considering the change of variables 𝑡 = 𝑥/𝑣, we obtain 

𝑥1−1/𝛼𝑉(𝑥) = ∫
(1/𝑡 + 1/𝑥)

1
𝛼

1 + 𝑡
𝑑𝑡

𝑥

0

. 

Similarly one has 

𝑥1−1/𝛼𝑈(𝑥) = ∫
(1/𝑡 + 1/𝑥)

1
𝛼 − (1/𝑥 + 1/t)

1
𝛼

1 + 𝑡
𝑑𝑡

∞

𝑥

. 

Using the dominated convergence Theorem, one proves easily that 

𝑥1−1/𝛼𝑉(𝑥)𝑥 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∫
𝑑𝑡

𝑡
1
𝛼(1 + 𝑡)

∞

0

 

and  

𝑥1−1/𝛼𝑈(𝑥)𝑥 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  0. 

Let us call 

𝐼(𝛼) ≔ ∫
𝑑𝑡

𝑡
1
𝛼(1 + 𝑡)

.
∞

0

 

One can compute explicitly this integral. 

Lemma 5.2.2 𝐿𝑒𝑡𝑥 > 1. 𝑇ℎ𝑒𝑛 

𝐼(𝑥) =
𝜋

sin (π/x)
. 

Proof of Lemma 5.2.2. We remind the following Definition of the Euler Beta function: 

𝐵(𝑥, 𝑦) ≔ ∫
𝑡𝑥−1

(1 + 𝑡)𝑥+𝑦
𝑑𝑡.

∞

0

 

We the have 

𝐼(𝑥) = 𝐵(1 − 1/𝑥, 1/𝑥).  

Using the link between the B function and the Γ function, we obtain 
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𝐵(1-1/x, 1/x) =
Γ(1−1/x)Γ(1/x)

Γ(1−1/x+1/x)
= Γ(1 − 1/x)Γ(1/x).   

Using the Euler reflection formula (which can be applied here because 1/𝑥 𝜖(0,1)), we obtain the 

desired result. 

We will prove that for every 𝑥 > 0 one has 

𝑥1−
1

𝛼(𝑈(𝑥) + 𝑉(𝑥)) ≤ 𝐼(𝛼).  

Let us remark that one can compute explicitly V in terms of linear combining of hypergeometric 

functions: one can use for example Mathematica to check that 

𝑥1−1/α𝑉(𝑥) = −𝛼𝑥−1/α 2𝐹1(−1/α,−1/α, 1 − 1/α,−1)  

+𝛼(1 + 1/x)
1

𝛼2𝐹1(−1/α, , −1/α, 1 − 1/α, (𝑥 − 1)/(𝑥 + 1)),  

Where 2F1is the ordinary hypergeometric function. It is the easy to prove that for every 𝛼 ≥ 2, 𝑥 ⟼

𝑥1−1/α𝑉 is increasing by differentiating (5.2.20) with respect to 𝑥. Let us consider two different cases: 

1. Assume 𝑥 < 1. In this case, 

𝑥1−
1

𝛼𝑉(𝑥) ≤ −𝛼2𝐹1(−1/α, 1 − 1/α, -1)+α2
1/𝛼.  

We remark (by differentiating 𝑥1−1/α𝑈(𝑥) with respect to 𝛼 in expression (5.2.16) that 𝛼 ⟼

𝑥1−1/α𝑈(𝑥) is increasing, so 

𝑥1−1/α𝑈(𝑥) ≤ √𝑥∫
(1 + 𝜐)

1
2 − (1 − 𝜐)

1
2

𝜐(𝜐 + 𝑥)
𝑑𝜐 ≤ 1.

1

0

  

(the last inequality in (5.2.22) can be checked numerically for 𝑥𝜖[0,1]) 

We also have (the function 𝛼 ⟼ 2𝐹1(−1/α,−1/𝛼, 1 − 1/𝛼,−1) is increasing) 

−𝛼2𝐹1(−1/𝛼, −1/𝛼, 1 − 1/𝛼,−1) ≤ −𝛼2𝐹1(−1/2,−1/2,1 − 1/2,−1) ≤ −0.52𝛼.  

 

Combining (5.2.21), (5.2.22) and (5.2.23), we deduce 

𝑥1−1/𝛼(𝑈(𝑥) + 𝑉(𝑥)) ≤ 1 + 𝛼21/𝛼 − 0.52𝛼 

We just have to prove that 

1 − 0.52𝛼 + 𝛼21/𝛼 ≤
𝜋

sin(𝜋/𝛼)
.  

One verifies numerically that (5.2.24) it is true for 𝛼𝜖[2,3], and one verifies easily by differentiating the 

expression with respect to 𝛼 that 𝛼 ↦ 1 − 0.52𝛼 + 𝛼21/𝛼 −
𝜋

sin (𝜋/𝛼)
 is decreasing at least on (3,∞). 

