
www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a790

Nash Equilibrium By Using A Dang’s Fixed Point

Algorithm

𝑆𝑂𝑁𝐼𝑌𝐴 𝑃𝐴𝑇𝐸𝐿1 𝐷𝑅. 𝑅. 𝑆. 𝑃𝐴𝑇𝐸𝐿2
1(Research Scholar) Department of Mathematics, Govt. Autonomous P.G. College Satna (M.P.) India.

2 (Supervisor) Department of Mathematics, Govt. Autonomous P.G. College Satna (M.P.) India.

Abstract— A distributed implementation of Dang’s Fixed Point algorithm is proposed for searching one Nash

equilibrium of a finite 𝑛 −person game in normal form. In this paper, the problem consists of two

subproblems. One is changing the problem form to a mixed 0-1 linear programming form. This process is

derived from applications of the properties of pure strategy and multi linear terms in the payoff function. The

other subproblem is to solve the 0 − 1 linear programming generated in the former subproblem. A distributed

computation network which is based on the Dang’s Fixed-Point method is built to solve this 0 − 1 linear

programming.

INTRODUCTION

This paper is concerned with the distributed computation of one pure-strategy Nash equilibrium of a finite n-

person game in normal form. To tackle this problem, Wu’s method in [19], [20] is used to reformulate the

Nash equilibrium problem to a mixed 0-1 linear programming form by exploiting the properties of pure

strategy and multilinear terms in the payoff functions. One feasible solution of the mixed 0-1 linear program

yields one pure-strategy Nash equilibrium. In the next step, a distributed computation network is built based on

Dang’s Fixed-Point algorithm [21], [22] to solve the mixed 0-1 linear programming. Numerical results show

that the distributed method is promising and it can be easily extended to other NP-hard problems. In distributed

computation network, a problem is divided into many subproblems, each of which can be solved in different

computers which communicate with each other by message passing. The computation speed is influenced by

the number of the computers in the network. Distributed models can be classified into simple model and

interactive model, which are illustrated in Fig.1 and Fig.2 respectively

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a791

The first model is called simple distributed model. In this model, all the slave computers can only

communicate with the master computer. The task is scheduled and divided into several smaller subproblems by

the master computer. And then each subproblem is sent to a different slave computer by the master computer .

Finally, the master computer receives the result from the slaves and output it. Compared with the simple

model, the interactive model is more advanced. In this model, the slave computers also could communicate

with each other by message passing. Therefore, if one slave computer finishes its work, it can help others. The

details of the distributed computation will be presented in the section IV.

CHANGING THE SEARCHING NASH EQUILIBRIUM PROBLEM TO A MIXED 0-1 LINEAR

PROGRAMMING FORM

Let 𝑁 = {1, 2, . . . , 𝑛} be the set of players. The pure strategy set of player 𝑖 ∈ 𝑁 is denoted by 𝑆𝑖 =

 {𝑠𝑗
𝑖 | 𝑗 ∈ 𝑀𝑖} with 𝑀𝑖 = {1, 2, . . . , 𝑚𝑖}.

Given 𝑆𝑖 with 𝑖 ∈ 𝑁, the set of all pure strategy profiles is 𝑆 = ∏ 𝑆𝑖𝑛
𝑖=1 .

We denote the payoff function of player 𝑖 ∈ 𝑁 by 𝑢𝑖 ∶ 𝑆 → 𝑅. For 𝑖 ∈ 𝑁, let 𝑆−𝑖 = ∏ 𝑆𝑘𝑘∈𝑁\{𝑖} . Then,

𝑠 = (𝑠 𝑗1
1 , 𝑠 𝑗2

2 , . . . , , 𝑠 𝑗𝑛
𝑛) ∈ 𝑆 can be rewritten as 𝑠 = (𝑠 𝑗𝑖

𝑖 , 𝑠−𝑖) with 𝑠−𝑖 =

 (𝑠 𝑗1
1 , . . . , 𝑠 𝑗𝑖−1

𝑖−1 , 𝑠 𝑗𝑖+1
𝑖+1 , . . . , 𝑠 𝑗𝑛

𝑛) ∈ 𝑆−𝑖 .

 A mixed strategy of player 𝑖 is a probability distribution on 𝑆𝑖 denoted by 𝑥𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑚𝑖
𝑖).

