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Abstract: Power systems are prone to faults that can result in 

substantial damage to expensive components, explosions, 

outages, and even fatalities. To mitigate these consequences, 

a robust power protection system is crucial for detecting, 

classifying, and locating faults. This technical description 

presents a comprehensive methodology that utilizes machine 

learning algorithms such as Convolutional Neural Networks 

(CNN), Random Forest (RF), K-Nearest Neighbors (KNN), 

Decision Tree, and Support Vector Machine (SVM) to 

accurately detect and classify faults in electrical systems. The 

main objectives of this study are to identify and categorize 

various fault types occurring at different locations and 

resistance levels, gain insights into the causes of 

interruptions, restore power promptly, and minimize future 

occurrences. Additionally, the analysis aims to improve the 

understanding of protection system components to implement 

preventive measures and reduce the likelihood of service 

disruptions and equipment damage. The proposed solution 

integrates CNN as a machine learning algorithm to enhance 

fault detection and classification performance by leveraging 

its ability to extract relevant features from fault data.. The 

performance of various machine learning algorithms, 

including RF, KNN, Decision Tree, and SVM, is evaluated 

and compared. Among these algorithms, SVM demonstrates 

the highest performance in terms of fault detection and 

classification accuracy. It effectively identifies and 

categorizes different fault types, enabling swift fault location 

determination and subsequent mitigation actions. The 

experimental evaluation is conducted on a Test Network 

using MATLAB/SIMULINK, which provides a realistic 

representation of an electrical system. The results highlight 

the effectiveness of SVM in fault detection and classification, 

emphasizing its suitability for practical implementation in 

power system protection. 

Keywords: Line fault. Ground fault, SVM, Linear 

Regression, CNN, Machine learning 

 

 

I. INTRODUCTION 

.Electrical power systems form the backbone of modern 

society, delivering electricity for various applications. These 

systems consist of complex networks of generators, 

transformers, transmission lines, and distribution networks. 

However, power systems are prone to faults that can disrupt 

the flow of electricity and cause severe consequences. Faults 

can lead to the destruction of expensive power system 

components such as motors, generators, and transformers, as 

well as explosions due to over-voltages and high currents. 

Furthermore, faults can result in power outages, leading to 

inconvenience, economic losses, and even risks to human 

life. 

To ensure uninterrupted power supply and minimize 

disruptions and equipment damage, a robust power protection 

system is required. The protection system must swiftly detect, 

classify, and locate faults to clear them rapidly. Fault analysis 

in power systems plays a vital role in understanding the 

causes of interruptions, restoring power promptly, and 

implementing preventive measures to reduce the likelihood 

of future occurrences.Traditionally, fault analysis in power 

systems relied on manual techniques and conventional 

methods, which often had limitations in terms of accuracy, 

speed, and adaptability to changing fault conditions. With the 

advent of machine learning and data analytics, there is an 

opportunity to enhance fault analysis by leveraging these 

technologies. Machine learning algorithms can process large 

volumes of data, extract meaningful patterns and features, 

and make accurate predictions and classifications, thereby 

improving fault detection, classification, and location 

determination in power systems. 

The motivation for this research stems from the need to 

develop an advanced methodology for fault analysis in 

electrical power systems. The objective is to detect and 

classify all types of faults occurring at varying fault locations 

and fault resistances accurately. By utilizing machine 

learning algorithms, the research aims to provide insights into 

the causes of interruptions, restore power promptly, and 

minimize future occurrences. Additionally, the analysis seeks 

to enhance the understanding of protection system 
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components to implement preventive measures and reduce 

the likelihood of service disruptions and equipment damage. 

The use of machine learning algorithms, such as K-Nearest 

Neighbors (KNN), Random Forest, Decision Tree, and 

Support Vector Machine (SVM), in fault analysis has shown 

promising results in various domains. The proposed solution 

in this research incorporates these algorithms to improve fault 

detection, classification, and location determination accuracy. 