Inequality (5.2.19) is proved at least for 𝑥 < 1.  

2. Assume 𝑥 ≥ 1. We have (the equality can be easily obtained thanks to Mathematica for example) 

𝑥1−1/α𝑈(𝑥) ≤ 𝑥−1/𝛼 ∫
(1+𝜐)

1
𝛼−(1−𝜐)

1
𝛼

𝜐
𝑑𝜐

1

0
  

= 𝑥−1/𝛼(𝐻1/𝛼+2𝐹1(−1/𝛼,−1/𝛼, 1 − 1/𝛼,−1)),  
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Where we call 𝐻1/𝛼 the (generalized) harmonic number of order 1/𝛼. We have 

𝐻1/𝛼 ≤ 𝐻1/𝛼 ≤ 0.62. 

Using (5.2.20), (5.2.25) and (5.2.26), we deduce 

𝑥1−1/𝛼(𝑈(𝑥) + 𝑉(𝑥)) ≤ 𝑥−1/𝛼𝐴(𝛼) + 𝐵(𝑥)  

with  

𝐴(𝛼) = (0.62 − 𝛼)2𝐹1(−1/𝛼, −1/𝛼, 1 − 1/𝛼,−1) 

and  

𝐵(𝑥) = 𝛼(1 + 1/𝑥)1/𝛼  2𝐹1(−1/𝛼,−1/𝛼, 1 − 1/𝛼, (𝑥 − 1)/(𝑥 + 1)). 

One has 𝐴(𝛼) < 0, moreover, one easily proves that B is increasing with respect to 𝑥 and tends to 

𝛼2𝐹1(−1/𝛼,−1/𝛼, 1 − 1/𝛼, 1) = 𝐼(𝛼). Hence inequality (5.2.27) implies that inequality (5.2.19) is also 

proved for 𝑥 ≥ 1 and finally (5.2.14) is proved. 

Inequality (5.2.2) is easier to prove. Doing as in [𝑇𝑇07, 𝑃𝑎𝑔𝑒83], we have 

|Φ𝑛(−𝑖𝑥 − 𝜆𝑛)|
2 =∏

|1 + 𝑖𝑥/𝜆𝑘|²

(1 − 𝜆𝑛/𝜆𝑘)
2
= 𝐵𝑛

2∏|1+ 𝑥2/𝜆𝑘
2|

𝑘≠𝑛𝑘≠𝑛

 

where 

𝐵𝑛 ≔∏(1 − 𝜆𝑛/𝜆𝑘)
−1.

𝑘≠𝑛 

 

Let us remark that 

∑ ln (1 + 𝑥2/𝜆𝑘
2 = ∫

𝑀(𝑡)

1 + 𝑡
𝑑𝑡,

|𝑥|2/𝜆1
2

0𝑘≥1

 

where 

𝑀(𝑡) ≔ ∑ 1.

𝜆𝑘≤|𝑥|/√𝑡

 

One easily observe using same computations as before that 

𝑀(𝑡) ≤ |𝑥|
1
𝛼𝑡−1/(2𝛼) +   𝐶. 

∑ln (1 + 𝑥2/𝜆𝑘
2 ≤ 𝐶𝑙𝑛(1 + |𝑥|2/𝜆𝑘

2) + |𝑥|
1
𝛼∫

1

𝑡1/(2𝛼)(1 + 𝑡)
𝑑𝑡 ≤ 𝐶𝑙𝑛(1 + |𝑥|2/𝜆1

2 + |𝑥|
1
𝛼𝐼(2𝛼).

𝜋

0𝑘≥1

 

We deduce by Lemma 5.2.2 and (5.2.28) that 

Φ𝑛(−𝑖𝑥 − 𝜆𝑛) ≲ 𝐵𝑛(1 + |𝑥|
2/𝜆1

2)𝐶/2𝑒𝜋|𝑥|
1
𝛼/(2 sin(𝜋/(2𝛼))) 

and it can be proved that 𝐵𝑛 is at most polynomial in 𝜆𝑛 (the computations are the same as in 
[𝑇𝑇07, 𝑃𝑎𝑔𝑒𝑠 83 − 84]) as wished. This proves inequality (5.2.2). 

Now, we study the multiplier, which is very similar to the one studied in [TT07]. Let 𝑣 > 0 and 𝛽 > 0 

be linked by the following relation: 
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𝛽𝑣𝛼−1 = (4(𝛼 − 1))
𝛼−1

(
𝜋 + 𝛿

𝛼 sin(𝜋/𝛼)
)
𝛼

, 

where 𝛿 > 0 is a small parameter. 