Let 𝑋𝑖 be the set of all mixed strategies of player 𝑖. Then, 𝑋𝑖 = {𝑥𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑚𝑖
𝑖) ∈ 𝑅+

𝑚𝑖 | Σ 𝑗=1
𝑚𝑖 𝑥𝑗

𝑖 =

 1} . Thus, for 𝑥𝑖 ∈ 𝑋𝑖 , the probability assigned to pure strategy 𝑠𝑗
𝑖 ∈ 𝑆𝑖 is equal to 𝑥𝑗

𝑖 .

Given 𝑋𝑖 with 𝑖 ∈ 𝑁, the set of all mixed strategy profiles is 𝑋 = ∏ 𝑋𝑖𝑛
𝑖=1 . For 𝑖 ∈ 𝑁, let 𝑋−𝑖 =

 ∏ 𝑋𝑘𝑘∈𝑁\{𝑖} . Then, 𝑥 = {𝑥1 , 𝑥2 , . . . , 𝑥𝑛 } ∈ 𝑋 can be rewritten as 𝑥 = (𝑥𝑖 , 𝑥−𝑖) with 𝑥−𝑖 =

 (𝑥1 , . . . , 𝑥𝑖−1 , 𝑥𝑖+1, . . . , 𝑥𝑛) ∈ 𝑋−𝑖 .

If 𝑥 ∈ 𝑋 is played, then the probability that a pure strategy profile 𝑠 = (𝑠 𝑗1
1 , 𝑠 𝑗2

2 , . . . , , 𝑠 𝑗𝑛
𝑛) ∈ 𝑆 occurs is

∏ 𝑥𝑗
𝑖𝑛

𝑖=1 .

Therefore, for 𝑥 ∈ 𝑋, the expected payoff of player 𝑖 is given by 𝑢𝑖 (𝑥) = Σ 𝑠∈𝑆 𝑢
 𝑖 (𝑠)∏ 𝑥𝑗𝑖

𝑖𝑛
 𝑖=1 .

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a792

With these notations, a finite 𝑛 −person game in normal form can be represented as 𝛤 =

(𝑁, 𝑆, {𝑢𝑖}
𝑖∈𝑁
) 𝑜𝑟 𝛤 = (𝑁, 𝑋, {𝑢𝑖}

𝑖∈𝑁
).

Definition 1: (Nash, [1]) A mixed strategy profile 𝑥∗ ∈ 𝑋 is a Nash equilibrium of game 𝛤 if 𝑢𝑖 (𝑥∗) ≥

 𝑢𝑖 (𝑥𝑖 , 𝑥∗−𝑖) for all 𝑖 ∈ 𝑁 and 𝑥𝑖 ∈ 𝑋𝑖 . With the application of optimality condition, one can obtain that 𝑥∗

is a Nash equilibrium if and only if there are 𝜆∗ and µ∗ together with 𝑥∗ satisfying the system of (1)

(

𝑢𝑖 (𝑠𝑗
𝑖 , 𝑥−𝑖) + 𝜆𝑗

𝑖 − µ
𝑖
 = 0,

 𝑒𝑖⊺ > 𝑥𝑖 – 1 = 0,

𝑥𝑗
𝑖𝜆𝑗
𝑖 = 0,

 𝑥𝑗
𝑖 ≥ 0, 𝜆𝑗

𝑖 ≥ 0

𝑗 = {1, 2, . . . , 𝑚𝑖} , 𝑖 = { 1, 2, . . . , 𝑛, })

 (1)

where 𝑒𝑖 = (1, 1, . . . , 1)⊺ > ∈ 𝑅𝑚𝑖 .

Let 𝛽 be a given positive number such that

 𝛽 ≥ max
𝑖∈𝑁

{max
 𝑠∈𝑆

𝑢𝑖 (𝑠) –min
 𝑠∈𝑆

𝑢 𝑖 (𝑠) } .

Then, (1) is equivalent to (2).