Furthermore, the methodology includes the classification of 

power quality into distinct classes, enabling a comprehensive 

understanding of system behavior.By comparing the 

performance of different machine learning algorithms, this 

research aims to identify the most effective approach for fault 

analysis in electrical power systems. The evaluation and 

comparison of algorithms, including the use of Convolutional 

Neural Networks (CNN), will provide valuable insights into 

their strengths and weaknesses in the context of power 

system fault analysis. 

Overall, this research seeks to address the challenges in fault 

analysis in power systems and provide a comprehensive 

methodology for detecting, classifying, and determining fault 

locations accurately. The outcomes of this research will 

contribute to ensuring uninterrupted power supply, 

minimizing disruptions and equipment damage, and 

enhancing the resilience of electrical power systems 

II. LITERATURE REVIEW 

Historically, power system operators have traditionally relied 

on reports and complaints from consumers to identify and 

address trips and faults in the system (Alimi et al., 2020) [5]. 

However, the integration of advanced monitoring and 

communicable measuring equipment in modern power 

systems has revolutionized fault detection capabilities. These 

technological advancements enable operators to detect faults 

in a timely manner, facilitating swift response and resolution 

(Alimi et al., 2020) [5]. Consequently, operators have been 

able to employ conventional model-based techniques such as 

impedance-based and traveling wave-based methods to 

manually diagnose the location of power system faults. While 

these techniques have gained popularity and wide usage, they 

suffer from limitations including their labor-intensive nature, 

time-consuming process, computational complexity, reliance 

on mathematical modeling, and the need for domain expertise 

(Chen et al., 2018a; Das et al., 2014; Tirnovan and Cristea, 

2019) [6]. Additionally, these techniques may not easily 

adapt to system changes, such as the integration of 

Distributed Generators (DGs) (Chen et al., 2018a) [6]. 

III. METHODOLOGY. 

Normally, a power system operates under balanced 

conditions. When the system becomes unbalanced due to the 

failures of insulation at any point or due to the contact of live 

wires, a short–circuit or fault, is said to occur in the line. 

Faults may occur in the power system due to the number of 

reasons like natural disturbances (lightning, high-speed 

winds, earthquakes), insulation breakdown, falling of a tree, 

bird shorting, etc. 

A. Types of Faults? 

Faults can be brodly categorised into two types: 

1. Symmetrical 

Symmetrical faults in electrical power systems occur when 

all phases are shorted to each other or to the ground. These 

faults can be classified as either L-L-L (line-line-line) or L-L-

L-G (line-line-line-ground). One characteristic of 

symmetrical faults is their balanced nature, where the fault 

currents in all phases are symmetrical. This means that the 

magnitudes of the fault currents are equal, and they are 

equally displaced by an angle of 120 degrees. While 

symmetrical faults are more severe in nature, they tend to 

occur rarely in power systems.. 

2. Asymmetrical 

These types of faults involve only one or two phases in 

electrical power systems. As a result, the three-phase lines 

become unbalanced. There are three main types of faults in 

this category: line to ground (L-G), line to line (L-L), and 

double line to ground (LL-G) faults. These faults are 

commonly observed in power systems... 

 

Figure 1 Types of faults 

So here we are trying to classify Short-Circuit faults into 

further categories based on the values of line voltages and 

Line Currents 

B. Data collection and preprocessing 

In the research on fault detection and classification in power 

systems, data collection and processing play a crucial role. 

These steps are fundamental in obtaining reliable and 

informative data for analysis. A systematic approach is 

necessary to ensure the accuracy and robustness of the 

research findings. 

The first step in data collection is to identify the specific data 

requirements for the research. This involves determining the 

relevant variables and parameters that are essential for fault 

detection and classification. Various sources of data, such as 

historical records, field measurements, or simulation data, 

need to be identified. It is important to ensure that the 

selected data sources accurately represent the power system 

under study. This may require obtaining necessary 

permissions and approvals for data access, especially if the 

data includes sensitive or proprietary information.Once the 

data has been collected, the next step is data preprocessing. 