We call 

𝜎𝑣(𝑡) ≔ exp (−
𝑣

(1 − 𝑡2)
) 

Prolonged by 0 outside (−1; 1). 𝜎𝑣 is analytic on 𝐵(0,1). We call 

𝐻𝛽(𝑧) ≔ 𝐶𝑣∫ 𝜎𝑣(𝑡)𝑒
−𝑖𝛽𝑡𝑧𝑑𝑡,

1

−1

 

Where 

𝐶𝑣 ≔ 1/‖𝜎𝑣‖1. 

Thanks to [TT07, Lemma 4.3], we have 

 𝐻𝛽(0) = 1,  

 𝐻𝛽(𝑖𝑥) ≳
𝑒𝛽|𝑥|/(2√𝑣+1)

√𝑣+1
,  

 
1

2
𝑒𝑣 ≤ 𝐶𝑣 ≤

3

2
√𝑣 + 1𝑒𝑣,  

 |𝐻𝛽(𝑥)| ≤ 𝑒
𝛽|𝐼𝑚(𝑧)|.  

The main estimate is the following: 

Lemma 5.2.3. For 𝑥𝜖ℝ,  we have 

𝐻𝛽(𝑥) ≲ √𝑣 + 1𝑒
3𝑣/4−((𝜋+𝛿/2)|𝑥|

1
𝛼)/(sin(𝜋/𝛼))

 

(The implicit constant may depend on 𝛼) 

Remark 5.2.2 Lemma 5.2.3 is false for 𝛼𝜖(1,2). This explain why we were not able to extend Theorem 

5.1.1 to the case where 𝛼𝜖(1,2). However, we know that systems like (5.1.1) and (5.1.2) are null 

controllable as soon as 𝛼 > 1, so one can conjecture that there is a way to extend the estimates for 

𝛼𝜖(1,2).  

Proof of Lemma 5.2.3. First of all, consider some 𝑡𝜖[0,1) and 𝜃𝜖(−𝜋, 𝜋). We call 𝜌 ≔ 1 − 𝑡 𝑎𝑛𝑑 𝑧 ≔ 𝑡 +

𝜌𝑒𝑖𝜃. One has (see [TT07, Page  85]) 

𝑅𝑒
1

1−𝑧2
≥

1

4𝜌
+
1

4
≥

1

4𝜌1/(𝛼−1)
+
1

4
, 

because 𝜌 ≤ 1 𝑎𝑛𝑑 𝛼 ≥ 2. So, doing as in [TT07], we obtain by applying the Cauchy formula for 

holomorphic functions 

|𝜎𝑣
(𝑗)
(𝑡)| ≤ 𝑗! 𝑒

𝑣
4 sup
𝜌>0

𝑒
−

1

4𝜌1/(𝛼−1)

𝜌𝑗
 

Computing the supremum on 𝜌𝜖ℝ+∗, we obtain 
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|𝜎𝑣
(𝑗)
(𝑡)| ≤ 𝑗! 𝑒−

𝑣
4𝑒−(𝛼−1)𝑗 (

4(𝛼 − 1)𝑗

𝑣
)

(𝛼−1)𝑗

, 𝑡𝜖[0,1). 

Using the fact that 𝜎𝑣 is even, inequality (5.2.36) is true for every 𝑡𝜖(−1,1). Using inequality 𝑗! > 𝑗𝑗𝑒−𝑗  

in (5.2.36), we obtain 

|𝜎𝑣
(𝑗)
(𝑡)| ≤ (𝑗!)𝛼𝑒−

𝑣
4 (
4(𝛼 − 1)

𝑣
)

(𝛼−1)𝑗

 

Since all derivatives of 𝜎𝑣 vanish at 𝑡 = −1 𝑎𝑛𝑑 𝑡 = 1, we have 

𝐻𝛽(𝑥) ≤
2𝐶𝑣 ‖𝜎𝑣

(𝑗)
‖∞

(𝛽𝑥)𝑗
, 

For every 𝑥 > 0 𝑎𝑛𝑑 𝑗𝜖ℕ. Combining (5.2.37), (5.2.38) and (5.2.34), we deduce that 

𝐻𝛽(𝑥) ≲ √𝑣 + 1(𝑗!)𝑎𝑒
3𝑣
1
(4(𝛼 − 1))

(𝛼−1)𝑗

(𝛽𝑥)𝑗
, 𝑗 𝜖 ℕ. 

We set 

𝑗 ≔ ⌊(1/𝛼)(𝛽𝑥)1/𝛾⌋ 

With some constants 𝛼 and 𝛾 which will be chosen correctly soon. Then we have 

𝛽𝑥 ≥ (𝛼𝑗)𝛾. 

Using (5.2.41) and (5.2.39) we obtain 

𝐻𝛽(𝑥) ≲ √𝑣 + 1(𝑗!)𝛼𝑒
3𝑣

4  
4(𝛼−1)𝑗

(𝛼𝑗)𝛾𝑗
.  

