IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Introduction To W_h Closed Sets In Hexa Topological Spaces

T. Kalaiselvi¹ and G. Sindhu²

¹Research Scholar, Department of Mathematics,

Nirmala College for Women, Coimbatore(TN) India.

²Associate Professor, Department of Mathematics,

Nirmala College for Women, Coimbatore(TN) India.

Abstract

The aim of this paper is to introduce a new notion of set called W_h closed set in hexa topological space. Also, hexa interior and hexa closure of W_h sets were framed. Furthermore, some of the theorems and properties are verified with examples and the relationship between the W_h closed set and other existing sets were investigated.

Keywords: hexa W_h open, hexa W_h closed, hexa W_h interior set, hexa W_h closure.

1 Introduction

The single topology is extended to bi-topological space by Kelly^[1], tri-topological space by Kovar^[2], quad-topological space by Mukundan^[3], penta-topological space by Muhammad Shankar Khan and Gulzar Ali Khan^[4] and hexa topological space by R.V Chandra^[5]. Also, he introduced the notation of h-open sets and h-closed sets in hexa topological spaces.

An α -open, pre-open, b-open, β -open sets have been introduced and investigated by O.Njasted who knows the α open set and studied α continuous and α irresolute^[9,11,12], Mashhour ^[11] introduced and studied the concept pre open set, pre continuous and pre irresolute in topological space. While Andrjevic^[13] presented b open set and studied its characteristics of b continuous and b irresolute. El-Monsef ^[13] introduced the ideal of β open set and β continuous, so studied its characteristics β irresolute by Maheshwair and Thakur ^[9]. In hexa topological set

Semi-h-open, α_h -open, β_h -open, pre $_h$ open, b_h -open sets are introduced by Asmaa S. Qaddoori [6]. In this paper, W_h closed set in hexa topological space were discussed. Also, hexa interior and hexa closure of W_h closed sets were framed. Also, some of its basic properties were studied and its relationship with other existing sets were investigated and the converse part is verified with the examples.

2 Preliminaries

Definition 2.1 [5]

Let X be a non- empty set and τ_1 , τ_2 , τ_3 , τ_4 , τ_5 , τ_6 are general topology on X. Then a subset A of space X is said to be hexa-open(h-open) set if $A \in \tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4 \cup \tau_5 \cup \tau_6$

Definition 2.2 [5]

Let X be a non- empty set and τ_1 , τ_2 , τ_3 , τ_4 , τ_5 , τ_6 are general topology on X. Then a subset A of space X is said to be hexa-closed(h-closed) set if $A \in \tau_1 \cap \tau_2 \cap \tau_3 \cap \tau_4 \cap \tau_5 \cap \tau_6$

Definition 2.3 [5]

The set X with six topologies called $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6)$ Hexa topology (h-topology).

Definition 2.4 [5]

If (X,τ) is a topological space then a set $A\subseteq X$ is said to be open if $A\in \tau$

Definition 2.5 [5]

If (X,τ) is a topological space then a set $A\subseteq X$ is said to be closed if $A^c\in\tau$

Definition 2.6 [6]

If (M, \tilde{y}_h) is a h_topological and $F \leq M$. Then

- 1. The h_{-} interior of F is the union of all h-open subset contained in F and is denoted by int (F)h. So be int (F)h is the largest h-open subset of F
- 2. The h_{-} closure of E is the intersection of all h—closed sets containing E and is denoted by cl(E)h. So be cl(E)h is the smallest h closed set containing E.

IJCR1

Definition 2. 1 [6]

A subset P of space (M, \tilde{y}_h) is said to be:

- 1- Hexa Semi-open set if $A \subseteq \tau$ -cl_h(int_h(A))
- 2- Hexa α open set if $A \subseteq int_h(cl_h(int_h(A)))$. Hence A^c is called α_h _closed set.
- 3- Hexa pre_open set (p_{h-}) if $A\subseteq int_h(cl_h(A))$. Hence A^c is called p_h -closed set.
- 4- Hexa β _open set (β_h _open) if $A \subseteq cl_h(int_h(cl_h(A)))$. Hence A^c is called β_h _closed set.
- 5- Hexa b_open set $(h _ open)$ if $A \subseteq (cl_h(int_h(A)) \cup int_h(cl_h(A))$. Hence A^c called b_h_closed set.