This involves cleaning the data to remove any 

inconsistencies, errors, or missing values. Techniques like 

interpolation or data imputation can be applied to handle 

missing values effectively. Normalization or standardization 

of the data is often performed to ensure that the variables are 

on a uniform scale and to avoid biases caused by differences 

in magnitudes. Exploratory data analysis techniques can 

provide insights into the distribution of the data, identify 

correlations between variables, and detect any outliers that 

may need to be addressed. Feature selection and engineering 

are crucial steps in data processing. It is necessary to identify 

the relevant features or variables that are informative for fault 

detection and classification. Feature selection techniques can 

be employed to reduce dimensionality and improve 

computational efficiency. Domain knowledge and insights 

from the literature can guide the selection process. 

Additionally, feature engineering techniques can be applied 

to generate new features by transforming or combining 

existing variables to capture relevant patterns or 

relationships. 

After preprocessing the data and selecting or engineering the 

features, the dataset needs to be split into training and testing 

subsets. The training dataset is used to train the machine 

learning models, while the testing dataset is used to evaluate 

the performance of the trained models. The ratio for splitting 

the data should be determined carefully, considering the need 

for sufficient training data as well as an adequate testing set 

for unbiased evaluation.The selected machine learning 
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algorithms, such as K-Nearest Neighbors (KNN), Random 

Forest, Decision Tree, or Support Vector Machine (SVM), 

are then trained on the training dataset using appropriate 

learning algorithms and optimization techniques. The trained 

models are subsequently evaluated on the testing dataset 

using relevant evaluation metrics, such as accuracy, 

precision, recall, F1-score, or area under the receiver 

operating characteristic (ROC) curve. Cross-validation or 

other validation techniques can be employed to assess the 

generalization performance of the models. 

Throughout the data processing process, iterative refinement 

is important. The performance of the trained models should 

be analyzed, and areas for improvement identified. This may 

involve refining the model parameters, revisiting feature 

selection or engineering techniques, or exploring alternative 

algorithms. The training and evaluation process should be 

repeated iteratively to enhance the model's 

performance.Sensitivity analysis is another crucial aspect of 

data processing. It allows for the assessment of the models' 

robustness to variations in input parameters or data. By 

investigating the impact of different fault scenarios, fault 

locations, or fault resistances, researchers can gain a deeper 

understanding of the model's performance and its limitations 

in different operating conditions.Finally, it is essential to 

document the entire data collection and processing process 

thoroughly. This includes providing details of the data 

sources, preprocessing steps, and feature engineering 

techniques employed. The training and testing datasets used, 

along with any data splits or cross-validation approaches, 

should be clearly described. The evaluation metrics and 

performance results obtained from the trained models should 

be reported, and visualizations or graphical representations of 

the data and model performance can be included to enhance 

the understanding of the research findings 

 

Figure 2 Proposed Methodology flow chart 

Data cleaning is the process of removing any errors, missing 

values, or outliers from the data. Missing values can be 

imputed using various techniques such as mean imputation, 

median imputation, or regression imputation. Outliers can be 

detected using various statistical techniques such as Z-score, 

IQR method, or box plots. 

C. Data collection process and the variables used in 

the dataset 

The data collection process for fault detection and 

classification in power systems involves gathering 

information on various variables.  

1. Electrical variables: 

Current measurements: Collect data on electrical currents 

flowing through various phases or components of the power 

system. This may include variables such as Ia, Ib, and Ic, 

representing current measurements for each phase. 

Voltage measurements: Gather voltage data across different 

phases or components of the power system. Variables like 

Va, Vb, and Vc can represent voltage measurements for each 

phase. 