We choose 𝛾 = 𝛼 𝑎𝑛𝑑 𝛼 = (4(𝛼 − 1)1−1/𝛼.  Combining (5.2.42), (5.2.40), (5.2.31) and inequality 

(𝑗!)𝛼 ≲ 𝑗𝛼/2𝑗𝛼𝑗𝑒−𝛼𝑗, 

We deduce  

|𝐻𝛽(𝑥)| ≲ √𝑣 + 1𝑒
3𝑣
4 𝑒−𝛼𝑗𝑗𝛼/2 ≤ √𝑣 + 1𝑒

3𝑣
4 𝑒−(𝜋+𝛿/2)/(sin(𝜋/𝛼))|𝑥|

1
𝛼. 

Proof of Theorem 5.1.1. 

The proof follows the proof of [TT07, Theorem 3.1 and 3.4]. We still assume without loss of generality 

that 𝑅 = 1. Let us first consider the dispersive case (Equation (5.1.2)). We call 

𝑔𝑛(𝑧) ≔ Φ𝑛(−𝑧 − 𝜆𝑛𝐻𝛽(𝑧 + 𝜆𝑛). 

We want to apply at the end the Paley-Wiener Theorem (see estimate (5.2.35)) in an optimal way, so 

we want 𝛽 to be close to 𝑇/2. Assume that 𝛽 < 𝑇/2 and close to 𝑇/2, for example 

𝛽 =
𝑇(1 − 𝛿)

2
. 

One has 𝑔𝑛(−𝜆𝑘) = 𝛿𝑘𝑛. Moreover, thanks to (5.2.44), (5.2.1), Lemma 5.2.3, (5.2.31) and (5.2.45) 

|𝑔𝑛(𝑥)| ≲ 𝑒
3𝑣
4
+𝜋/sin(𝜋/𝛼)|𝑥+𝜆𝑛|

1
𝛼
−(𝜋+𝛿/2)/ sin(𝜋/𝛼)|𝑥+𝜆𝑛|

1
𝛼
𝑃(|𝑥+𝜆𝑛|) 
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 ≲ 𝑒
3𝑣

4
−𝛿/(2 sin(𝜋/𝛼))|𝑥+𝜆𝑛|

1
𝛼
𝑃(|𝑥 + 𝜆𝑛|)  

 ≲
𝑒3(𝛼−1)(𝜋+𝛿)

𝛼−1)/((a sin(𝜋/𝛼))𝛼/(𝛼−1)𝛽1/(𝛼−1)

1+(𝑥+𝜆𝑛)2
 

 ≲
𝑒2

1
𝛼−13(𝛼−1)(𝜋+𝛿)𝛼(𝛼−1)/((𝛼 sin(𝜋/𝛼))

𝛼/(𝛼−1)
(𝑇(1−𝛿))

1/(𝛼−1)
) 

1+(𝑥+𝜆𝑛)2
 

Let us fix some 

𝐾 > 3(𝛼 − 1)21/(𝛼−1)𝜋𝛼/(𝛼−1)/(𝛼 sin(𝜋/𝛼))𝛼/(𝛼−1).  

Considering 𝛿 as close as 0 as needed, we deduce that 

|𝑔𝑛(𝑥)| ≲
𝑒

𝐾

𝑇1/(𝛼−1)

1 + (𝑥 + 𝜆𝑛)2
 

This notably proves that 𝑔𝑛𝜖𝐿²(ℝ). Moreover, using (5.2.1), (5.2.44), (5.2.45) and (5.2.35), we obtain 

|𝑔𝑛(𝑧)| ≲ 𝑒
𝑇|𝑧|/2. 

Hence, using the Paley-Wiener Theorem, 𝑔𝑛 is the Fourier transform of a function 𝑓𝑛𝜖𝐿²(ℝ) with 

compact support [−𝑇/2, 𝑇/2]. Moreover, by construction {𝑓𝑛} is biorthogonal to the family {𝑒𝑖𝜆𝑛𝑡}. Then, 

one can create the control thanks to the family {𝑓𝑛}. Let us consider 𝑦0 = ∑𝑎𝑘𝑒𝑘 the initial condition, 

we call 

𝑢(𝑡) ≔ −∑(𝑎𝑘/𝑏𝑘)𝑒
−𝑖𝑇𝜆𝑘/2𝑓𝑘(𝑡 − 𝑇/2).

