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Abstract 

In this work, we study dynamical systems with mathematical applications. We deal with specific properties 

of dynamical systems, namely stability and optimal control. Both qualities are common in industrial 

economics and engineering. We have selected some important examples and geometric solutions such as B. 

Portfolio selection and related economic problems. We have described the corresponding differential 

equations and used optimal control theory to approach the problem, and we have found some geometric 

solutions in dynamical systems and control theory. 

Definition (1.1) [1] Monoid written additively, M is a set and Φ is a function   ∶ 𝑈𝑇 ×𝑀 → 𝑀 

With  I(𝑥) = {𝑡 ∈ 𝑇: (𝑡, 𝑥) ∈ 𝑈},   (0, 𝑥) = 𝑥  

 (𝑡2, (𝑡1, 𝑥)) =  (𝑡1 + 𝑡2, 𝑥), for 𝑡1 , 𝑡2 , 𝑡1 + 𝑡2 ∈ 𝐼(𝑥)  

The function Φ(𝑡, 𝑥) is called the evolution function of the dynamical system: it associates to every point in 

the set M a unique image, depending on the variable t, called the evolution parameter. M is called phase space 

or state space, while the variable x represents an initial state of the system, we often write 𝑥(𝑡) ≔ Φ(𝑡, 𝑥), 

∅𝑡(𝑥) ≔ ∅(𝑡, 𝑥)   

If we take one of the variables as constant.  𝑥: 𝐼(𝑥) → 𝑀 is called flow through x and its graph trajectory 

through x. The set 
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𝛾𝑥 ≔ {Φ(𝑡, 𝑥): 𝑡 ∈ 𝐼(𝑋)} is called orbit through x. A subset S of the state space M is called Φ-invariant if for 

all x in S and all t in T 

Φ(𝑡, 𝑥) ∈ 𝑆.  For S to be Φ-invariant, we require that I(x) = T for all x in S. That is, the flow through x should 

be defined for all time for every element of S.A real dynamical system, real-time dynamical system or flow 

is a tuple (T, M, Φ) with T an open interval in the real numbers R, M a manifold locally diffeomorphic to 

Banach space, and 𝛷 a continuous function. If 𝑇 = 𝑅 we call the system global, if 𝑇 is restricted to the non-

negative real's we call the system a semi-flow. If 𝛷 is continuously differentiable we say the system is a  

Differentiable dynamical system. If the manifold 𝑀 is locally diffeomorphic to 𝑅𝑛 the dynamical system is 

finite-dimensional and if not, the dynamical system is infinite-dimensional. Define a discrete-time dynamical 

system to be a pair(𝑀, 𝜑 ), where 𝑀 is a metric space and  𝜑: 𝑀 →  𝑀 a continuous map. 

Let (𝑀, 𝜑) and (𝑁, 𝛹 ) be dynamical systems and  𝜃: 𝑀 →  𝑁 be a homeomorphism, that is, 𝜃 is continuous, 

one-to-one, and onto, and its inverse is continuous. The homeomorphism 𝜃 is a called a topological conjugacy 

if  𝜑 = 𝜃−1𝛹𝜃  .  Let 𝐴 be a finite alphabet and ∑𝑎 set of bi-infinite sequences on 𝐴, that is, for 𝑠 ∈ ,   𝑠 =

⋯ , 𝑠 − 2, 𝑠 − 1. 𝑠0. 𝑠1𝑠2. , … where 𝑠𝑛 ∈ 𝐴 . For 𝛿 > 1  define a metric on  by 

                            𝑑 ∑(𝑠, 𝑠′) = ∑
𝑑𝐴(𝑠𝑛,𝑠′𝑛)

𝛿|𝑛|
∞
𝑛=−∞ ,                                    (1.1) 

Where 

                                          𝑑𝐴(𝑎, 𝑏) = {
0     𝑎 = 𝑏,
1      𝑎 ≠ 𝑏.

                                                                   

The metric space  is called a shift space if there is a map 𝜎: ∑ →, such that if 𝑠′ = 𝜎(𝑠), then 𝑠′𝑛 =

𝑠𝑛−1.The important requirement is  is closed under the action of 𝜎 

Let 𝐹𝐶𝑘(𝑅) be the subspace of k-times continuously differentiable scalar functions on R. On this space 

there are metrics 

𝑑𝐹(𝑓, 𝑓′) = ∫ |𝑓(𝑡) − 𝑓′(𝑡)|
∞

−∞

𝛽−|𝑡|𝑑𝑡, 

For 𝛽 > 1, F is a signal space, if the map 𝜏: 𝐹 → 𝐹 where 𝜏(𝑓)(𝑡) = 𝑓(𝑡 + 𝜏), 𝜏 ∈ 𝑅 , (, 𝜎)there can be 

constructed a dynamical system (𝐹,𝜏), (𝐹,1) is conjugate to (, 𝜎)  , ℎ: → 𝐹 which is a homeomorphism 

between (, 𝜎) 𝑎𝑛𝑑 (ℎ(),1). the function ∅𝑎(𝑡) ∈ 𝑐
𝑘(𝑅), 𝑓𝑜𝑟 𝑎 ∈ 𝐴that satisfy the following conditions. 

1.  ∅𝑎(𝑡) ≠ ∅𝑏(𝑡) almost everywhere for a ≠  b, 

2.  𝑚𝑎𝑥𝑎,𝑏|∅𝑎(𝑡) − ∅𝑏(𝑡)| < 𝐺−|𝑡|,  > 𝛽 > 1, and 

3. min
𝑎≠𝑏

∫ |∅𝑎(𝑡) − ∅𝑏(𝑡)||𝑡|<
1

2

𝑑𝑡 > ∫ max|∅𝑎(𝑡) − ∅𝑏(𝑡)|𝑑𝑡.|𝑡|<
1

2

 

Where 𝛽is the same as used for the metric (3). 

Define  ℎ: → 𝑐𝑘(𝑅)by  

                       ℎ(𝑠) = ∑ ∅𝑠𝑛(𝑡 − 𝑛).

∞

𝑛=−∞

                                                      (1.2) 

http://www.ijcrt.org/


www.ijcrt.org                                                             © 2023 IJCRT | Volume 11, Issue 2 February 2023 | ISSN: 2320-2882 

IJCRT2302121 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b23 
 

Define 𝐹 = {𝑓(𝑡 + 𝜏): 𝑓 ∈ ℎ(), 0 ≤ 𝜏 < 1}.It is easy to check that ℎ(𝜎(𝑠)) = 1(𝜎(𝑠)), and so, such an 𝐹 

is a signal space. 

Corollary (1.1) [2] 

There exist 𝐾, 𝐽 >  0 such that  𝐾𝑑(𝑠, 𝑠
′) ≥ 𝑑𝐹(ℎ(𝑠), ℎ(𝑠

′)) ≥ 𝐽𝑑(𝑠, 𝑠
′). 

Proof  

The prove there exists 𝐾 >  0 such that 𝑑𝐹(ℎ(𝑠), ℎ(𝑠
′)) ≤ 𝐾𝑑(𝑠, 𝑠

′). The following chain of inequalities 

holds: 

𝑑𝐹(ℎ(𝑠), ℎ(𝑠
′)) = ∫ | ∑ ∅𝑠𝑛(𝑡 − 𝑛) − ∅𝑠′𝑛(𝑡 − 𝑛)

∞

𝑛=−∞

|
∞

−∞

𝛽−|𝑡|𝑑𝑡

≤ ∫ ∑ |∅𝑠𝑛(𝑡 − 𝑛) − ∅𝑠′𝑛(𝑡 − 𝑛)|

∞

𝑛=−∞

∞

−∞

𝛽−|𝑡|𝑑𝑡

= ∫ ∑ 𝑑𝐴

∞

𝑛=−∞

∞

−∞

(𝑠𝑛, 𝑠
′
𝑛)|∅𝑠𝑛(𝑡 − 𝑛) − ∅𝑠′𝑛(𝑡 − 𝑛)|𝛽

−|𝑡|𝑑𝑡

< ∫ ∑ 𝑑𝐴(𝑠𝑛, 𝑠
′
𝑛)𝐺𝛾

−|𝑡−𝑛|

∞

𝑛=−∞

∞

−∞

𝛽−|𝑡|𝑑𝑡 = 𝐺 ∑ 𝑑𝐴(𝑠𝑛, 𝑠
′
𝑛)