3 Wh-closed set in Hexa topological space

Definition: 3.1

Let (X, τ_h) be a hexa topological space. The subset, A of X is said to be W_h -closed set if $cl_h(A) \subseteq U$ and U is semi-h-open in X.

Theorem 3.2

In a hexa topological space (X, τ_h) , every W_h closed is Semi-h-closed.

Proof:

Let (X, τ_h) be the hexa topological space. Let A be the subset of X. Let A be the W_h -closed set in X. Then establish A is Semi-h-closed. Since A is W_h -closed, for $A \subseteq U$ and U is semi-h-open in (X, τ_h) , we have $cl_h(A) \subseteq U$. $A \subseteq U$, U is semi-h-open, $cl_h(A) \subseteq U$. $A \subseteq cl_h(A)$, $A \subseteq cl_h(A) \subseteq U$, $A \subseteq cl_h(A)$, $int_h(A) \subseteq A$, $int_h(cl_h(A)) \subseteq A$. Then A is Semi-h-closed.

Example 3.3:
$$X=\{1,2,3,4,5\}, \tau_1=\{\phi,X,\{1\}\}, \tau_2=\{\phi,X,\{2\}\}, \tau_3=\{\phi,X,\{3\}\}, \tau_4=\{\phi,X,\{1,2\}\}, \tau_5=\{\phi,X,\{2,3\}\}, \tau_6=\{\phi,X,\{1,3\}\}\}$$

 W_h closed sets are $\{\{1,4,5\}, \{2,4,5\}, \{3,4,5\}, \{2,3,4,5\}, \{1,3,4,5\}, \{1,2,4,5\}\}$

Theorem 3.4

Every α_h closed is W_h closed

Proof:

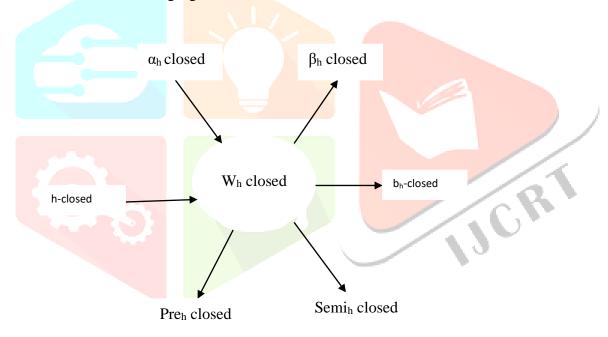
Suppose A is α_h closed, let $A \subseteq U$ and U is Semi-h-open, then α - $cl_h(A) = A \subseteq U$, α - $cl_h(A) \subseteq U$, Since every α_h closed is closed α - $cl_h(A) \subseteq cl_h(A)$ then $cl_h(A) \subseteq U$ so every α_h closed is W_h closed.

Example 3.5: $X=\{1,2,3,4,5\}, \tau_1=\{\phi,X,\{1\}\}, \tau_2=\{\phi,X,\{2\}\}, \tau_3=\{\phi,X,\{3\}\}, \tau_4=\{\phi,X,\{4\}\}, \tau_5=\{\phi,X,\{1,2\}\}, \tau_6=\{\phi,X,\{3,4\}\}\}$

 $\alpha_h \quad closed \quad sets \quad are \quad \{\{2,3,4,5\},\{1,3,4,5\},\{1,2,4,5\},\{1,2,3,5\},\{3,4,5\},\{2,4,5\},\{2,3,5\}, \quad \{1,4,5\}, \quad \{1,3,5\}, \\ \{1,2,5\},\{4,5\},\{1,5\}, \{3,5\},\{5\}, \{1\}\}$