𝑘𝜖ℕ

 

This expression is meaningful since 𝑏𝑘 ⋍ 1, moreover the corresponding solution 𝑦 of (5.1.2) verifies 

𝑦(𝑇, . ) ≡ 0. Using the Minkovski inequality, Parseval equality, (5.2.51), 𝑏𝑘 ⋍ 1 and (5.2.50), we obtain 

‖𝑢(𝑡)‖𝐿2(0,𝑇) ≲ 𝑒

𝐾

𝑇1/(𝛼−1)
(∑|𝑎𝑘|

2(∫
𝑑𝑥

(1+(𝑥+𝜆𝑛)
2
)²
))1/2ℝ

 

 ≲ 𝑒
𝐾

𝑇1/(𝛼−1)
(𝜋/2

∑|𝑎𝑘|²)
1/2

  

 ≲ 𝑒
𝐾

𝑇1/(𝛼−1)‖𝑦0‖𝐻.  

We now consider the parabolic case (Equation (5.1.1)). We call 

ℎ𝑛(𝑧) ≔
Φ𝑛(−𝑖𝑧−𝜆𝑛)𝐻𝛽(𝑧 sin(𝜋/𝑎)

𝑎/(2𝛼))𝛼))

𝐻𝛽(𝑖𝜆𝑛sin (𝜋/𝛼)𝛼/(2 sin(𝜋/(2𝛼))𝛼))
.  

Assume that 

𝛽 <
𝑇(2 sin(𝜋/2𝛼))𝛼

2sin (𝜋/(𝛼))𝛼
 

and close to  

𝑇(2 sin(𝜋/2𝛼))𝛼

2sin (𝜋/(𝛼))𝛼
, 

For example  
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𝛽 <
(1 − 𝛿)𝑇(2 sin(𝜋/2𝛼))𝛼

2sin (𝜋/(𝛼))𝛼
. 

One has ℎ𝑛(𝑖𝜆𝑘) = 𝛿𝑘𝑛. Moreover, thanks to (5.2.55), (5.2.2), (5.2.33), Lemma 5.2.3. (5.2.31) and 

(5.2.56), one has 

|ℎ𝑛(𝑥)| ≲ (𝑣 + 1)𝑒
3

4
𝑣+𝜋/(2 sin(𝜋/2𝛼))|𝑥|

1
𝛼−((𝜋+𝛿/2)/(2 sin(𝜋/2𝛼)))|𝑥|

1
𝛼−

𝛽|𝜆𝑛|

2√𝑣+1𝑃̅(|𝑥|, |𝜆𝑛|)  

 ≲ (𝑣 + 1)𝑒
3

4
𝑣−𝛿/(2 sin(𝜋/2𝛼))|𝑥|

1
𝛼−

𝛽𝜆𝑛
2√𝑣+1𝑃(|𝑥|, 𝜆𝑛|) 

 ≲ (𝑣 + 1)
𝑒3(𝛼−1)(𝜋+𝛿)

𝛼/(𝛼−1)/((2𝛼sin(𝜋/𝛼))𝛼/(𝛼−1)𝛽1/(𝛼−1))

(1+(𝑥+𝜆𝑛)2)
 

 ≲ (𝑣 + 1)
𝑒3(𝛼−1)2

1
𝛼−1(𝜋+𝛿)𝛼/(𝛼−1)/((2𝛼sin(𝜋/(2𝛼)))𝛼/(𝛼−1)(𝑇(1−𝛿))

1/(𝛼−1))

(1+(𝑥+𝜆𝑛)2)
 

Let us fix some 

𝐾 > 3(𝛼 − 1)21/(𝛼−1)𝜋𝛼/(𝛼−1)/ ((2𝛼 sin(𝜋/(2𝛼)))
𝛼/(𝛼−1)

). 

Considering 𝛿 as close as 0 as needed, we deduce that 

|ℎ𝑛(𝑥)| ≲
𝑒

𝑘

 𝑇1/(𝛼−1)

(1 + (𝑥 + 𝜆𝑛)2)
, 

This notably implies that ℎ𝑛(𝑥)𝜖𝐿
1(ℝ) ∩ 𝐿²(ℝ) and  

‖ℎ𝑛‖𝐿1(ℝ) ≲ 𝑒

𝐾

𝑇
1

𝛼−1 . 

Moreover, using (5.2.2), (5.2.55), (5.2.35) and (5.2.56) 

|ℎ𝑛(𝑧)| ≲ 𝑒
𝑇|𝑧|/,2 

So using the Paley-Wiener Theorem, ℎ𝑛 is the Fourier transform of a function 𝑤𝑛𝜖𝐿
2(ℝ) with compact 

support [-T/2,T/2]. Moreover, by construction {𝑤𝑛} is biorthogonal to the family {𝑒−𝜆𝑛𝑡}. Then, one can 

create the control thanks to the family {ℎ𝑛}. Let us consider 𝑦0 = ∑𝛼𝑘𝑒𝑘 the initial condition, we call 

𝑢(𝑡) ≔ −∑(𝑎𝑘/𝑏𝑘)𝑒
−𝑇𝜆𝑘/2𝑤𝑘(𝑡 − 𝑇/2), 

This expression is meaning since 𝑏𝑘 ≲ 1, moreover the corresponding solution 𝑦 of (5.1.1) verifies 

𝑦(𝑇, . ) ≡ 0. One easily verifies that 𝑢𝜖𝐶0([0, 𝑇], ℝ). Using (5.2.63), |𝑏𝑘| ≃ 1 and inequality (5.2.62), we 

obtain 

‖𝑢(𝑡)‖𝐿∞(0, 𝑇) ≲ 𝑒
𝑘

𝑇1/(𝛼−1)∑|𝑎𝑘|𝑒
−𝑇𝜆𝑘/2. 