∞

𝑛=−∞

∫ 𝛾−|𝑡−𝑛|
∞

−∞

𝛽−|𝑡|𝑑𝑡 

Where 𝑛 ≥ 0 𝑎𝑛𝑑 𝑛 < 0 separately, 

∫ 𝛾−|𝑡−𝑛|
∞

−∞
𝛽−|𝑡|𝑑𝑡 =

𝛾−|𝑛|+𝛽−|𝑛|

log𝛽𝛾
+
𝛽−|𝑛|−𝛾−|𝑛|

log
𝛾

𝛽

≤ (
2

log𝛽𝛾
+

1

log
𝛾

𝛽

)𝛽−|𝑛| ≡ 𝐶𝛽−|𝑛|. Hence, putting K = GC, 

𝑑𝐹(ℎ(𝑠), ℎ(𝑠
′)) ≤ 𝐺𝐶 ∑

𝑑𝐴(𝑠𝑛, 𝑠
′
𝑛)

𝛽|𝑛|

∞

𝑛=−∞

= 𝐾𝑑(𝑠, 𝑠
′). 

Next, we prove𝐽𝑑(𝑠, 𝑠′) ≤ 𝑑𝐹(ℎ(𝑠), ℎ(𝑠
′)). The following chain of inequalities holds: 

𝑑𝐹(ℎ(𝑠), ℎ(𝑠
′)) =∑∫ |∑∅𝑠𝑛(𝑡 − 𝑛) − ∅𝑠′𝑛(𝑡 − 𝑛)

𝑛

|
𝑚+

1
2

𝑚−
1
2𝑚

𝛽−|𝑡|𝑑𝑡 

=∑ ∫ |∑∅𝑠𝑛(𝑡 − 𝑛 +𝑚) − ∅𝑠′𝑛(𝑡 − 𝑛 + 𝑚)

𝑛

|

1
2

−
1
2

𝛽−|𝑡+𝑚|𝑑𝑡  
𝑚

 

                              =∑∫ |∑∅𝑠𝑚−𝑗(𝑡 + 𝑗) − ∅𝑠′𝑚−𝑗(𝑡 + 𝑗)

𝑛

|

1
2

−
1
2𝑛

𝛽−|𝑡+𝑚|𝑑𝑡

≥∑𝑑𝐴(𝑠𝑛, 𝑠
′
𝑛)

𝑚

∫ |∑∅𝑠𝑚−𝑗(𝑡 + 𝑗) − ∅𝑠′𝑚−𝑗(𝑡 + 𝑗)

𝑛

| 𝛽−|𝑡+𝑚|𝑑𝑡

1
2

−
1
2

≥∑
𝑑𝐴(𝑠𝑛, 𝑠

′
𝑛)

𝛽|𝑚|
𝑚

∫ |∑∅𝑠𝑚−𝑗(𝑡 + 𝑗) − ∅𝑠′𝑚−𝑗(𝑡 + 𝑗)

𝑛

| 𝛽−|𝑡|𝑑𝑡

1
2

−
1
2

 

Where 𝐽 > 0 for all 𝑚 

∫ |∑∅𝑠𝑚−𝑗(𝑡 + 𝑗) − ∅𝑠′𝑚−𝑗(𝑡 + 𝑗)

𝑗

| 𝛽−|𝑡|𝑑𝑡

1
2

−
1
2

≥ 𝐽                                  
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The following reduction uses the stated third condition in the final strict inequality. 

∫ |∑∅𝑠𝑚−𝑗(𝑡 + 𝑗) − ∅𝑠′𝑚−𝑗(𝑡 + 𝑗)

𝑗

| 𝛽−|𝑡|𝑑𝑡

1
2

−
1
2

≥ ∫ |∅𝑠𝑚(𝑡) − ∅𝑠′𝑚(𝑡)|𝛽
−|𝑡|𝑑𝑡

1
2

−
1
2

 

−∑∫ |∅𝑠𝑚−𝑗(𝑡 − 𝑛) − ∅𝑠′𝑚−𝑗(𝑡 − 𝑛)| 𝛽
−|𝑡|𝑑𝑡 ≥ 𝑚𝑖𝑛

𝑎 ≠ 𝑏
∫ |∅𝑎(𝑡) − ∅𝑏(𝑡)|𝛽

−|𝑡|𝑑𝑡

1
2

−
1
2

1
2

−
1
2𝑗≠0

− ∑∫ max
𝑎,𝑏

|∅𝑎(𝑡 − 𝑛) − ∅𝑏(𝑡 − 𝑛)|𝑑𝑡 > 0

1
2

−
1
2𝑗≠0

 

Hence, there exists 𝐽 >  0 such that 

𝑑𝐹(ℎ(𝑠), ℎ(𝑠
′)) ≥ 𝐽∑

𝑑𝐴(𝑠𝑛, 𝑠′𝑛)

𝛽|𝑚|
𝑚

= 𝐽𝑑(𝑠, 𝑠
′) 

 The global dynamical system (𝑅, 𝑋,𝛷) on a locally compact and topological space 𝑋, it is often useful to 

study the continuous extension Φ* of Φ to the one –point compactification X* of X. Although we lose the 

differential structure of the original system, we can now use compactness arguments to analyze the new 

system (R, X*, Φ*). In compact dynamical systems the limit set of any orbit is non-empty, compact and simply 

connected. Let us remind the definition of a continuous dynamical system. Denote by 𝑋, and with 𝜌a metric 

function. A dynamical system on X is defined to be a mapping ∅: 𝑅 × X → X; such that 

1. ∅(0, 𝑥) = 𝑥 for all 𝑥, (Identical property); 

2. ∅(𝑡 + 𝑠, 𝑥) =∅(𝑡, ∅(𝑠, 𝑥)) for all x ∈ X; and t, s ∈ R, (Group property); 

3.∅(𝑡, 𝑥) is a continuous function. 

 One may expect that systems with similar properties can be defined for processes with discontinuities. Present 

chapter is devoted to the problem of identification of such kind of systems, one of the most interesting and 

difficult problems for impulsive differential equations. 

Theorem (1.1)[3]  A function ∅(𝑡) ∈ 𝑝𝐶′(𝑇, 𝜃), ∅(𝑡0) = 𝑥0 is a solution of ∆𝑥|𝑡=𝜃𝑖 = 𝐽𝑖(𝑥). If and only if 

∅(𝑡) =

{
 
 

 
 𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖)),   t ≥ 𝑡0,

𝑡0≤𝜃𝑖<𝑡

𝑡

𝑡0

𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖)),   t ≥ 𝑡0.
𝑡0≤𝜃𝑖<𝑡

𝑡

𝑡0

 

Proof.  Necessity. Let ∅(𝑡) be a solution of ∆𝑥|𝑡=𝜃𝑖 = 𝐽𝑖(𝑥) on T: Define a function  

𝜓(𝑡) =

{
 
 

 
 𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖)),   t ≥ 𝑡0,

𝑡0≤𝜃𝑖<𝑡

𝑡

𝑡0

𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖)),   t ≥ 𝑡0.
𝑡0≤𝜃𝑖<𝑡

𝑡

𝑡0

 

We shall check that 𝜓 ∈ 𝑝𝐶′(𝑇, 𝜃) and show that functions 𝜓,∅ satisfy. Condition ∅(𝑡0) = 𝜓(𝑡0) is 

obviously true. If 𝑡 ∉ 𝜃 and it is not an end point of T, then differentiating. 𝜓(𝑡) we find that 𝜓′ =

𝑓(𝑡, ∅(𝑡)) = ∅′(𝑡),   𝑡 ≥ 𝑡0, 𝑗 ∈ 𝐴 one has that 
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𝜓(𝜃𝑗) = 𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖)),
𝑡0≤𝜃𝑖<𝜃𝑗

𝜃𝑗

𝑡0

 

and  

 