 $W_h \ closed \ sets \ are \ \{\{1\},\ \{5\},\ \{1,5\},\ \{2,5\},\ \{3,5\},\ \{4,5\},\ \{1,4,5\},\ \{1,2,5\},\ \{1,3,5\},\ \{2,4,5\},\ \{2,3,5\},\{3,4,5\},\ \{2,3,4,5\},\ \{1,3,4,5\},\{1,2,4,5\},\{1,2,3,5\}\}$

Remark: Similarly Every W_h closed set contains in h-closed, β_h closed, β_h closed and β_h closed. Their representation is in the following figure



4 Wh-Closure and Interior Operators

Definition 4.1

Let (X, τ_h) be a hexa topological space and $A \subseteq X$. The W_h int(A) is defined by the union of all W_h open sets contained in A. That is int W_h (A) = U $\{G: G \subseteq A \text{ and } G \text{ is } W_h \text{ open}\}$ then W_h interior of the subset A is denoted by int W_h (A).

1JCR1

Definition 4.2

Let (X, τ_h) be a hexa topological space and $A \subseteq X$. The W_h cl(A) is defined by the intersection of all W_h closed sets contained in A. That is cl W_h (A)=n $\{G\colon A\subseteq G \text{ and } G \text{ is } W_h \text{ closed}\}$ then W_h closed of the subset A is denoted by cl W_h (A)

Theorem 4.3

Let $(X,\tau h)$ be the hexa topological space and let $A \subseteq B \subseteq X$, then

- i) Int $W_h(\phi) = \phi$
- ii) Int $W_h(X) = X$
- iii) Int $W_h(A) \subseteq A$
- iv) Int $W_h(A) \subseteq Int W_h(B)$
- v) Int W_h (Int W_h (A)) = Int W_h (A)

Theorem 4.4

Let $(X,\tau h)$ be the hexa topological space and let $A \subseteq B \subseteq X$, then

- i) cl $W_h(\phi) = \phi$
- ii) cl $W_h(X) = X$
- iii) $A \subseteq cl W_h(A)$
- iv) cl $W_h(A) \subseteq cl W_h(B)$
- v) cl W_h (cl W_h (A)) = cl $W_h(A)$

Theorem 4.5

For hexa topological space $(X,\tau h)$

- i) Int $W_h(A) \cup Int W_h(B) \subseteq Int W_h(A \cup B)$
- ii) Int $W_h(A) \cap Int W_h(B) \supseteq Int W_h(A \cap B)$

Theorem 4.6

For hexa topological space $(X,\tau h)$

 $i)\;cl\;W_{h}\left(A\right)\cup\;cl\;W_{h}\left(B\right)\supseteq\;cl\;W_{h}\left(A\cup B\right)$

ii) cl $W_h(A) \cap cl W_h(B) \subseteq Int W_h(A \cap B)$

5 Characteristics of Wh-closed sets

Theorem 5.1

Union of two W_h closed set is hexa W_h closed set.

Proof:

Let A and B be two W_h closed set in hexa topological space (X, τ_h) , Since A is W_h closed, $cl_h(A) \subseteq U$, Whenever $A \subseteq U$ and U is Semi-h-open in X. Since B is W_h closed $cl_h(B) \subseteq U$, Whenever $B \subseteq U$ and U is Semi-h-open in X. We have $cl_h(A \cup B) = cl_h(A) \cup cl_h(B)$, $cl_h(A \cup B) \subseteq U$ therefore $(A \cup B)$ is W_h closed in (X, τ_h) . Therefore union of two W_h closed set is hexa W_h closed set.

Example 5.2 $X=\{1,2,3,4,5\}$ $\tau_1=\{\phi,X,\{1\},\{2\}\}, \tau_2=\{\phi,X,\{1\}\}, \tau_3=\{\phi,X,\{2\}\}, \tau_4=\{\phi,X,\{4\}\}, \tau_5=\{\phi,X,\{1\},\{4\}\}, \tau_6=\{\phi,X\}.$

h-open sets are $\{\phi, X, \{1\}, \{2\}, \{4\}\}\$, h-closed sets are $\{X, \phi, \{2,3,4,5\}, \{1,3,4,5\}, \{1,2,3,5\}\}\$

 W_h closed sets are $\{\{1,3,5\},\{2,3,5\},\{3,4,5\},\{2,3,4,5\},\{1,3,4,5\}\}$ Here, the intersection of W_h closed sets $\{1,3,5\}$ n $\{2,3,5\}$ is $\{3,5\}$ which is not in W_h closed set.