Using the Cauchy-Schwarz inequality, one deduces 

‖𝑢(𝑡)‖𝐿∞(0, 𝑇) ≲ 𝑒
𝐾

𝑇1/(𝛼−1)‖𝑦0‖𝐻. 

 

5.3 Applications 
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5.3.1 Linear KdV equations controlled on the boundary: the case of periodic boundary conditions with 

a boundary control on the derivative of the state 

In this section, we consider the following controlled linearized KdV equation posed on (0, T) x (0, L) 

(this is the first example studied in [Ros97]. Let us first introduce the following family of periodic 

Sobolev spaces (endowed with the usual Sobolev norm) 

𝐻𝑝
𝑘 ∶= {𝒴 ∈ 𝐻𝑘(0, 𝐿)|𝑢(𝑗)(0) = 𝑢(𝑗)(𝐿), 𝑗 = 0…𝑘 − 1|}. 

We consider the following equation : 

{
 

 
𝒴𝑡 + 𝒴𝑥𝑥𝑥 = 0 𝑖𝑛 (0, 𝑇) × (0, 𝐿),

𝒴(𝑡, 0) =  𝒴(𝑡, 𝐿) 𝑖𝑛 (0, 𝑇),

𝒴𝑥(𝑡, 0) = 𝒴𝑥(𝑡, 𝐿) + 𝑢(𝑡) 𝑖𝑛 (0, 𝐿),

𝒴𝑥𝑥(𝑡, 0) = 𝒴𝑥𝑥(𝑡, 𝐿) 𝑖𝑛 (0, 𝐿),

 

with initial condition 𝒴0 ∈ 𝐻 ∶= (𝐻𝑝
1)
′
 and control 𝑢 ∈ 𝐿2(0, 𝑇). This system was first studied in [𝑅𝑍93] 

where the authors proved a result of exact controllability under the technical condition that the integral 

in space of the initial state had to be equal to the one of the final state. This case there exists a unique 

solution 𝒴 ∈ 𝐶0 ([0, 𝑇], (𝐻𝑝
1)
′
) to (5.3.1). Moreover, it is explained in [Ros97, Remark 2.3] that this 

equation is exactly controllable (and then null controllable) at all time 𝑇 > 0 for every length 𝐿 > 0 (in 

fact the case which is treated in [Ros97] is 𝐿 = 2𝜋 but it can be easily extended to all 𝐿). We call 𝐴 the 

operator 𝜕𝑥𝑥𝑥
3  with domain 𝒟(𝐴) ∶= 𝐻𝑝

2(0, 𝐿). This operator is skew-adjoint, the eigenvalues are 𝑖𝜆𝑘 ∶=

8𝑖𝜋3𝑘3/𝐿3 for 𝑘 ∈ ℤ, the corresponding eigenfunction is (normed in (𝐻𝑝
1)
′
) 

𝑒𝑘 ∶ 𝑥 ↦
(1 + 4𝜋2𝑘2/𝐿2)1/2𝑒

𝑖2𝜋𝑘𝑥
𝐿

√𝐿
. 

If 𝒴0 ∈ (𝐻𝑝
1)
′
 is written under the form 𝒴0(𝑥) = ∑ (𝑥)𝑘∈ℤ𝛼𝑘𝑒𝑘 , then the solution 𝒴 of (5.3.1) can be 

written under the form. 

𝒴(𝑡, 𝑥) =  ∑𝛼𝑘𝑒
𝑖𝜆𝑘𝑡𝑒𝑘

𝑘∈ℤ

(𝑥). 

One easily proves (using integrations by parts, see for example [Cor07, Section 2.7, page 101]) that for 

every 𝜑 ∈ 𝒟(𝐴), 

𝑏(𝜑) = −(Δ−1𝜑)′(0), 

so that 

𝑏 = 𝛿𝐿
′ ∘ Δ−1, 

where Δ−1 ∶=  −(−Δ−1) is the inverse of the Dirichlet-Laplace operator. We have 

|𝑏𝑘| = |𝑒𝑘
′ (𝐿)|/𝑘² ≃ 1. 