𝜓(𝜃𝑗 − ℎ) = 𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖))
𝑡0≤𝜃𝑖<𝜃𝑗−ℎ

𝜃𝑗−ℎ

𝑡0

 

Where ℎ > 0 , we obtain that 

𝜓′ − (𝜃𝑗) = lim
ℎ→0+

𝜓(𝜃𝑗 − ℎ) − 𝜓(𝜃𝑗)

ℎ
= 

lim
ℎ→0+

1

ℎ
[∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 + ∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠

𝜃𝑗

𝑡0

𝜃𝑗−ℎ

𝑡0

] = 𝑓 (𝜃𝑗 , ∅(𝜃𝑗)) = ∅
′ − (𝜃𝑗) 

If 𝛼 is the right end point of 𝑇 and 𝛼 ∈ 𝑇 then similarly one can check that 𝜓′
−
(𝛼) = ∅′−(𝛼), 𝑗 ∈ 𝐴 then 

∆𝜓|𝑡=𝜃𝑗 = 𝜓(𝜃𝑗 +) − 𝜓(𝜃𝑗) = 

[𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖))
𝑡0≤𝜃𝑖<𝜃𝑗

𝜃𝑗+

𝑡0

] − 

[𝑥0 +∫ 𝑓(𝑠, ∅(𝑠))𝑑𝑠 +∑ 𝐽𝑖(∅(𝜃𝑖))
𝑡0≤𝜃𝑖<𝜃𝑗

𝜃𝑗

𝑡0

] = 

𝐽𝑖(∅(𝜃𝑖)) = ∆𝑥|𝑡=𝜃𝑖 . 

Thus, the conditions are verified if  𝑡 ≥ 𝑡0. 

Example (1. 1)[4]   Let us consider the following system: 

                                           𝑥′1= −
1

3
𝑥1 − 3𝑥2. 

                                              𝑥′2 = 3𝑥1 −
1

3
𝑥2, 

                           ∆𝑥1|𝑥∈Г = (2𝑐𝑜𝑠
𝜋

6
− 1) 𝑥1 − 2𝑠𝑖𝑛

𝜋

6
𝑥2, 

                 ∆𝑥2|x ∈ Г = 2𝑠𝑖𝑛
𝜋

6
𝑥1 + (2cos

𝜋

6
− 1)𝑥2.                                          (1.3) 

Where G=𝑅2, and Г = [(𝑥1, 𝑥2)|𝑥1 = 𝑥2  ,0 < 𝑥1] . Let us start to 

check conditions (C1)–(C6). One can easily find that Г̅ = [(𝑥1, 𝑥2)|√3 𝑥1 = 𝑥2, 0< 𝑥1], ∅(𝑥) = 𝑥1 −

𝑥2, ∅̅(𝑥) = √3 𝑥1 − x2, 𝑓(𝑥) = (−
1

3
𝑥1 − 3𝑥2, 3𝑥1 −

1

3
𝑥2) , 𝐽(𝑥) = (2𝑐𝑜𝑠

𝜋

6
𝑥1 − 2𝑠𝑖𝑛

𝜋

6
𝑥2,2𝑠𝑖𝑛

𝜋

6
𝑥1 +

2𝑐𝑜𝑠
𝜋

6
𝑥2) Consequently, we have that ∇∅(𝑥) = (1, −1) ≠ 0, so, condition (C1) is satisfied. It is seen that J, 

f are continuously differentiable functions and 

det [
𝜕𝐽(𝑥)

𝜕𝑥
]= det(

2𝑐𝑜𝑠
𝜋

6
2𝑠𝑖𝑛

𝜋

6

2𝑠𝑖𝑛
𝜋

6
2𝑐𝑜𝑠

𝜋

6

)=4(𝑐𝑜𝑠2
𝜋

6
+𝑠𝑖𝑛2

𝜋

6
)=4≠ 0, for all x it is also obvious that Г∩ Г̅ =

∅ moreover, 

(∇∅(𝑥), 𝑓(𝑥)) = ((1,−1), (−
1

3
𝑥1 − 3𝑥2, 3𝑥1 −

1

3
𝑥2)) = (−

10

3
𝑥1 −

8

3
𝑥2) ≠ 0 

For all 𝑥 ∈ Г  the inequality (∇∅(𝑥), 𝑓(𝑥))≠ 0for all x ∈ Г̅ can be shown 
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Similarly. Thus, all conditions, (C1)–(C6) are fulfilled 

Definition (1.2)[5] A solution x (t) = x(t,0, 𝑥0) of (1.5) is said to be continuable to a set S  𝑅𝑛as time 

decreases (increases) if there exists a moment 𝜉 ∈ 𝑅 such that 𝜉 ≤ 0(𝜉 ≥ 0)and x(𝜉) ∈ 𝑠. The following 

theorems(1.2) provide sufficient conditions for the continuation of solutions of (1.5) 

Lemma (1.1) [5]  

There exists constant 𝑐3 = 𝑐3(𝑚) > 0 such that for all 1,2 ∈ 𝑍𝑚, 

‖𝐻(1) − 𝐻(2)‖
𝑐(2+𝛼)((2+𝛼) 2⁄ )(𝜇×[0,𝑇𝑚]) ≤ 𝑐3‖

1 − 2‖
𝑍𝑚
. 

𝑷𝒓𝒐𝒐𝒇 

For 𝑘 = 1,2 denote by 𝑘the hypersurface defined by 𝑘 

Let ℎ(𝜇,) ∈ 𝐶∞([−𝐿, 𝐿] × 𝑅)    be function satisfying     

ℎ(𝜇,) = {
𝜇,     𝑖𝑓|𝜇| ≥

3

4
𝐿,

0    ,   𝑖𝑓  𝜇 = 
          ,      ℎ𝜇(𝜇,) > 𝑐 > 0      for same constant c 

Define 𝑌𝐾 =  × [0, 𝑇𝑚] →  × [0, 𝑇𝑚]𝑏𝑦   

𝑌𝐾(𝑥, 𝑡) =

{
 

 𝑥,   𝑖𝑓 𝑑𝑖𝑠𝑡(𝑥,0) >
3

4
𝐿,

𝑥0(𝑠′) + ℎ (𝑠𝑛,
𝑘(𝑠′, 𝑡))𝑁(𝑠′)|

(𝑠′,𝑠𝑛)=(𝑠
1(𝑥),…,𝑠𝑛(𝑥)),

𝑖𝑓𝑑𝑖𝑠𝑡(𝑥,0) ≤
3

4
𝐿

 

Clearly, 𝑌𝐾 is a 𝐶3+𝛼(3+𝛼) 2⁄  diffeomorphism of  × [0, 𝑇𝑚] which maps 𝑄𝑘
𝑖  onto 𝑄0.

𝑖̂   denoting by 𝑥 =

𝑌𝑘
−1(𝑦, 𝑡)the inverse function of  𝑦 = 𝑌𝐾(𝑥, 𝑡) ≡ (𝑌𝑘

1, … , 𝑌𝑘
𝑛),       𝑣𝑘(𝑦, 𝑡) ≡ 𝑢𝑘(𝑌𝑘

−1(𝑦, 𝑡), 𝑡). Then  

                     

{
 
 

 
 

𝜕𝑣′𝑘

𝜕𝑡
− ∑ 𝑎𝑖,𝑗

𝑘 𝜕2𝑣′𝑘

𝜕𝑦𝑖𝜕𝑦𝑗
+ ∑ 𝑏𝑖

𝑘 𝜕𝑣
′
𝑘

𝜕𝑦𝑖
= 0   𝑖𝑛  𝑄0.

𝑖̂   𝑛
𝑖=1

𝑛
𝑖,𝑗=1

𝑢𝑘
1 = 𝑢𝑘

2                               𝑜𝑛 0 × [0, 𝑇𝑚],

𝑁𝑘.̂ [𝑘1∇𝑦𝑢𝑘
1 − 𝑘2∇𝑦𝑢𝑘

2] = 𝑙𝑉𝑘      𝑜𝑛 0 × [0, 𝑇𝑚],

𝑣𝑘 = 𝑔(𝑌𝑘
−1(𝑦, 𝑡), 𝑡)    𝑜𝑛 ( × {𝑡 = 0}) ∪ (𝜕 × [0, 𝑇𝑚]),

  

                          Where 𝑣𝑘 = 𝑣𝑘      
𝑙 𝑜𝑛    𝑄0.