Remark

The Intersection of two W_h closed set is need not be W_h closed set in (X, τ_h) .

Theorem 5.3

Let (X, τ_h) be a hexa topological space, let A be the W_h closed set in (X, τ_h) and $A \subseteq B \subseteq cl_h(A)$, then B is also W_h closed set in (X, τ_h) .

Proof:

Let A be W_h closed set in (X, τ_h) this implies, $cl_h(A) \subseteq U$, Whenever U is Semi-h-open in (X, τ_h) . We have $A \subseteq B \subseteq cl_h(A)$, Since $cl_h(A) \subseteq U$ then $B \subseteq cl_h(A) \subseteq U$, then $B \subseteq U$ Now $B \subseteq cl_h(A)$, $cl_h(B) \subseteq cl_h(cl_h(A))$, $cl_h(B) \subseteq U$. Therefore $cl_h(B) \subseteq U$ whenever $B \subseteq U$ and U is Semi-h-open in X. This implies B is W_h closed set in X.

Theorem 5.4

If a subset A of X is W_h closed in X then $cl_h(A) \setminus A$ contain a Semi-h-open set in X.

1CR

Example 5.5: If $cl_h(A) \setminus A$ contains empty in semi-h-open subsets in X, then consider $X = \{1,2,3,4,5\}$ with $\tau_1 = \{\phi, X, \{1\}\}, \tau_2 = \{\phi, X, \{2\}\}, \tau_3 = \{\phi, X, \{3\}\}, \tau_4 = \{\phi, X, \{1,2\}\}, \tau_5 = \{\phi, X, \{2,3\}\}, \tau_6 = \{\phi, X, \{1,3\}\}$ then Subset of X, $A = \{1,4,5\}$ then $cl_h(A) \setminus A = \{1,4,5\} \setminus \{1,4,5\} = \phi$ contained in every sets in Semi-h-open sets.

Theorem 5.6

If $x \in X$, the set $X \setminus \{x\}$ is W_h closed or Semi-h-open.

Proof:

Suppose $X\setminus\{x\}$ is not Semi-h-open then X is the only Semi-h-open set containing $X\setminus\{x\}$. This implies $cl_h\{X\setminus\{x\}\}\subseteq X$. Hence $X\setminus\{x\}$ is a Semi-h-closed set in X.

Example 5.7: If $X=\{6,7,8,9,10\}$, $\tau_1=\{\phi,X,\{6\}\}$, $\tau_2=\{\phi,X,\{7\}\}$, $\tau_3=\{\phi,X,\{8\}\}$, $\tau_4=\{\phi,X,\{6,7\}\}$, $\tau_5=\{\phi,X,\{7,8\}\}$, $\tau_6=\{\phi,X,\{6,8\}\}$

Semi-h-closed sets are {{7,8,9,10},{6,8,9,10},{6,7,9,10},{8,9,10},{7,9,10}, {7,8,10}, {7,8,9},{6,9,10}, {6,8,10}, {6,8,9}, {6,7,10}, {6,7,9}, {9,10}, {7,10}, {7,8}, {8,9}, {7,9}, {6,10}, {6,8},{6,9}, {6,7},{8,10}, {10}, {6}, {7}, {8}, {9}}

 W_h closed sets are $\{\{6,9,10\}, \{7,9,10\}, \{8,9,10\}, \{7,8,9,10\}, \{6,8,9,10\}, \{6,7,9,10\}\}$

Theorem 5.8

If A is Semi-h-open and Wh closed, then A is Wh closed in X.