(

𝑢𝑖 (𝑠 𝑗
 𝑖 , 𝑥−𝑖) + 𝜆 𝑗

 𝑖 − µ
𝑖
 = 0,

𝑒𝑖⊺ > 𝑥 𝑖 − 1 = 0
𝑥 𝑗
 𝑖 ≤ 𝑣 𝑗

 𝑖

𝜆 𝑗
 𝑖 ≤ 𝛽(1 – 𝑣 𝑗

 𝑖)

𝑣 𝑗
 𝑖 ∈ {0, 1}

𝑥 𝑗
 𝑖 ≥ 0, 𝜆 𝑗

𝑖 ≥ 0

𝑗 = {1, 2, . . . , 𝑚𝑖 }, 𝑖 = {1, 2, . . . , 𝑛. })

 (2)

 Thus, finding a pure-strategy Nash equilibrium is equivalent to computing a solution of the system of (3).

(

𝑢 𝑖 (𝑠 𝑗
 𝑖 , 𝑥−𝑖) + 𝜆 𝑗

 𝑖 − µ
𝑖
 = 0

𝑒 𝑖⊺ > 𝑥𝑖 − 1 = 0
𝑥 𝑗
𝑖 ≤ 𝑣 𝑗

𝑖

𝜆 𝑗
 𝑖 ≤ 𝛽(1 − 𝑣 𝑗

𝑖)

𝑥 𝑗
 𝑖 ∈ {0, 1}, 𝑣 𝑗

𝑖 ∈ {0, 1}, 𝜆 𝑗
 𝑖 ≥ 0

𝑗 = { 1, 2, . . . , 𝑚𝑖} , 𝑖 = {1, 2, . . . , 𝑛})

 (3)

where 𝑢𝑖 (𝑠𝑗
 𝑖 , 𝑥−𝑖) = Σ 𝑠−𝑖∈𝑆−𝑖 𝑢

 𝑖 (𝑠 𝑗
 𝑖 , 𝑠−𝑖) ∏ 𝑥 𝑗𝑘

 𝑘
 𝑘≠𝑖 .

 One can find a pure strategy Nash equilibrium through solving the system (3). However, it is difficult to solve

the system (3) directly because of the multilinear terms. To address this issue, Wu [19], [20] developed a

method which can convert the system (3) to an equivalent mixed 0-1 linear formulation. This method is based

on exploiting the properties of pure strategy and multilinear terms in the payoff functions.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a793

Let 𝑦(𝑠−𝑖) = ∏ 𝑥 𝑗𝑘
 𝑘

 𝑘≠𝑖 for 𝑠 –𝑖 = (𝑠 𝑗1
 1 , . . . , 𝑠𝑗𝑖−1

𝑖−1 , 𝑠𝑗𝑖+1
𝑖+1 , . . . , 𝑠 𝑗𝑛

𝑛) ∈ 𝑆 − 𝑖 .

Then,

 𝑢𝑖 (𝑠 𝑗
 𝑖 , 𝑥−𝑖) = Σ 𝑠−𝑖∈𝑆−𝑖 𝑢

 𝑖 (𝑠 𝑗
 𝑖 , 𝑠−𝑖)𝑦(𝑠 –𝑖).

And the mixed 0 − 1 linear program obtained is shown in (4) as follows:

(

Σ 𝑠−𝑖∈𝑆−𝑖 𝑢
 𝑖(𝑠 𝑗

 𝑖 , 𝑠−𝑖)𝑦(𝑠 –𝑖) + 𝜆 𝑗
 𝑖 − µ

𝑖
 = 0

 𝑒 𝑖⊺ > 𝑥 𝑖 − 1 = 0
𝜆 𝑗
 𝑖 ≤ 𝛽(1 − 𝑥 𝑗

 𝑖)

𝑥 𝑗
 𝑖 ∈ {0, 1}, 𝜆 𝑗

 𝑖 ≥ 0

𝑗 = {1, 2, . . . , 𝑚𝑖}, 𝑖 = {1, 2, . . . , 𝑛}

𝑦(𝑠 –𝑖) ≥ Σ ℎ≠𝑖 𝑥 𝑗ℎ
 ℎ − (𝑛 – 2)

𝑦(𝑠−𝑖) ≤ 𝑥𝑗𝑘
𝑘 , 𝑘 ≠ 𝑖

0 ≤ 𝑦(𝑠 −𝑖), 𝑠 –𝑖 ∈ 𝑆 –𝑖 , 𝑖 = 1, 2, . . . , 𝑛)

 (4)

The derivation process of the formulation and the detailed proofs can be obtained in the paper [19]. Therefore,

we can solve the mixed 0 − 1 linear program (4) to get a Nash equilibrium in (1). The distributed Dang’s Fixed

Point method which will be presented in the next sections plays well to the computation of this mixed 0-1

linear program.