2. System parameters: 

Collect conductance (G) data to capture the level of fault 

resistance or impedance in the power system. This provides 

insights into the flow of electrical current and the presence of 

faults. Record capacitance (C) data to identify the presence of 

capacitive elements or faults related to capacitance. This 

helps in detecting abnormalities or issues associated with 

capacitance. Measure susceptance (B) to identify reactive 

elements or faults involving reactive power in the power 

system. This parameter helps in understanding the behavior 

of reactive components and their impact on system 

performance. Additionally, collect other relevant parameters 

such as power factor, frequency, or impedance, depending on 

the specific research objectives. These parameters provide 

additional insights into the power system's operation and 

behavior. The data collection process involves accessing 

measurements from sensors installed in the power system or 

historical records of its operation. It is important to ensure 

that the collected data is representative of the power system 

being studied and covers a wide range of fault scenarios. The 

collected data can then be utilized for analysis, training 

machine learning models, or developing algorithms for 

accurate fault detection, classification, and location 

determination in power systems... 

 

Figure   3 Model overview 

Overall, these preprocessing techniques help to improve the 

quality and accuracy of the data, which in turn improves the 

performance of the machine learning algorithms used to 

detect and classify faults. 

D. Training and Evaluation 

Training and evaluating fault detection and classification 

algorithms in power systems is essential. It involves dividing 

the collected data into a training set and a testing set. 

Relevant features are selected or extracted to capture the 

patterns of power system faults. Machine learning models, 

like K-Nearest Neighbors, Random Forest, or Support Vector 

Machine, are trained on the training set. Cross-validation is 

used to assess model performance and avoid overfitting. The 

models are then evaluated using the testing set, considering 

metrics like accuracy and precision. Further analysis is done 

to understand model behavior, and iterative refinement is 

performed to enhance accuracy and robustness. This process 

helps select suitable models and identify areas for 

improvement.. 

IV. SIMULATION AND RESULTS. 

The power system heavily relies on transmission lines to 

transfer electrical power from the source to the distribution 

network. With the increasing demand for power, these lines 

play a vital role in ensuring reliable and efficient 

transmission. However, due to the complex nature of the 

power system, disturbances and faults are inevitable.. 

A. Data and Overview 

1. Binary and Multiclass Classification 

Our dataset enables two types of classification: determining 

whether electrical relays have a fault and identifying the 

location of the fault. The output includes six possible fault 

scenarios: no fault, line-to-ground fault (between phase A 

and ground), line-to-line fault (between phase A and phase 

B), line-to-line-to-ground fault (between phases A, B, and 

ground), three-phase fault (between all three phases), and 

three-phase symmetrical fault (between all three phases and 

ground). Therefore, we have six distinct output classes 

representing different fault types.. 
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Figure  4Confusion matrix of CNN 

2. Composition of Target variable 

 

Figure 5. Result for the identification of fault 

 

Figure 6 Current and voltage for line A 

 

Figure 7 Current and voltage for line 1B 

 

Figure 8 Current and voltage for line C 

B. Feature engineering 

Since there are no missing values, all values are standardised 

and there are no categorical varibales, no further feature 

engineering is required 

C. Binary Classification Neural Network Model: 

Table 1 Results recorded for CNN 

 

Outp

ut 

(S) 

Ia Ib Ic Va Vb Vc 

0 0 

-

170.472

196 

9.219
613 

161.252
583 

0.054
490 

-

0.659

921 

0.605
431 

1 0 

-

122.235

754 

6.168
667 

116.067
087 

0.102
000 

-

0.628

612 

0.526
202 

2 0 
-
90.1614

74 

3.813
632 

86.3478
41 

0.141
026 

-
0.605

277 

0.464
251 

3 0 
-
79.9049

16 

2.398

803 

77.5061

12 

0.156

272 

-
0.602

235 

0.445

963 

4 0 
-
63.8852

0.590
667 

63.2945
87 

0.180
451 

-
0.591

0.411
050 

 

Outp

ut 

(S) 

Ia Ib Ic Va Vb Vc 

55 501 

 

 

Figure 9 Accuracy and loss for CNN 

D. Exploratory Data Analysis - Multiclass 

Classification 

 

Figure 10  Confusion Matrix 

The code defines a function called dist() that plots the 

distribution of data in two columns (cola and colb) from a 

DataFrame. It creates a figure with two subplots, each 

displaying a histogram of the data. The function is then called 

in a loop for different pairs of columns, plotting and 

displaying the distributions one by one. 