One can apply directly theorem 5.1.2 and Theorem 5.1.3 with 𝑘 = 3 and 𝑅 =
8𝜋3

𝐿3
 to obtain :  

Theorem 5.31. Equation (5.3.1) is null controllable and the cost of fast controls 𝐶𝑇 verifies 

(5.3.1) 
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𝐶𝑇 ≲ 𝑒
𝐾

√𝑇 

For every 𝐾 >
8

35/4
𝐿3/2. Moreover, the power of 1/T involved in the exponential is optimal. 

5.3.2 Linear KdV equations controlled on the boundary: the case of Dirichlet boundary conditions with 

a boundary control on the derivative of the state 

In this section, we consider the following controlled linearized KdV equation posed on (0, T) × (0, L): 

{
 

 
𝒴𝑡 + 𝒴𝑥 + 𝒴𝑥𝑥𝑥 = 0 𝑖𝑛 (0, 𝑇) × (0, 𝐿),

𝒴(𝑡, 0) =  0 𝑖𝑛 (0, 𝑇),

𝒴(𝑡, 𝐿) =  0 𝑖𝑛 (0, 𝑇),

𝒴𝑥(𝑡, 𝐿) = 𝑢(𝑡) + 𝒴𝑥(𝑡, 0) 𝑖𝑛 (0, 𝐿),

 

With initial condition 𝒴0 ∈ 𝐿2(0, 𝐿) and control ℎ ∈ 𝐿2(0, 𝑇). 

However, the problem is that the steady-state operator associated to (5.3.3) with the given boundary 

condition is neither self-adjoint nor skew-adjoint, so we cannot apply directly the results presented 

before. That is why we have to change a little bit the system (5.3.2) studied in [CC09]. 

To be able ro apply theorem 5.1.1 or Theorem 5.1.2, we have to study the sequence of eigenvalues 

(𝜆𝑛)𝑛≥1. One has the following result: 

Lemma 5.3.1. (𝜆𝑛)𝑛∈ℤ 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑎𝑛𝑑 𝑜𝑛𝑒 ℎ𝑎𝑠 

𝜆𝑛 =
8𝜋3𝑛3

𝐿3
+ 𝑂(𝑛2) 

𝑎𝑠 𝑛 ⟶ ±∞. 

Proof of Lemma 5.3.1. This is an immediate consequence of [CC09, Proposition 1], which gives exactly 

(5.3.4) and proves that each eigenspace is of dimension 1, which implies the regularity of (𝜆𝑛)𝑛∈ℤ 

because of the asymptotic behavior given by (5.3.4). 

From now on, we call 𝑒𝑘 one of the unitary eigenvector (for the 𝐻−1 -norm) corresponding to the 

eigenvalue 𝑖𝜆𝑘. We fix an initial condition 𝒴0 ∶=  ∑ 𝛼𝑘𝑒𝑘𝑘∈ℤ ∈ 𝐻−1(0, 𝐿). As in the previous Subsection, 

we have for every 𝜑 ∈ 𝒟(𝐴), 

𝑏(𝜑) = −(Δ−1𝜑)′(0), 

So that 

𝑏 = 𝛿𝐿
′°Δ−1, 

and  

|𝑏𝑘| = |𝑒𝑘
′ (𝐿)|/𝑘2. 

To apply Theorem 5.1.1, we just need to ensure that  

 

Lemma 5.3.2. 

𝑏𝑘 ≃ 1. 

(5.3.2) 

(5.3.4) 

http://www.ijcrt.org/


www.ijcrt.org                                                             © 2023 IJCRT | Volume 11, Issue 6 June 2023 | ISSN: 2320-2882 

IJCRT2306932 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h837 
 

Proof of Lemma 5.3.2. 𝑏𝑘 ≠ 0 is a consequence of [Ros97, Lemma 3.5] (because 𝐿 ∉ 𝒩) and [CC09, 

Lemma 3.1] gives immediately that |𝑒𝑘
′ (0)| is equivalent as 𝑘 ⟶ ∞ to 2𝜋√3𝑘2/𝐿3/2 (because in Lemma 

3.1 of [CC09] the eigenvectors are normalized in the 𝐿2-norm and here in the 𝐻−1-norm so the behavior 

of their norm as 𝑘 ⟶ ∞ has to be multiplied by 𝑘), so we finally have 𝑏𝑘 ≃ 1. 

Applying Theorem 5.1.2, we obtain directly the following Theorem: 

Theorem 5.3.2. Let 𝐿 ∉ 𝒩. Then equation (5.3.2) is null controllable and the cost of fast controls 𝐶𝑇 

verifies. 

𝑉𝑇 ≤ 2
𝐾

√𝑇 

for every 𝐾 >
8

35/4
𝐿3/2. Morever, the power of 1/𝑇 involved in the exponential is optimal. 