DANG’S FIXED-POINT ITERATIVE ALGORITHM

Let 𝑃 = {𝑥 ∈ 𝑅𝑛|𝐴𝑥 + 𝐺𝑤 ≤ 𝑏, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑤 ∈ 𝑅𝑝}, where 𝐴 ∈ 𝑅𝑚×𝑛 is an 𝑚 × 𝑛 integer matrix with

𝑛 ≥ 2, 𝐺 ∈ 𝑅𝑚×𝑝 an 𝑚 × 𝑝 matrix, and 𝑏 a vector of 𝑅𝑚.

Let 𝑥𝑚𝑎𝑥 = (𝑥1
𝑚𝑎𝑥 , 𝑥2

𝑚𝑎𝑥 , . . . , 𝑥𝑛
𝑚𝑎𝑥)𝑇 with 𝑥𝑗

𝑚𝑎𝑥 = max
𝑥∈𝑃

𝑥𝑗 , 𝑗 = 1, 2, . . . , 𝑛 and 𝑥𝑚𝑖𝑛 =

 (𝑥1
𝑚𝑖𝑛 , 𝑥2

𝑚𝑖𝑛 , . . . , 𝑥𝑛
𝑚𝑖𝑛)

𝑇
 with 𝑥𝑗

𝑚𝑖𝑛 = min
𝑥∈𝑃

𝑥𝑗 , 𝑗 = 1, 2, . . . , 𝑛.

Let 𝐷(𝑃) = {𝑥 ∈ 𝑍𝑛|𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢}, where 𝑥𝑙 = [𝑥𝑚𝑖𝑛]𝑎𝑛𝑑 𝑥𝑢 = [𝑥𝑚𝑎𝑥]. For 𝑧 ∈ 𝑅𝑛 𝑎𝑛𝑑 𝑘 ∈ 𝑁0, let

𝑃(𝑧, 𝑘) = {𝑥 ∈ 𝑃|𝑥𝑖 = 𝑧𝑖 , 1 ≤ 𝑖 ≤ 𝑘, and 𝑥𝑖 ≤ 𝑧𝑖 , 𝑘 + 1 ≤ 𝑖 ≤ 𝑛}.

Given an integer point 𝑦 ∈ 𝐷(𝑃) with 𝑦1 > 𝑥𝑖
𝑙 , Dang and Ye [21], [22] developed a iterative method which is

presented in Fig.3. It determines whether there is an integer point 𝑥∗ ∈ 𝑃 with 𝑥∗ ≤𝑙 𝑦.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a794

An example given below is used to illustrate the method. Consider a polytope 𝑃 = {𝑥 ∈ 𝑅3 |𝐴𝑥 ≤ 𝑏} with

𝐴 = {

−1 0 2
0 −2 1
−1 0 −2
 1 1 0

} , 𝑏 = {

0
1
1
0

}

It is easy to obtain 𝑥𝑢 = (1, 0, 0)𝑇 and 𝑥𝑙 = (−1,−2,−2)𝑇 . Let 𝑦 = 𝑥𝑢 , 𝑦0 = 𝑦, and 𝑘 = 3 − 1 =

 2. 𝑦1 = (1,−1, 0) can be obtained in the first iteration, and 𝑦2 = (1,−1,−1) which is an integer point in 𝑃

is obtained in the second iteration. An illutration of 𝑦0 , 𝑦1 and 𝑦2 can be found in Fig.4.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a795

The idea of Dang’s method [21], [22]𝑦 ∈ 𝐷(𝑃) to solve integer programming is to define an increasing-

mapping from a finite lattice into itself. All the integer points outside the P are mapped into the first point in 𝑃

that is smaller than them in the lexicographical order of 𝑥𝑙 . All the integer points inside the polytope are the

fixed points under this increasing mapping. Given an initial integer point, the method either yields an integer

point in the polytope or proves no such point exists within a finite number of Figure 4. An illustration of the

iterative method. iterations. For more details and proofs about this iterative method, one can consult Dang [21],

[22].