𝑖̂     𝑎𝑛𝑑    

                           𝑎𝑖𝑗
𝑘 = 𝑎𝑖,𝑗

𝑘 (𝑦, 𝑡) = ∇𝑥𝑌𝑘
𝑖(𝑥, 𝑡). ∇𝑥𝑌𝑘

𝑗(𝑥, 𝑡)|
𝑥=𝑌𝑘

−1(𝑦,𝑡)
,  

                           𝑏𝑖
𝑘 = 𝑏𝑖

𝑘(𝑦, 𝑡) =
𝜕𝑌𝑘

𝑖

𝜕𝑡
(𝑥, 𝑡) − ∇𝑥𝑌𝑘

𝑖(𝑥, 𝑡)|
𝑥=𝑌𝑘

−1(𝑦,𝑡)
,  

                          𝑁𝑘̂ = 𝑁𝑘̂(𝑦, 𝑡) = (𝑁𝑘(𝑥, 𝑡). ∇𝑥)𝑌𝑘(𝑥, 𝑡)|𝑥=𝑌𝑘
−1(𝑦,𝑡),  

𝑁𝑘(𝑥, 𝑡) is the unit vector normal to 𝑡
𝑘, 𝑉𝑘 is the normal velocity 𝑜𝑓 𝑘. 

Hence, setting     𝑤(𝑦, 𝑡) = 𝑣1(𝑦, 𝑡) − 𝑣2(𝑦, 𝑡), we see that 𝜔 satisfies  

{
 
 
 
 

 
 
 
 𝜕𝜔

𝑙

𝜕𝑡
− ∑ 𝑎𝑖𝑗

1 𝜕2𝜔

𝜕𝑦𝑖𝜕𝑦𝑗
+∑𝑏𝑖

1 𝜕𝜔
𝑙

𝜕𝑦𝑖
= ∑[𝑎𝑖𝑗

1 − 𝑎𝑖𝑗
2 ]

𝜕2𝑣2
𝑙

𝜕𝑦𝑖𝜕𝑦𝑗
−∑[𝑏𝑖

1 − 𝑏𝑖
2]
𝜕𝑣2

𝑙

𝜕𝑦𝑖
] ≡ ∅  

𝑛

𝑖=1

𝑛

𝑖,𝑗=1

𝑛

𝑖=1

𝑛

𝑖,𝑗=1

𝑖𝑛 𝑄0       
𝑙 ,

𝜔1 = 𝜔2    , 𝑜𝑛  0 × [0, 𝑇𝑚],

𝑁1̂. [𝑘1∇𝑦𝜔
1 − 𝑘2∇𝑦𝜔

2] = 𝑙[𝑉1 − 𝑉2] + (𝑁1̂ − 𝑁2̂). (𝑘1∇𝑦𝑣2
1 − 𝑘2∇𝑦𝑣2

2)

≡ 𝛹   , 𝑜𝑛   0 × [0, 𝑇𝑚],

𝜔 = 0    , 𝑜𝑛 ( × {𝑡 = 0}) ∪ (𝜕 × [0, 𝑇𝑚]),

 

Thus, we can now reflect 𝜔2 across 0 × [0, 𝑇𝑚]  
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‖𝜔‖𝑐2+𝛼,(2+𝛼) 2⁄ 𝑄0
1̂ + ‖𝜔‖𝑐2+𝛼,(2+𝛼) 2⁄ 𝑄0

2̂ ≤ 𝐶 {‖𝜔‖𝑐𝛼,𝛼 2⁄ 𝑄0
1̂ + ‖𝜔‖𝑐𝛼,𝛼 2⁄ 𝑄0

2̂ + ‖𝛹‖𝑐1+𝛼,(1+𝛼) 2⁄ (0×[0,𝑇𝑚])} , 

Where C depends on the 𝑐𝛼,𝛼 2⁄  norm of 𝑎𝑖𝑗
𝑘 , 𝑏𝑖

𝑘 or, equivalently, on  .                ‖∅‖𝑐𝛼,𝛼 2⁄ (𝑄0
1̂) +

‖∅‖𝑐𝛼,𝛼 2⁄ (𝑄0
2̂)𝐶(𝑚){∑ ‖𝑎𝑖𝑗

1 −                       𝑎𝑖𝑗
2 ‖

𝑐𝛼,𝛼 2(×[0,𝑇𝑚)]⁄ + ∑ ‖[𝑏𝑖
1 − 𝑏𝑖

2]‖
𝑐𝛼,𝛼 2(×[0,𝑇𝑚)]⁄

𝑛
𝑖=1

𝑛
𝑖,𝑗=1 ≤

                            𝐶(𝑚)‖1 − 2‖
𝑐3+𝛼,(3+𝛼) 2⁄

, 

Definition (1.3)[6] .The space 𝐶weak ([0, 𝑇]; 𝐻𝑠()) denotes continuity on the interval [0, 𝑇] with values in 

the weak topology of 𝐻𝑠. In other words, for any fixed ∅ ∈ 𝐻𝑠, (∅, 𝑢(𝑡))𝑠 is a continuous scalar function 

on[0, 𝑇]. The inner product of 𝐻𝑠 is given by  

(𝑢, 𝑣)𝑠 =∑∫𝐷𝛼𝑢
𝛼≤𝑠

. 𝐷𝛼𝑣𝑑𝑥.         

The Hilbert spaces we will be working on for most of the time is: 

                                             𝑉𝑚 = {(𝑢, 𝑣) ∈ 𝐻𝑚() × 𝐻𝑚()}                      (1.4)                                                           

We consider the following regularization of  

              
𝜕𝐴𝜖

𝜕𝑡
=  𝐽𝜖

2∆ 𝐴𝜖 − 𝐴𝜖 + 𝜌𝜖𝐴𝜖 + 𝐴0,                                              (1.5a) 

              
𝜕𝜌𝜖

𝜕𝑡
= 𝐽𝜖(𝐽𝜖∆𝜌

𝜖) − 2𝐽𝜖 [∇. (
𝜕𝜌𝜖

𝜕𝐴𝜖
𝐽𝜖∇𝐴

𝜖) − 𝜌𝜖𝐴𝜖 + 𝐵.̅ ]                 (1.5b) 

The Banach space 𝑉2 , 𝑚 = 2 𝑖𝑛(10)𝑤𝑖𝑡ℎ 𝑛𝑜𝑟𝑚 ‖(𝐴, 𝜌)‖𝑉2 = ‖𝐴‖2 + ‖𝜌‖2 . 

Theorem (1.2)[6]  (Local existence of solutions to the regularized residential burglary Model) For any 𝜖 > 0 

and initial conditions (𝐴0(𝑥), 𝜌0(𝑥)) ∈ 𝑉
2 such that 𝐴0(𝑥) > 0 there exists a solution, (𝐴𝜖, 𝜌𝜖) ∈

𝐶1([0, 𝑇𝜖], 𝑉
2), for some 𝑇𝜖 > 0 to the regularized system (1.5). Furthermore, the following energy estimate 

is satisfied: 

𝑑

𝑑𝑡
‖𝐴𝜖, 𝜌𝜖‖𝑉2 ≤ 𝑐3‖𝐴

𝜖, 𝜌𝜖‖3𝑉2 + 𝑐2‖𝐴
𝜖, 𝜌𝜖‖2𝑉2 + 𝑐1‖𝐴

𝜖, 𝜌𝜖‖𝑉2,    

Where 𝑐1, 𝑐2 𝑎𝑛𝑑 𝑐3 are constants that depend only on 
1

𝐴0
, 𝜖 𝑎𝑛𝑑   

𝑷𝒓𝒐𝒐𝒇 ∶ 

Define the map 𝐹𝜖 = [𝐹1
𝜖, 𝐹2

𝜖] ∶ 0𝑉2 → 𝑋  , 0 the set such that 𝐹𝜖maps 0 𝑡𝑜𝑉2  , 𝑖. 𝑒 𝑋 = 𝑉2  define the 

function by:  

              𝐹1
𝜖(𝐴𝜖, 𝜌𝜖) =  𝐽𝜖

2∆ 𝐴𝜖 − 𝐴𝜖 + 𝜌𝜖𝐴𝜖 + 𝐴0,                                           

       𝐹2
𝜖(𝐴𝜖, 𝜌𝜖) =  𝐽𝜖

2∆ 𝜌𝜖 − 2 𝐽𝜖 [∇. (
𝜌𝜖

𝐴𝜖
 𝐽𝜖∇𝐴

𝜖)] − 𝜌𝜖𝐴𝜖 + 𝐵.̅                              

Hence, if  𝑣𝜖 = (𝐴𝜖, 𝜌𝜖) ∈ 𝑉2  the original model reduces to an ODE in  𝑉2 

                
𝑑𝑣𝜖

𝑑𝑡
= 𝐹𝜖(𝑣),      𝑣𝜖(0) = (𝐴0(𝑥), 𝜌0(𝑥)).  