 

Figure 11 CNN line a voltage and current 

 

Figure 12 CCNN Line B voltage and current 

 

Figure 13 CNN line C voltage and current 

E. Feature engineering 

Since there are no missing values, all values are standardised 

and there are no categorical varibales, no further feature 

engineering is required 

F. Multiclass Classification Neural Network Model 

The code provided concatenates the values from columns 'G', 

'C', 'B', and 'A' of the 'multi_data' DataFrame into a new 

column called 'faultType'. This is done by converting the 

values in each column to strings using the 'astype(str)' 

method and then concatenating them using the '+' operator. 

The resulting 'faultType' column contains combinations of '0' 

and '1' from the respective columns 'G', 'C', 'B', and 'A'. The 

combinations represent different fault types based on the 

binary representation. For example, '[0 0 0 0]' represents 'No 

Fault', '[1 0 0 1]' represents 'LG Fault' (between Phase A and 
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Ground), '[0 0 1 1]' represents 'LL Fault' (between Phase A 

and Phase B), '[1 0 1 1]' represents 'LLG Fault' (between 

Phases A, B, and Ground), '[0 1 1 1]' represents 'LLL Fault' 

(between all three phases), and '[1 1 1 1]' represents 'LLLG 

Fault' (three-phase symmetrical fault). 

By combining the values of 'G', 'C', 'B', and 'A' columns into 

a single 'faultType' column, the code transforms the binary 

representations into categorical labe: 

Pie chart that visually represents the distribution of fault 

types in the 'faultType' column of the 'multi_data' DataFrame. 

Each slice of the pie corresponds to a fault type, and the 

percentage displayed on each slice represents its proportion 

in the dataset. 

 

Figure 14 Fault classification 

In the given code, a multi-class classification problem is 

being addressed using a neural network. The dataset is 

preprocessed and split into training and testing sets. The 

features are stored in the variable X, and the target variable 

(faultType) is stored in the variable y. The target variable is 

encoded using the LabelEncoder and then converted to 

categorical format using the to_categorical function from 

Keras. 

The neural network model is defined using the Sequential 

class from Keras. It consists of several dense layers with 

different activation functions. The input layer has 6 units, 

corresponding to the number of features. The first hidden 

layer has 128 units and uses the ReLU activation function. 

The subsequent hidden layers have 240 units each, with the 

second layer using the tanh activation function and the third 

layer using the ReLU activation function. The output layer 

has 6 units, corresponding to the number of classes, and uses 

the softmax activation function. 

The model is compiled with the categorical_crossentropy loss 

function and the accuracy metric. The model is then trained 

using the fit function, with the training data (X_train and 

y_train), the number of epochs (50), and the batch size (64). 

During training, the model's performance on the validation 

set is also monitored. 

The training history is stored in the variable history, which 

contains the accuracy and loss values for each epoch. This 

information is visualized using matplotlib, with two subplots 

showing the accuracy and loss curves over the training 

epochs. 

Overall, this code demonstrates the process of preprocessing 

data, building a neural network model for multi-class 

classification, training the model, and monitoring its 

performance using accuracy and loss metrics. 

 

Figure 15 Accuracy and loss curves 

The code snippet prints the accuracy score of a classification 

model by comparing the predicted values (y_pred) with the 

actual values (y_test). The accuracy score is formatted to 

display three decimal places. 