DISTRIBUTED IMPLEMENTATION

As an appeal feature, Dang’s method can be easily implemented in a distributed way. Some distributed

implementation techniques to Dang’s method will be discussed in this section. The simple distributed model as

described in Fig.1 has been used in our implementation. There are one master computer and a certain number

of slave computers in this distributed computing system. The master computer takes charge of computing the

solution space of the polytope, dividing the solution space to segments, sending the segments to the slave

computers, receiving the computation result from the slave computers and exporting the computation result.

Each slave computer receives the segment, judges whether there exits an integer point in its segment using

Dang’s Fixed-Point iterative method and sends its result to the master. The outline of the distributed

computation process in this paper can be explained in the Fig.5.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a796

All the programs are coded in C++, and run on Microsoft Windows platform. Two algorithms have been

considered to the bounding linear program in Dang’s iterative method. One is the simplex algorithm [23]

which is the most popular algorithm for linear programming. We can call the API function in CPLEX Concert

Technology to carry out this method. The other algorithm is the self-dual embedding technique presented in

[24]. This algorithm detects LP infeasibility based on a proved criterion, and it is the best method to solve the

linear programming in Dang’s algorithm to our knowledge. The MPICH2, which is a freely available, portable

implementation of Message Passing Interface(MPI), is used to send and receive message between the master

computer and slave computers in this implementation. More information about the Message Passing Interface

can be obtained in the literature [25]. It is important to assign equal amount of work to each slave computer.

Two methods have been implemented for the assignment. One is to divide the interested space into a number

of more or less equal regions. The other is to randomly divide the interested space into a number of regions

according to the Latin Squares method in [26]. The first method has a good performance when the number of

slave computers is small. When the number of slave computers increases big enough, the later method

performs better. The slave computers may complete their work allocations at different times. So the interactive

distributed model(in Fig.2), in which the slave computers could communicate with each other by message

passing, is our next work. By doing so, a slave computer can help others if it completes its work earlier. This

will be quite helpful to enhance efficiency of the method.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a797

 NUMERICAL RESULTS

In this section, some numerical results will be presented. The distributed computation network consists of 3

computers of OptiPlex 330 with 2 processors. All programs are coded in C++, and CPLEX Convert

Technology is used to solve the linear programming in the Fixed-Point algorithm in this distributed network.

Each subsegment divided by the master computer is independent to each other. Therefore, each slave computer

can conduct each subsegment simultaneously. Message Passing Interface (MPI) is used to establish a

communication network between the master computer to the slave computers. And the master computer takes

charge of outputting the computation result. In the presentation of numerical results, some symbols are

explained as follows.

N: The number of players in the instance.

S: The number of strategies for each player in the instance.

 Niteration: The number of iteration of the Fixed-Point algorithm.

Result: “Yes” appears if the method finds a Nash equilibrium and “No” otherwise.

Only three-player game needs to be considered since any n-player game can be reduced to a three-player game

in polynomial time as shown in [27]. In this paper, the computation examples which are generated randomly

are given as follows.

Example 1: Consider a three-player game 𝛤 = (𝑁, 𝑆, {𝑢𝑖}
𝑖∈𝑁
), where 𝑁 = {1, 2, 3}. The number of

strategies for each player, Num 𝑆, is generated from 2 to 15 randomly. The {𝑢𝑖 }
𝑖∈𝑁

 are generated randomly

too. There are four different ranges for {𝑢𝑖}
𝑖∈𝑁

 in this example, which are from 0 to 1, from 0 to 10, from 0 to

50, and from 0 to 100. Let β = 1000. For different range of {𝑢𝑖}
𝑖∈𝑁

 , 80 instances have been solved by this

distributed computation network. Numerical results of this distributed computation network are given in Table

I, Table II Table III and Table IV respectively.

Table I presents the numerical results when the payoff function 𝑢𝑖 (𝑠𝑗
𝑖 , 𝑠−𝑖) is generated from 0 to 1

randomly.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a798

Pro N S Niteration Result

1 3 2 23 Yes

2 3 3 44 Yes

3 3 3 44 Yes

4 3 4 98 Yes

5 3 4 71 Yes

6 3 4 70 Yes

7 3 5 104 Yes

8 3 7 188 Yes

9 3 9 433 Yes

10 3 9 296 Yes

11 3 9 296 Yes

12 3 10 470 Yes

13 3 10 491 Yes

14 3 10 360 Yes

15 3 11 429 Yes

16 3 12 697 Yes

17 3 13 781 Yes

18 3 15 765 Yes

19 3 15 1019 Yes

20 3 15 770 Yes

Table II gives the numerical results when the payoff function 𝑢𝑖 (𝑠 𝑗
 𝑖 , 𝑠−𝑖) is generated from 0 to 10

randomly.