Proof:

Consider a subset A be Semi-h-open and W_h closed in X then, A is W_h closed set in X. Let U be any Semi-h-open set in X then $A \subset U$. Since A is Semi-h-open and W_h closed. So we have $cl_h(A) \subset A$. Then $cl_h(A) \subset A \subset U$. Hence A is W_h closed in X.

Example 5.9: Let $X=\{11,12,13,14,15\}$, $\tau_1=\{\phi,X,\{11\}\}$, $\tau_2=\{\phi,X,\{12\}\}$, $\tau_3=\{\phi,X,\{13\}\}$, $\tau_4=\{\phi,X,\{11,12\}\}$, $\tau_5=\{\phi,X,\{12,13\}\}$, $\tau_6=\{\phi,X,\{11,13\}\}$.

Semi-h-closed sets are {{12,13,14,15},{11,13,14,15},{11,12,14,15},{13,14,15},{12,14,15}, {12,13,15}, {12,13,14},{11,14,15}, {11,13,15}, {11,13,14}, {11,12,15}, {11,12,14}, {14,15}, {12,15}, {12,13}, {13,14}, {12,14}, {11,15}, {11,13},{11,14}, {11,12},{13,15}, {15}, {11}, {12}, {13}, {14}}

 W_h closed sets are $\{\{11,14,15\}, \{12,14,15\}, \{13,14,15\}, \{12,13,14,15\}, \{11,13,14,15\}, \{11,12,14,15\}\}.$

Theorem 5.10

Let A be W_h closed in $(X,\tau h)$. Then A is closed if and only if $cl_h(A)\backslash A$ is Semi-h-open.

Proof:

Let A is closed in X. Then $cl_h(A) = A$ and $cl_h(A) \setminus A = \varphi$. Which is Semi-h-open in X.

Conclusion

Here, we discussed the properties of hexa open, hexa closed, hexa interior, hexa closure sets. Further we decide to investigate the relation between general and hexa topology.

References

- 1. J.C.Kelly, Bitopological Spaces, Proc. London Math.Soc., 3(1963), 17-89
- 2. M.Kovar, On 3 Topological Version of Theta-Regularity, Internet.J. Math. Sci., Vol., 23, (2003), No.6, 393-398.
- 3. D.V Mukundan, Introduction to Quad Topological Spaces (4-tuple topology), International Journal of Scientific & Engineering Research, Volume 4,(2013), Issue 7,2483-2485.
- 4. M.S.Khan, and G.A. Khan, p-Continuity and p-Homeomorphism in penta topological spaces, European International Journal of Science and Technology, Vol. 7,(2018), No. 5, ISSN:2304-9693.
- 5. R.V.Chandra, V. Pushpalatha, introduction to Hexa Topological spaces (6-tuple topology). International Journal of Management, Technology And Engineering ISSN No:2249-7455, Volume X, Issue I, January (2020), 16-18.
- 6. Asmaa S. Qaddoori, Identification Functions in Hexa Toplogical Spaces, Tikrit Journal of Pure Science Vol. 26 (6) 2021.
- 7. M.Ramaboopathi and K.M Dharmalingam, On (1,2)*-ĝ-closed sets in bitopological spaces, Malaya Journal of Matematik, Vol.7, No.3,463-467,2019.
- 8. S.H. Al-kutaibi, On some types of identification, Dept. of Mathematics University of Tikreet, Tikreet Univ. J. Sci. 4 (1998), 49
- 9. S.N. Maheshwair, S.S. Thakur, α-irresolute Mapping, Tamkang J. Math. **11** (1980), 209–21.
- 10. A. A. Shihab, H.O.Mousa, R. A.Zaben, Hexa_ Homeomorphisms in Hexa Topological Spaces, Periodicals of Engineering and Natural Sciences. (2021).
- 11. A. S.Mashhour, I. A. Hasonein,S. N. El-Deeb, α-Continuous and α-open Mapping, Acta. Math. Hunger 41 (1983), 213–218.
- 12. O. Njastad, On some classes of nearly open sets, Pacific. J. Math. 15 (1965), 961–970.
- 13. D. Andrijevic, on b- open sets, Mat. Vesnik, 48 (1996), 59–64.