Additionally, the code snippet prints a classification report, 

which provides detailed evaluation metrics for the model's 

performance. The report includes metrics such as precision, 

recall, F1-score, and support for each class in the 

classification problem. 

              precision    recall  f1-score   support 

           0       0.99      1.00      0.99       468 

           1       0.80      0.97      0.87       202 

           2       0.50      0.69      0.58       231 

           3       0.92      1.00      0.96       220 

           4       0.86      0.87      0.86       226 

           5       0.46      0.13      0.21       226 

    accuracy                           0.81      1573 

hecode snippet provided demonstrates the evaluation of a 

machine learning model. After making predictions on the test 

dataset, the predicted probabilities are stored in the variable 

y_pred_prob. Then, the predicted classes are obtained by 

selecting the class with the highest probability using 

np.argmax. The true classes are also extracted from y_test 

using the same approach. 

The shapes of y_test and y_pred arrays are shown to verify 

that they have the same number of elements. The accuracy 

score is calculated using accuracy_score function and 

displayed as a percentage. In this case, the accuracy score is 

80.610%. 

The classification report is printed using classification_report 

function, which provides precision, recall, and F1-score for 

each class. Additionally, the support column indicates the 

number of samples in each class. The macro average and 

weighted average metrics are also provided. The 

classification report gives insights into the performance of the 

model for each class, highlighting precision, recall, and F1-

score values. 

The code snippet also includes the necessary import 

statements for required libraries such as numpy, pandas, 

matplotlib, seaborn, and plotly. The datasets ddtr and clts are 

read from CSV files using the pd.read_csv function, and the 

first few rows of the ddtr dataset are displayed using the head 

function: 
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Table 2 Fault detection matrix 

 

Ou

tpu

t 

(S) 

Ia Ib Ic Va Vb Vc 

Unn

ame

d: 7 
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ame

d: 8 

0 0 

-
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4721

96 

9.21
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3 
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83 
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0 

-
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1 

0.60
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1 

NaN NaN 

1 0 

-
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54 
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7 

116.

0670
87 
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200
0 

-
0.62

861
2 

0.52

620
2 

NaN NaN 

2 0 

-

90.1
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4 

3.81
363

2 

86.3
4784

1 

0.14
102

6 

-

0.60

527
7 

0.46
425

1 

NaN NaN 

3 0 

-

79.9

0491

6 

2.39

880

3 

77.5

0611

2 

0.15

627

2 

-

0.60

223

5 

0.44

596

3 

NaN NaN 

4 0 

-

63.8
8525

5 

0.59

066

7 

63.2

9458

7 

0.18

045

1 

-

0.59
150

1 

0.41

105

0 

NaN NaN 

 

Table 3 line voltage measured according to the variable 

values. 

 
G C B A Ia Ib Ic Va Vb Vc 

0 1 0 0 1 

-

151.2

91812 

-

9.677

452 

85.80
0162 

0.40
0750 

-

0.13

2935 

-

0.26

7815 

1 1 0 0 1 

-

336.1

86183 

-

76.28

3262 

18.32
8897 

0.31
2732 

-

0.12

3633 

-

0.18

9099 

2 1 0 0 1 
-
502.8

91583 

-
174.6

48023 

-
80.92

4663 

0.26

5728 

-
0.11

4301 

-
0.15

1428 

3 1 0 0 1 
-
593.9

41905 

-
217.7

03359 

-
124.8

91924 

0.23

5511 

-
0.10

4940 

-
0.13

0570 

4 1 0 0 1 
-
643.6

63617 

-
224.1

59427 

-
132.2

82815 

0.20

9537 

-
0.09

5554 

-
0.11

3983 

The "ddtr" dataset is used for training the fault detection 

model, while the "clts" dataset is used for the classification of 

shunt faults. The "ddtr" dataset contains information about 

various types of faults in the electrical system. The columns 

in the dataset represent the inputs, which include the current 

(Ia, Ib, Ic) and voltage (Va, Vb, Vc) values for each phase 

(A, B, C). The outputs are represented by the columns G, C, 

B, and A, which indicate the presence or absence of faults in 

the respective phases. For example, [0 0 0 0] represents no 

fault, [1 0 0 1] represents an LG fault (between Phase A and 

ground), [0 0 1 1] represents an LL fault (between Phase A 

and Phase B), and so on. The "ddtr" dataset has 12,001 rows 

and 9 columns, while the "clts" dataset has 7,861 rows and 10 

columns. 