Pro. N S Niteration Result

1 3 2 25 No

2 3 2 15 Yes

3 3 2 22 Yes

4 3 3 51 Yes

5 3 3 44 Yes

6 3 4 80 Yes

7 3 4 80 Yes

8 3 5 124 Yes

9 3 6 166 Yes

10 3 7 203 Yes

11 3 8 243 No

12 3 8 274 Yes

13 3 8 276 Yes

14 3 9 303 Yes

15 3 11 435 Yes

16 3 11 446 Yes

17 3 12 519 Yes

18 3 13 625 Yes

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a799

19 3 14 688 Yes

20 3 15 779 Yes

For the payoff function 𝑢𝑖 (𝑠 𝑗
 𝑖 , 𝑠−𝑖) is generated from 0 to 50 randomly, the numerical results are shown in

Table III.

Pro . N S Niteration Result

1 3 2 21 Yes

2 3 4 74 Yes

3 3 4 76 Yes

4 3 4 73 No

5 3 5 110 Yes

6 3 6 179 Yes

7 3 7 199 Yes

8 3 8 244 Yes

9 3 9 300 Yes

10 3 10 424 Yes

11 3 10 364 Yes

12 3 11 496 Yes

13 3 12 508 No

14 3 13 589 Yes

15 3 13 609 Yes

16 3 13 591 Yes

17 3 13 597 Yes

18 3 14 678 Yes

19 3 14 757 Yes

20 3 15 779 Yes

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a800

 Table IV is for the range of 0 to 100.

Pro. N S Niteration Result

1 3 2 22 Yes

2 3 3 52 Yes

3 3 3 38 Yes

4 3 4 74 Yes

5 3 4 72 Yes

6 3 5 102 Yes

7 3 6 152 Yes

8 3 6 153 Yes

9 3 7 191 No

10 3 7 191 Yes

11 3 9 300 No

12 3 9 302 No

13 3 11 432 Yes

14 3 11 434 Yes

15 3 12 516 Yes

16 3 13 692 Yes

17 3 13 655 Yes

18 3 14 677 Yes

19 3 14 675 Yes

20 3 15 770 Yes

With compare of the numerical results generated by Fixed-Point method in the paper [20], one can see that the

distributed network could obtain the same computation results for the same example. The comparison of the

computation time has no meaning since two methods are run on different computers. Limited by the number of

computers in experiment, dimension in examples above is relatively small. However, with hundreds or

thousands computers one can image that large dimension problem can be solved easily by this distributed

computation network. There are two problems have to be settled for the improvement of this network. One is

the solver of linear programming. The advanced self-dual embedding technique presented in [24] has to take

the place of CPLEX Concert Technology for solving linear programming. The other one is to upgrade the

simple distributed model to the interactive distributed model. With these two problems solved, the performance

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a801

REFERENCES

[1] J. Nash, “Non-cooperative games,” The Annals of Mathematics, vol. 54, no. 2, pp. 286–295, 1951.

[2] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complexity of computing a nash

equilibrium,” in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 71–

78.

[3] X. Chen and X. Deng, “Settling the complexity of twoplayer nash equilibrium,” in Proceedings of the

47th Annual Symposium on Foundations of Computer Science (FOCS), 2006, pp. 261–272.

[4] C. E. Lemke and J. T. Howson, “Equilibrium points of bimatrix games,” Journal of the Society for

Industrial & Applied Mathematics, vol. 12, no. 2, pp. 413–423, 1964.

[5] J. Rosenm¨uller, “On a generalization of the lemke-howson algorithm to noncooperative n-person

games,” SIAM Journal on Applied Mathematics, vol. 21, no. 1, pp. 73–79, 1971.

[6] R. Wilson, “Computing equilibria of n-person games,” SIAM Journal on Applied Mathematics, vol. 21,

no. 1, pp. 80–87, 1971.