Remark 5.3.1. Using [GG09, Remark 1.3] one can also add a term of diffusion −𝒴𝑥𝑥 in equation (5.3.2) 

and obtain the same upper bound as in Theorem 5.3.2. 

5.3.3 Anomalous diffusion equation in one dimension 

Let us first consider the 1 − 𝐷 Laplace operator Δ in the domain 𝐷(Δ) ≔ 𝐻0
1(0, 𝐿) with state space 𝐻 ∶

= 𝐻−1(0, 𝐿). It is well-known that −Δ ∶ 𝐷(Δ) → H−1(0, 𝐿) is a definite positive operator with compact 

resolvent, the 𝑘 − 𝑡ℎ eigenvalue is 

𝜆𝑘 =
𝑘𝜋

𝐿
, 

One of the corresponding normed (on H) is 

𝑒𝑘(𝑥) ≔
√2(1 + 𝑘𝜋/𝐿) sin(𝑘𝜋𝑥 / 𝐿)

√𝐿
. 

Thanks to the continuous functional calculus for positive self-adjoint operators, one can define any 

positive power of −Δ. Let us consider here some 𝛾 > 1/2 and let us call Δ𝛾 ∶= −(−Δ)𝛾. The domain of 

Δ𝛾, that we denote 𝐻𝛾, is the completion of 𝐶0
∞(0, 𝐿) for the norm. 

‖𝜓‖𝛾 ∶= (∑(1 + 𝜆𝑘
𝛾
)|< 𝑒𝑘;  𝜓 > 𝐻|2

𝑘∈ℕ∗

)

1/2

. 

We now consider the following equation on (0, 𝑇) × (0, 𝐿) ∶ 

{
𝒴𝑡 = Δ𝛾𝒴 𝑖𝑛 (0, 𝑇) × (0, 𝐿),

𝒴(0, . ) = 𝒴0 𝑖𝑛 (0, 𝐿),
  

This kind of equation can modelize anomaly fast or slow diffusion (see for example [MK04]). 

We now consider the following controlled equation on (0, 𝑇) × (0, 𝐿), that we write under the abstract 

form 

{
𝒴𝑡 = Δ

𝛾𝒴 + 𝑏𝑢 𝑖𝑛 (0, 𝑇) × (0, 𝐿),

𝒴(0, . ) = 𝒴0 𝑖𝑛 (0, 𝐿),
  

where for every 𝜑 ∈ 𝒟(𝐴), 

(5.3.5) 

(5.3.6) 
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𝑏(𝜑) = −(Δ−1𝜑)′(0), 

i.e. 

𝑏 ∶= 𝛿0
′  𝜊 Δ−1 ∈ 𝐷((−Δ)𝛾)′ 

and 𝑢 ∈ 𝐿2(0, 𝑇). If 𝛾 ∈ ℕ∗, one can observe, using integrations by parts, that 𝑏 corresponds to a 

boundary control on the left side on the 𝛾 − 1 − 𝑡ℎ derivative of 𝒴, so that 𝑏 van be considered as a 

natural extension of the boundary controls in the case of non-entire 𝛾 (this kind of controls has already 

been introduced in [Mil06c, Section 3.3] to give results about the control of fractional diffusion 

equations with 𝛾 ≤ 1/2). 

We see that 

𝑏𝑘 = |𝑒𝑘
′ (𝐿)|/𝑘2 ≃ 1. 

If 𝒴0 ∈ 𝐻, then there exists a unique solution of (5.3.6) in the space 𝐶0([0, 𝑇], 𝐻) (because 𝑏 is 

admissible for the semigroup). To our knowledge, the controllability of anomalous diffusion equations 

with such a control operator and 𝛾 ≥ 1 has never been studied before. 

Applying directly Theorem 5.1.1 and Theorem 5.1.3, we obtain: 

Theorem 5.3.3. Assume 𝛾 ≥ 1. Then Equation (5.3.6) is null controllable with continuous controls. 

Moreover, the cost of the control in 𝐿∞ norm, still denoted 𝐶𝑇 here, is such that 

𝐶𝑇 ≲ 𝑒
𝐾

𝑇1/(2γ-1)  for every 𝐾 > 3(𝛼 − 1)21/(2𝛾−1)𝐿2𝛾/(2𝛾−1)/((4𝛾 sin(𝜋/(4γ)))2𝛾/(2𝛾−1)). 

Moreover, the power of 1/T involved in the exponential is optimal. 

 

Conclusion 

In short, in this work we are interested in the cost of border control in small time of a certain 

number of equations for the associated space operator is self-adjoint or anti-autoadjoint with 

compact resolving  and having eigenvalues behaving polynomially using the method of 

moment. Results are derived for linearized Kortewez-of- Varies, fractional diffusion, and 

fractional Schrodinger equations. In addition, we give some extensions to our investigation. 
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