 

 

Table 4 Voltage and current of the lines 

 

Outp

ut 

(S) 

Ia Ib Ic Va Vb Vc 

0 0 

-

170.472
196 

9.219

613 

161.252

583 
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490 

-

0.659
921 

0.605

431 

1 0 

-

122.235

754 

6.168
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116.067
087 
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000 

-
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74 
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41 

0.141
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-
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16 
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12 
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-
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4 0 

-
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55 
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87 
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451 

-

0.591
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0.411
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The dataset "ddtr" consists of 12,001 entries with 7 columns. 

The columns include "Output (S)", "Ia", "Ib", "Ic", "Va", 

"Vb", and "Vc". The "Output (S)" column is of type integer, 

while the remaining columns are of type float. The dataset 

does not contain any null values. The "describe" function 

provides statistical summary measures for the dataset. 

However, the specific details of the statistical summary are 

not provided in the given information.: 

Table  5 Maximum output 
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n 

0.4579

62 

6.7093

69 

-

26.557
793 

22.353

043 

0.0105

17 

-

0.0154
98 

0.0049

80 

st

d 

0.4982

50 

377.15

8470 

357.45

8613 

302.05

2809 

0.3462

21 

0.3576

44 

0.3492

72 

mi

n 

0.0000

00 

-
883.54

2316 

-
900.52

6952 

-
883.35

7762 

-
0.6207

48 

-
0.6599

21 

-
0.6127

09 

25

% 

0.0000

00 

-
64.348

986 

-
51.421

937 

-
54.562

257 

-
0.2376

10 

-
0.3137

21 

-
0.2789

51 

50

% 

0.0000

00 

-

3.2397
88 

4.7112

83 

-

0.3994
19 

0.0024

65 

-

0.0071
92 

0.0083

81 

75

% 

1.0000

00 

53.823

453 

69.637

787 

45.274

542 

0.2850

78 

0.2486

81 

0.2896

81 

m

ax 

1.0000
00 

885.73
8571 

889.86
8884 

901.27
4261 

0.6098
64 

0.6278
75 

0.6082
43 

 

If there is any confusion regarding the values of the Line 

voltages, then let me clarify it that they are most probably in 

p.ui.e.  
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Figure 16 output count 

We have a balanced dataset. 

G. Classification Dataset 

Table 6 Fault type matrix 

 
G C B A Ia Ib Ic Va Vb Vc 

fault

_typ

es 

0 1 0 0 1 

-

151.
2918

12 

-

9.67

7452 

85.8

0016

2 

0.4

007

50 

-

0.1
329

35 

-

0.2
678

15 

1001 

1 1 0 0 1 

-
336.

1861

83 

-
76.2

8326

2 

18.3

2889
7 

0.3

127
32 

-
0.1

236

33 

-
0.1

890

99 

1001 

2 1 0 0 1 

-

502.

8915
83 

-

174.

6480
23 

-

80.9

2466
3 

0.2
657

28 

-

0.1

143
01 

-

0.1

514
28 

1001 

3 1 0 0 1 

-

593.

9419

05 

-

217.

7033

59 

-

124.