[7] H. E. Scarf, “The approximation of fixed points of a continuous mapping,” SIAM Journal on Applied

Mathematics, vol. 15, no. 5, pp. 1328–1343, 1967.

[8] C. B. Garcia, C. E. Lemke, and H. Luethi, “Simplicial approximation of an equilibrium point of

noncooperative n-person games,” Mathematical Programming, vol. 4, pp 227–260, 1973.

[9] T. M. Doup and A. J. J. Talman, “A continuous deformation algorithm on the product space of unit

simplices,” Mathematics of Operations Research, vol. 12, no. 3, pp.485–521, 1987.

[10] G. Van der Laan, A. J. J. Talman, and L. Van der Heyden, “Simplicial variable dimension algorithms

for solving the nonlinear complementarity problem on a product of unit simplices using a general

labelling,” Mathematics of Operations Research, vol. 12, no. 3, pp. 377–397, 1987.

[11] J. C. Harsanyi, “The tracing procedure: A bayesian approach to defining a solution for n-person

noncooperative games,” International Journal of Game Theory, vol. 4, no. 2, pp. 61–94, 1975.

[12] P. J. J. Herings and A. Van den Elzen, “Computation of the nash equilibrium selected by the tracing

procedure in n-person games,” Games and Economic Behavior, vol. 38, no. 1, pp. 89–117, 2002.

[13] P. J. J. Herings and R. J. A. P. Peeters, “A differentiable homotopy to compute nash equilibria of n-

person games,” Economic Theory, vol. 18, no. 1, pp. 159–185, 2001.

[14] P. J. J. Herings and R. J. A. P. Peeters, “Homotopy methods to compute equilibria in game theory,”

Economic Theory, vol. 42, no. 1, pp. 119–156, 2010.

[15] R. D. McKelvey and A. McLennan, “Computation of equilibria in finite games,” Handbook of

Computational Economics, vol. 1, pp. 87–142, 1996.

[16] D. Avis, G. D. Rosenberg, R. Savani, and B. Von Stengel, “Enumeration of nash equilibria for two-

player games,” Economic Theory, vol. 42, no. 1, pp. 9–37, 2010.

[17] R. S. Datta, “Finding all nash equilibria of a finite game using polynomial algebra,” Economic Theory,

vol. 42, no. 1, pp. 55–96, 2010.

[18] Y. Yang, Y. Zhang, F. Li, and H. Chen, “Computing all nash equilibria of multiplayer games in

electricity markets by solving polynomial equations,” Power Systems, IEEE Transactions on, vol. 27, no.

1, pp. 81–91, 2012.

[19] Z. Wu, C. Dang, and C. Zhu, “A mixed 0-1 linear programming approach to the computation of all

pure- strategy nash equilibria of a finite n-person game in normal form,” submitted to Optimization, 2013.

[20] Z. Wu, C. Dang, and C. Zhu, “Finding the pure-strategy nash equilibrium using a fixed-point

algorithm,” in Proceedings of 2013 International Conference on Computer Science, Electronics

Technology and Automation, 2013.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a802

[21] C. Dang, “An increasing-mappingapping approach to integer programming based on lexicographic

ordering and linear programming,” in Proceedings of the 9th International Symposium on Operations

Research and Its Applications, 2010, pp. 55–60.

[22] C. Dang and Y. Ye, “A fixed-point iterative approach to integer programming and distributed

computation,” City University of Hong Kong, vol. TR-1, 2011.

[23] G. B. Dantzig, Linear programming and extensions. Princeton university press, 1998.

[24] Y. Ye, Interior point algorithms: theory and analysis. John Wiley & Sons, 2011, vol. 44.

[25] Message Passing Interface Forum. MPI: A message-passing interface standard, version 2.2.,

http://www.mpiforum. org/docs/mpi-2.2/mpi22-report.pdf., 2009.

[26] Y. Wang and C. Dang, “An evolutionary algorithm for global optimization based on level-set

evolution and latin squares,” Evolutionary Computation, IEEE Transactions on, vol. 11, no. 5, pp. 579–

595, 2007.

[27] V. Bubelis, “On equilibria in finite games,” International Journal of Game Theory, vol. 8, no. 2, pp.

65–79, 1979.

http://www.ijcrt.org/