Let  𝑣𝑖
𝜖 = (𝐴𝑖

𝜖, 𝜌𝑖
𝜖) ∈ 𝑉2   (𝑖 = 1,2)   we drop 𝜖 for notational convenience. By definition of the 𝑉2 -norm and 

𝐹 we have: 

             ‖𝐹(𝑣1) − 𝐹(𝑣2)‖𝑉2 = ‖𝐹1(𝑣1) − 𝐹1(𝑣2)‖2 + ‖𝐹2(𝑣1) − 𝐹2(𝑣2)‖2.              

By substituting (1.3) above and using  

∀𝑣 ∈ 𝐻𝑚(), 𝛾, 𝑘 ∈ 𝑍+ ∪ 0, 𝑎𝑛𝑑 0 ≤ 𝜖 ≤ 1:  ‖𝐽𝜖𝑣‖𝑚+𝛾 ≤
𝐶𝑚𝛾

𝜖𝛾
‖𝑣‖𝑚  
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|𝐽𝜖𝐷
𝑘𝑣|∞ ≤

𝐶𝑘

𝜖𝑁 2+𝛾−𝑘⁄
‖𝑣‖𝑘 and   ∀𝑚 ∈  𝑍+ ∪  0    there exists C >  0 such that for all  𝑢, 𝑣 ∈ 𝐿∞() ∩

𝐻𝑚():   

‖𝑢𝑣‖𝑚 ≤ 𝑐{|𝑢|∞‖𝐷
𝑚𝑣‖0 + ‖𝐷

𝑚𝑣‖0|𝑣|∞}, ∑ ‖𝐷𝛼(𝑢𝑣) − 𝑢𝐷𝛼𝑣‖0 ≤0≤|𝛼|≤𝑚

                        𝑐{|∇𝑢|∞‖𝐷
𝑚−1‖0 + ‖𝐷

𝑚𝑣‖0|𝑣|∞}.  

We obtain a suitable bound for 𝐹1. Initially we have: 

‖𝐹1(𝑣1) − 𝐹1(𝑣2)‖2 ≤  ‖𝐽𝜖
2∆(𝐴1 − 𝐴2)‖2 + ‖𝐴1 − 𝐴2‖2 + ‖𝜌1𝐴1 − 𝐴2𝜌2‖2 .  

Using   

∀𝑠 >
𝑁

2
, 𝐻𝑚() is a Banach algebra. That is, there exists 𝑐 >  0 such that for all ‖𝑢𝑣‖𝑠 ≤ 𝐶‖𝑢‖𝑠‖𝑣‖𝑠. by  

‖𝜌1𝐴1 − 𝐴2𝜌2‖2 ≤ ‖𝜌2‖2‖𝐴1 − 𝐴2‖2 + ‖𝐴2‖2‖𝜌1 − 𝜌2‖2.                    (1.6)                  

Using (1.6) we easily obtain the final estimate for 𝐹1: 

                       ‖𝐹1(𝑣1) − 𝐹1(𝑣2)‖2 ≤ (


𝜖2
+ 1 + ‖𝜌2‖2) ‖𝐴1 − 𝐴2‖2 + ‖𝐴2‖2‖𝜌1 − 𝜌2‖2.        (1.7) 

If we define the open set {(𝑢, 𝑣) ∈ 𝑉2: |
1

𝑢
|
∞
< 𝐾1, ‖𝑢2‖2 < 𝐿1, ‖𝑣2‖2 < 𝐿2} 

If 𝑣1, 𝑣2 ∈ 0  then  

‖𝐹1(𝑣1) − 𝐹1(𝑣2)‖2 ≤ 𝐶̃1‖𝐴1 − 𝐴2‖2 + 𝐶̃2‖𝜌1 − 𝜌2‖2,                           (1.8) 

Where  

𝐶̃1 =
𝐾1

𝜖3
(‖𝜌2‖2 + 𝐾1‖𝐴1‖1|𝜌1|∞ + 𝐾1‖𝐴2‖2‖𝜌2‖2 + 𝐾1

2‖𝐴2‖2
2‖𝜌2‖2 +

                                         
𝐾1
3

𝜖
‖𝐴1‖1‖𝐴2‖2‖𝜌2‖2 +

𝐾1

𝜖2
|𝜌1|∞ + ‖𝜌2‖2),  

 𝐶̃2 =
1

𝜖2
+ ‖𝐴1‖2 +

𝐶1
2

𝜖3
‖𝐴2‖2‖𝐴1‖2(1 + 𝐾‖𝐴2‖1 + 𝐾1‖𝐴1‖1). 

𝐶̃1 𝑎𝑛𝑑 𝐶̃2 depend only on ‖𝐴𝑖‖2, ‖𝜌𝑖‖2 , 𝜖 and 𝐾1 for 𝑖 = 1,2. Combining (1.7) ,  and (1.8) gives  

‖𝐹1(𝑣1) − 𝐹1(𝑣2)‖𝑉2 ≤ 𝐶(, 𝐿1, 𝐿1, 𝐾1, 𝜖)‖𝐴1 − 𝐴2‖2 + 𝐶(𝐿1, 𝐿1, 𝐾1, 𝜖)‖𝜌1 − 𝜌2‖2 

1.1 Linear Homogeneous and Nonhomogeneous Systems  

We start discussion of linear impulsive systems with the following differential 

Equation:  

𝑥′ = 𝐴(𝑡)𝑥. 

∆𝑥|𝑡=𝜃𝑖 = 𝐵𝑖𝑥  

Where (𝑡, 𝑥)∈ 𝑅 × 𝑅𝑛, 𝜃𝑖 , 𝑖 ∈ 𝑍 is a B-sequence, such that |𝜃𝑖| → ∞ 𝑎𝑠|𝑖| → ∞. 

We suppose that the entries of n × n matrix A (t) are from þ𝑐(𝑅, 𝜃), real valued 

n × n matrices 𝐵𝑖 , I ∈ 𝑍, satisfy 

                                                    Det (𝜏 + 𝐵𝑖)≠ 0,                                                                                              

where 𝜏 is the identical n × n matrix?       
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1.2 Laplace transform Method solution of Fractional ordinary Differential Equations 

In 1819 Lacroix developed the formula for the 𝑛𝑡ℎ derivative 𝑓(𝑡) = 𝑥𝑚 ,where m is a positive integer. then  

                                  𝐷𝑛𝑦 =
𝑚!

(𝑚−𝑛)!
𝑥(𝑚−𝑛),                                                                                

Replacement of factorial symbol by the gamma function gives:  

                               𝐷𝑛𝑦 =
Г(𝑚+1)

Г(𝑚−𝑛+1)
 𝑥𝑚−𝑛                                                      (1.9)                                                                              

Now(1.29)is defined for either n integers, or not (arbitrary number) (Debnath and Bhatta.2009). Liouville's 

first formula: 

For any integer n, we have  

                                        𝐷𝑛𝑒𝑎𝑥 = 𝑎𝑛𝑒𝑎𝑥                                                          (1.10) 

Liouville replaced n by an arbitrary number 𝛼 (rational, irrational or complex), it is clear that the R.H.S of 

(1.10)is well defined; in this case, he obtained the following formula. 