8919

24 

0.2
355

11 

-

0.1

049

40 

-

0.1

305

70 

1001 

[G C B A] 

[0 0 0 0] -> No fault  

[1 0 0 1] -> LG fault 

[0 1 1 0] -> LL fault 

[1 0 1 1] -> LLG Fault 

[0 1 1 1] -> LLL Fault 

[1 1 1 1] -> LLLG fault 

 

Figure 17 Types of fault 

 

 

 

 

 

1. Detection dataset 

Table 7 Detection output in terms of voltage of phases 

 

Out

put 

(S) 

Ia Ib Ic Va Vb Vc 

0 0 

-

170.47
2196 

9.219

613 

161.25

2583 

599.390

044 

-

7259.13
0241 

6659.74

0208 

1 0 

-

122.23
5754 

6.168

667 

116.06

7087 

1122.00

0000 

-

6914.72
7017 

5788.21

7479 

2 0 

-

90.161
474 

3.813
632 

86.347
841 

1551.28
0808 

-

6658.04
5449 

5106.76
4641 

3 0 

-

79.904

916 

2.398
803 

77.506
112 

1718.99
7027 

-

6624.58

8641 

4905.59
1614 

4 0 

-

63.885

255 

0.590
667 

63.294
587 

1984.96
6313 

-

6506.51

5664 

4521.54
9351 

 

Table 8 Detection output recorded. 

 
Ia Ib Ic Va Vb Vc 

co

un

t 

12001.0
00000 

12001.0
00000 

12001.0
00000 

12001.0
00000 

12001.0
00000 

12001.0
00000 

me

an 

0.50317

1 

0.48814

3 

0.50750

6 

0.51296

9 

0.50040

8 

0.50590

8 

std 
0.21317

0 

0.19965

3 

0.16925

2 

0.28134

0 

0.27771

8 

0.28606

5 

mi

n 

0.00000

0 

0.00000

0 

0.00000

0 

0.00000

0 

0.00000

0 

0.00000

0 

25

% 

0.46300

9 

0.47425

5 

0.46440

7 

0.31133

9 

0.26883

1 

0.27335

9 

50

% 

0.49754

8 

0.50560

8 

0.49475

7 

0.50642

6 

0.50685

7 

0.50869

4 

75

% 

0.52980
0 

0.54187
2 

0.52034
9 

0.73607
8 

0.70554
8 

0.73908
7 

 

 

H. SVM model 

Score: 0.9969999999999999 

 

Figure 18 Confusion Matrix for SVM 
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I. Decision Tree Model 

Score: 0.9936666666666667  

 

Figure 19 Confusion Matrix for Decision tree 

Value ccp_alpha has been calculated via decision tree 

pruning. 

J. KNN Model 

Value of hyperparameters has been evaluated using 

GridSearchCV 

 

Figure 20 Confusiom matrix for KNN 

K. Random Forest Classifier 

 

Figure 21 Confusion matrix for random forest 

SVM is doing a great job till now in Fault Detection, than the 

rest of the models because it's able to predict all the signals in 

most efficient manner while in other models there are cases 

where there is actually fault but the model is not able to 

identify it. 

V. CONCLUSION  

.This thesis presents a comprehensive methodology using 

machine learning algorithms for fault detection, 

classification, and location determination in power systems. 

The objectives were to ensure uninterrupted power supply, 

minimize disruptions, and prevent equipment damage and 

safety hazards. Traditional fault analysis methods have 

limitations, so machine learning algorithms were employed. 

Various algorithms, including CNN, RF, KNN, Decision 

Tree, and SVM, were integrated for accurate fault detection 

and classification. A dataset with variables such as G, C, B, 

A, Ia, Ib, Ic, Va, Vb, Vc, and fault_types was collected for 

training and evaluation. Experimental evaluations 

demonstrated the effectiveness, with SVM performing the 

best having 99.6% performance. This methodology enables 

prompt action and preventive measures, enhancing system 

reliability and safety. It offers a comprehensive approach to 

fault analysis, contributing to uninterrupted power supply and 

advancing power system protection. The findings serve as 

valuable resources for power system operators and 

researchers, fostering reliable and resilient power systems. 
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