                                                        𝐷𝑛𝑒𝑎𝑥 = 𝑎𝑛𝑒𝑎𝑥    

This formula is called first Liouville's formula. In series expansion of 𝑓(𝑥) 

, Liouville formula is given by 

                                   𝐷𝑎𝑓(𝑥) = ∑ 𝑐𝑛𝑎𝑛
𝑎∞

𝑛=0 𝑒𝑎𝑛𝑥                                            (1.11) 

Liouville's second formula: 

Liouville formulated another definition (second form) of a fractional derivative based on the gamma function 

to extend Lacroix's formula (Loke Nath and Bhatt a, 2009). 

                                       𝐷𝑎𝑥−𝛽 =
(−1)𝛼

Г(𝛽)
 Г(𝛽 + 𝛼)𝑥−𝛽−𝛼                              (1.12) 

Formula (1.11), (1.12)is called the Liouville's second definition of fractional derivative. We note that the 

Liouville derivative of a constant (when𝛽 = 0) is zero, but the derivative of a constant function to Lacroix's 

formula is  

                                          𝐷𝑎1 =
𝑥−𝛼

Г(1−𝛼)
≠ 0                                                    (1.13) 

This led to a discrepancy between the two definitions of fractional derivative. But mathematicians prefer 

Liouville's definition. The idea of fractional derivatives or fractional integral can be described in different 

ways. Now by considering a linear homogenous 𝑛𝑡ℎ -order ordinary differential equation (initial value 

problem), 

                                    𝐷𝑛𝑦 = 0,𝑦(𝑘)(𝑎) = 𝑜,     0≤ 𝑘 ≤ 𝑛 − 1 

The solution is the fundamental set {1, 𝑥, 𝑥2……… , 𝑥𝑛−1}, 

                                 ∴ 𝑦 = ∑ 𝑐𝑟𝑥
𝑟 ∞

𝑛=0   

Now we must derive the Riemann-Liouville formula, that is by seeking the solution of the following in 

homogeneous ordinary differential equation  

                             𝐷𝑛𝑦 = 𝑓(𝑥) ,           𝐷(𝑘) (0) =0,     k= 0,1,2,………    

To get the solution of the above problem we use the Laplace transform method as follows, 

£𝐷𝑛{𝑦} = £{𝑓(𝑥)}  𝑦̅(𝑠) = 𝑠−𝑛 𝑓 ̅(s),         where   𝑦̅ = £[𝑦]𝑎𝑛𝑑 𝑓̅ = £[𝑓] 

∴ 𝑦(𝑥) = £−1𝑠−𝑛𝑓 ̅(s). By using the convolution theorem, we get the solution as follows: 
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𝑦(𝑥) =
1

Г(𝑛)
∫ (𝑥 − 𝑡)𝑛−1
𝑥

𝑎

𝑓(𝑡)𝑑𝑡,                                                          (1.14) 

Formula (𝐷𝑛𝑦 =
𝑚!

(𝑚−𝑛)!
𝑥(𝑚−𝑛)) is called Riemann-Liouville formula. Replacement of n by a number 

𝛼 gives the Riemann-Liouville fractional integral. 

𝐷−𝛼𝑓(𝑥) ≡ 𝑎𝐷
−𝛼
𝑥 𝑓(𝑥) =

1

Г(𝑛)
∫ (𝑥 − 𝑡)𝛼−1
𝑥

𝑎
𝑓(𝑡)𝑑𝑡, 𝑅𝑒 𝛼 > 0           

Where 𝑎𝐷
−𝛼
𝑥 (𝑜𝑟𝐷−𝛼 ) is called the Riemann Liouville integral operator 

(Debnath and D Bhatta.2009; carl and Tom 2000). 𝑖𝑓 𝑎 = 0 in the resulting formula is called Riemann 

fractional integral and if a= −∞, is called Liouville fractional integral.The fractional derivative is given by 

replacing 𝛼 by – 𝛼 in The Riemann fractional integral is given by,  

𝐷−𝛼𝑓(𝑥) ≡ 0𝐷
−𝛼
𝑥 𝑓(𝑥) =

1

Г(𝛼)
∫ (𝑥 − 𝑡)𝛼−1
𝑥

𝑎

𝑓(𝑡)𝑑𝑡, 𝑅𝑒 𝛼 > 0       (1.15) 

The formula (1.12) is of convolution type, then its Laplace transform is given by  

£[𝐷−𝛼𝑓(𝑥)]]= 
1

Г(𝛼)
£[(𝑥𝛼−1) ∗ 𝑓(𝑥) =  

1

Г(𝛼)

Г(𝛼)

𝑠𝑎
𝑓(𝑠)̅̅ ̅̅ ̅̅ =

𝑓(𝑠)̅̅ ̅̅ ̅̅

𝑠𝑎
                         (1.16) 

The Laplace transform of fractional derivative of order 𝛼 is given by Lokenath 2003: 

             £{𝐷𝑎𝑥(𝑡)} = 𝑠𝑎𝑥̅(s)−∑ 𝑠𝑘[𝐷(𝛼−𝑘−1)𝑥(0)]𝑛−1
𝑘=0 =𝑠𝑎𝑥̅(s)−∑ 𝑐𝑘

𝑛−1
𝑘=0 𝑠𝑘     

Where     (𝑛 − 1)< 𝛼 ≤ 𝑛 and 𝑐𝑘 = 𝐷
(𝛼−𝑘−1)𝑥(0). 

The special function of Mintage- Leffler function is defined by Haubold et al.   (Humboldt et al 2009): 

                                 𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Г(𝛼𝑘+𝛽)
∞
𝑘=0                                                    (1.17) 

Where, 𝛽 ∈ ∅, 𝑅𝑒(𝛼), 𝑅𝑒(𝛽) > 0. 𝐼𝑓 𝛽 = 1 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒, 

                                              𝐸𝛼,1(𝑧) = ∑
𝑧𝑘

Г(𝛼𝑘+1)
∞
𝑘=0   

Some examples: 

(i)  𝐸0,1(𝑧) = ∑
𝑧𝑘

Г(1)
= ∑ 𝑧𝑘     (𝑖𝑖)∞

𝑘=0
∞
𝑘=0 𝐸1,1(𝑧) = ∑

𝑧𝑘

Г(𝑘+1)
∞
𝑘=0 = 𝑒𝑧         

(𝑖𝑖𝑖)𝐸1,2(z)= ∑
𝑧𝑘

Г(𝑘+2)
∞
𝑘=0 =

𝑒𝑧−1

𝑧
            (𝑖𝑣)𝐸1,0(𝑧) =  ∑

𝑧𝑘

Г(𝑘)
∞
𝑘=0 =𝑧𝑒𝑧 

The function E(t,𝛼, 𝑎) is used to solve differential equations of fractional order which is defined by: 

𝐸(𝑡, 𝛼, 𝑎) = 𝑡𝛼∑
(𝑎𝑡)𝑘

Г(𝑘 + 𝛼 + 1)

∞

𝑘=0

= 𝑡𝛼𝐸1,𝛼+1(𝑎𝑡)                            (1.18) 

Theorem(𝟏. 𝟑)[𝟖]:  

                                              E(t, 𝛼, 𝑎) =
1

Г(𝛼)
∫ 𝜉𝛼−1
𝑡

0
𝑒𝑎(𝑡−𝜉)𝑑𝜉 

𝑷𝒓𝒐𝒐𝒇: We start by the integral in the left-hand side of  

              
1

Г(𝛼)
∫ 𝜉𝛼−1
𝑡

0
𝑒𝑎(𝑡−𝜉)𝑑𝜉 =

1

Г(𝛼)
∫ 𝜉𝛼−1
𝑡

0
(∑

𝑎𝑘(𝑡−𝜉)𝑘

𝑘!
∞
𝑘=0 )𝑑𝜉 =

1

Г(𝛼)
                        

∑  ∞
𝑘=0 [𝑎𝑘𝑡𝑘(∫ 𝜉𝛼−1

𝑡

0
(1 −

𝜉

𝑡
)𝑘)𝑑𝜉]= 

1

Г(𝛼)
∑  ∞
𝑘=0 [

𝑎𝑘𝑡𝑘

𝑘!
𝐼]                             

To complete the proof, we have to calculate the integral given by I, where 

                                      I=∫ 𝜉𝛼−1
𝑡

0
(1 −

𝜉

𝑡
)𝑘𝑑𝜉                                                                                 
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𝐿𝑒𝑡 𝑢 =
𝜉

𝑡
, 𝑡ℎ𝑒𝑛 𝑑𝜉 = 𝑡𝑑𝑢, as 𝜉 = 0 𝑡ℎ𝑒𝑛 𝑢 = 0, 𝑎𝑛𝑑 𝑎𝑠 𝜉 = 𝑡 𝑡ℎ𝑒𝑛 𝑢 = 1 

 by substituting into (𝑖𝑖𝑖)we get 

I=∫ 𝑡𝛼−1
1

𝑜
𝑢𝛼−1(1 − 𝑢)𝑘𝑡𝑑𝑢 = 𝑡𝛼 ∫ 𝑢𝛼−1(1 − 𝑢)𝑘

1

0
𝑑𝑢 = 𝑡𝛼𝐵(𝛼, 𝑘 + 1) = 

𝑡𝛼Г(𝛼)Г(𝑘 + 1)

Г(𝑘 + 𝛼 + 1)
 

Substituting of (ii) into (𝐷𝑛𝑦 =
𝑚!

(𝑚−𝑛)!
𝑥(𝑚−𝑛)) yields 

 
1

Г(𝛼)
∫ 𝜉𝛼−1
𝑡

0

𝑒𝑎(𝑡−𝜉)𝑑𝜉 =
1

Г(𝛼)
∑

𝑎𝑘𝑡𝑘

𝑘!
 

∞

𝑘=0

𝑡𝛼Г(𝛼)𝑘!

Г(𝑘 + 𝛼 + 1)
= 𝑡𝛼∑

(𝑎𝑡)𝑘

Г(𝑘 + 𝛼 + 1)

∞

𝑘=0

 𝑡𝛼𝐸1,𝛼+1(𝑎𝑡) = 𝐸(𝑡, 𝛼, 𝑎) 

1.3 Fractional ordinary differential equations: 

The general form of fractional linear ordinary differential equations of order (𝑛, 𝑞) is given by 

[𝐷𝛼𝑛 + 𝑎𝑛−1𝐷
(𝑛−1)𝛼 +⋯+ 𝑎0𝐷

0]𝑥(𝑡) = ℎ(𝑡),         𝑡 ≥ 0                       (1.19) 

Where 𝛼 =
1

𝑞
. 𝐼𝑓 𝑞 = 1, 𝑡ℎ𝑒𝑛 𝛼 = 1 

 and equation (1.19) is a simple ordinary differential equation  

Of order n. symbolically equation (1.39)can be expressed as 

                               𝑓(𝐷𝛼)𝑥(𝑡) = ℎ(𝑡)                                                                (1.20) 

Where 𝐷𝛼 ≡ [𝐷𝛼𝑛 + 𝑎𝑛−1𝐷
(𝑛−1)𝛼 +⋯+ 𝑎0𝐷

0] 𝑎𝑛𝑑 

𝑎0, 𝑎1, ………𝑎𝑛−1 are functions of the independent variable t. 

Assume that the coefficients 𝑎0, 𝑎1, ………𝑎𝑛−1are functions of the equation (1.43).They applying the 

Laplace transformation with respect to both sides of (1.43) we obtain, 

£{[𝐷𝛼𝑛 + 𝑎𝑛−1𝐷
(𝑛−1)𝛼 +⋯+ 𝑎0𝐷

0]𝑥(𝑡)} = £{ℎ(𝑡)} £{[𝐷𝛼𝑛]𝑥(𝑡)}+ 𝑎𝑛−1£{[𝐷
(𝑛−1)𝛼]𝑥(𝑡)} + ⋯+

𝑎0£{[𝐷
0]𝑥(𝑡)[𝑠𝑛𝛼𝑥̅(𝑠) − ∑ 𝑐𝑘𝑠

𝑛𝑘𝑛
𝑘=1 ] + 𝑎𝑛−1[𝑠

𝛼(𝑛−1)𝑥̅(𝑠) − ∑ 𝑐𝑘−1𝑠
𝑘𝑛−1

𝑘=1 ] + ⋯+ 𝑎1𝑠
𝛼𝑥̅(𝑠) +

𝑎0𝑥̅(𝑠) = ℎ̅(𝑠)[𝑠𝛼𝑛 + 𝑎𝑛−1𝑠
𝛼(𝑛−1) +⋯+ 𝑎1𝑠

𝛼 + 𝑎0]𝑥̅ (s)=∅(𝑠) 

 𝑥̅(𝑠) =
∅(𝑠)

[𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼
(𝑛−1) +⋯+ 𝑎1𝑠𝛼 + 𝑎0]

                                   (1.21) 

If the equation of order (n,2), then 𝛼 =
1

2
, and formula (1.44)becomes  

                                𝑥̅(𝑠) =
∅(𝑠)

[𝑠
𝑛
2+𝑎𝑛−1𝑠

(𝑛−1)
2 +⋯+𝑎1𝑠

1
2+𝑎0]

                                   (1.22) 

Assume that the R.H.S of (1.45)will be factorized and expressed as, 

𝑥̅(𝑠) = ∑
∅𝑟(𝑠)

(√𝑠 − 𝛽𝑟)
𝑚𝑟

𝑘

𝑟=1

=∑
∅𝑟(𝑠)(√𝑠 − 𝛽𝑟)

𝑚𝑟

(𝑠 − 𝛽𝑟
2)
𝑚𝑟

𝑘

𝑟=1

=∑∑
∅𝑟(𝑠)(

𝑚𝑟
𝑖
)(√𝑠)

𝑚𝑟(𝛽𝑟)
𝑚𝑟−𝑖

(𝑠 − 𝛽𝑟
2)
𝑚𝑟

𝑚𝑟

𝑖=0

𝑘

𝑟=1

=∑∑
𝜔𝑖

𝑠𝛾𝑖(𝑠 − 𝛽𝑟
2)
𝑚𝑟

𝑚𝑟

𝑖=0

𝑘

𝑟=1

                                                                                 (1.23) 

Where  

𝑚1 +𝑚2 +⋯+𝑚𝑘 = 𝑛,𝜔𝑖 = 𝑐𝑜𝑛𝑠𝑡  𝑎𝑛𝑑 𝑠𝛾𝑖 = (∅𝑟(𝑠)(√𝑠)
𝑚𝑟
)
−1

. 

Example (1.2) [9]: consider the following fractional ordinary differential equation with variable coefficients   
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t𝐷𝛼(𝑡) + 𝐷𝛼−1𝑥(𝑡) + 𝑡𝑥(𝑡) = 0,          𝑥(0) = 1,     1 < 𝛼 ≤ 2               (1.24) 

The application of Laplace transform gives  

−
𝑑

𝑑𝑠
= £[𝐷𝛼(𝑡)] + £[𝐷𝛼−1𝑥(𝑡)] + £[𝑡𝑥(𝑡)] = 0                       

−
𝑑

𝑑𝑠
= [𝑠𝛼𝑥̅(𝑠) −∑𝑠𝑘𝐷𝛼−𝑘−1

1

𝑘=0

𝑥(0)] + [𝑠𝛼−1𝑥̅(𝑠) −∑𝑠𝑘𝐷𝛼−𝑘−2
0

𝑘=0

𝑥(0)] 

−
𝑑𝑥̅(𝑠)

𝑑𝑠
= 0                  

−
𝑑

𝑑𝑠
= [𝑠𝛼𝑥̅(𝑠) − 𝐷𝛼−1𝑥(0) − 𝑠𝐷𝛼−2𝑥(0)] + [𝑠𝛼−1𝑥̅(𝑠) − 𝐷𝛼−2𝑥(0)] −

𝑑𝑥̅(𝑠)

𝑑𝑠
= 0                 

−𝑠𝛼
𝑑𝑥̅(𝑠)

𝑑𝑠
− 𝛼𝑠𝛼−1𝑥̅(𝑠) + 𝐷𝛼−2𝑥(0) + 𝑠𝛼−1𝑥̅(𝑠) − 𝐷𝛼−2𝑥(0) −

𝑑𝑥̅(𝑠)

𝑑𝑠
= 0                 (1+𝑠𝛼) 

𝑑𝑥̅(𝑠)

𝑑𝑠
=

(1 − 𝛼)𝑠𝛼−1𝑥̅(𝑠) 

𝑑𝑥̅(𝑠)

𝑥̅(𝑠)
=

(𝛼−1)𝑠𝛼−1

(1+𝑠𝛼)
 𝑑𝑠 𝑙𝑛𝑥̅(𝑠) =

(1−𝛼)

𝛼
 𝑙𝑛(1 + 𝑠𝛼) + 𝑙𝑛𝑐 

       ∴ 𝑥(𝑡) = £−1 [𝑐(1 + 𝑠𝛼)
(1−𝛼)

𝛼 ]                                                                      (1.25) 

As special case takes 𝛼 = 2, then equation (1.25)becomes  

t𝐷2(𝑡) + 𝐷𝑥(𝑡) + 𝑡𝑥(𝑡) = 0,              𝑥(0) = 1,then from (1.48) we have  

𝑥(𝑡) = £−1 [
𝑐

√(1+𝑠2)
] = 𝑐𝐽0(𝑡) . 

   

Definition (1.4) [10] (Lyapunov Stability.) 𝑥̅(t) is said to be stable (or Lyapunov stable) if, given ε > 0, there 

exists a δ = δ(ε) > 0 such that, for any other solution, y(t), of (1.48) satisfying |x̅ (t0)  −  y(t0) |< δ (where |. | 

is a norm on Rn), then |𝑥̅(𝑡)  −  𝑦(𝑡)| < ε for t > 𝑡0, 𝑡0 ∈ R. We remark that a solution which is not stable is 

said to be unstable. 
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1.4 Stability  

An equilibrium solution, i.e.,𝑥̅(t) = 𝑥̅, then D 𝑥(t, s) f(𝑥̅) is a matrix 

of (1.47) with constant entries, and the solution through the point  

𝑦0 ∈  𝑅𝑛 

of t = 0 can immediately be written as 

                                                    𝑦(𝑡) = 𝑒Df(𝑥̅(𝑡))𝑦0.                                                                                                    

Thus, y(t) is asymptotically stable if all Eigen values of D f(𝑥̅) have negative real part                                    

Example (1.3) [11] (Stability and Eigen values of Time-Dependent Jacobians). For a general time, 

dependent solution 𝑥̅(t) it might be tempting to infer stability properties of this solution from the Eigen 

values of the Jacobian D f(𝑥̅(t)). The following example from Hale [1980] shows this can lead to wrong 

answers. Consider the following linear vector field with time-periodic coefficients 

(
𝑥̇1
𝑥̇2
) = A(t) (

𝑥1
x2
) 

Where                                                                                        

    A(t)=(
−1 +

3

2
 𝑐𝑜𝑠2𝑡 1 −

3

2
𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑡

−1 −
3

2
𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑡 −1 −

3

2
𝑠𝑖𝑛2𝑡

) 
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= (−1 +
3

2
 𝑐𝑜𝑠2𝑡) (−1 −

3

2
𝑠𝑖𝑛2𝑡) − (1 −

3

2
𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑡) (−1 −

3

2
𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑡) = (1 +

3

2
𝑠𝑖𝑛2𝑡 −

3

2
 𝑐𝑜𝑠2𝑡 −

9

4
𝑐𝑜𝑠2𝑡𝑠𝑖𝑛2𝑡)—1 −

3

2
+

3

2
+

9

4
  = (1 −

3

2
(𝑐𝑜𝑠2𝑡 − 𝑠𝑖𝑛2𝑡) −

9

4
𝑐𝑜𝑠2𝑡𝑠𝑖𝑛2𝑡)—1 +

9

4
  

The Eigen values of A(t) are found to be independent of t and are given by            

1(t) =
−1 + 𝑖√7

4
2                و      =

−1 − 𝑖√7

4
 

𝑉1(𝑡) = (
−𝑐𝑜𝑠𝑡

𝑠𝑖𝑛𝑡
) 𝑒

𝑡
2                      𝑉2 = (

𝑠𝑖𝑛𝑡

𝑐𝑜𝑠𝑡
) 𝑒−𝑡                                                 

Hence, the solutions are unstable and of saddle type, a conclusion that does not 

follow from the eigen values of A(t).  

{…,𝐴−𝑛𝑦0, … , 𝐴
−1𝑦0, 𝑦0, 𝐴𝑦0, … , 𝐴

𝑛𝑦0, …} or the infinite sequence (if the map is 𝐶𝑟, r ≥ 1, but noninvertible) 

{𝑦0, 𝐴𝑦0, … , 𝐴
𝑛𝑦0}.  

Recall that when the nominal feedback system is internally stable, the nominal performance condition is 

‖𝑊1𝑆‖∞ < 1 and the robust stability condition is ‖𝑊2𝑇‖∞ < 1. If P is perturbed to (1 + ∆𝑊2)𝑃, 𝑆 is 

perturbed to 

1

1 − (1 + ∆𝑊2)𝐿
=

𝑆

1 + ∆𝑊2𝑇
 

Clearly, the robust performance condition should therefore be 

‖𝑊2𝑇‖∞ < 1 𝑎𝑛𝑑  ‖
𝑊1𝑆

1 + ∆𝑊2𝑇
‖
∞

< 1, ∀∆. 

Here ∆ must be allowable. The next theorem gives a test for robust performance in terms of the function 

𝑠 ↦ |𝑊1(𝑠)𝑆(𝑠)| + |𝑊2(𝑠)𝑇(𝑠)|. 

Which is denoted |𝑊1𝑆| + |𝑊2𝑇|. 

Theorem (1.4) [7] A necessary and sufficient condition for robust performance is 

‖|𝑊1𝑆| + |𝑊2𝑇|‖∞ < 1.                                                              (1.26) 

Proof (⇐) Assume (1.50), or equivalently 

‖𝑊2𝑇‖∞ 𝑎𝑛𝑑 ‖
𝑊1𝑆

1 + ∆𝑊2𝑇
‖
∞

< 1.                                                        (1.27) 

Fix ∆. In what follows, functions are evaluated at an arbitrary point 𝑗𝜔, but this is suppressed to simplify 

notation. We have 

1 = |1 + ∆𝑊2𝑇 − ∆𝑊2𝑇| ≤ |1 + ∆𝑊2𝑇| + |𝑊2𝑇| 

and therefore 

1 − |𝑊2𝑇| ≤ |1 + ∆𝑊2𝑇| 

This implies that 

‖
𝑊1𝑆

1 − |𝑊2𝑇|
‖
∞

≥ ‖
𝑊1𝑆

1 + ∆𝑊2𝑇
‖
∞

. 

This and (1.28) yield 
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‖
𝑊1𝑆

1 + ∆𝑊2𝑇
‖
∞

< 1 

() Assume that 

‖𝑊2𝑇‖∞ < 1     𝑎𝑛𝑑    ‖
𝑊1𝑆

1 − |𝑊2𝑇|
‖
∞

< 1,    ∀∆                         (1.28) 

Pick a frequency 𝜔 where 

|𝑊1𝑆|

1 − |𝑊2𝑇|
 

is maximum. Now pick ∆ so that 

1 − |𝑊2𝑇| = |1 + ∆𝑊2𝑇| 

The idea here is that ∆(𝑗𝜔) should rotate 𝑊2(𝑗𝜔)𝑇(𝑗𝜔) so that ∆(𝑗𝜔)𝑊2(𝑗𝜔)𝑇(𝑗𝜔) is negative real. The 

details of how to construct such an allowable ∆ are omitted. Now we have  

 

‖
𝑊1𝑆

1 − |𝑊2𝑇|
‖
∞

=
|𝑊1𝑆|

1 − |𝑊2𝑇|
 

=
|𝑊1𝑆|

|1 + ∆𝑊2𝑇|
≤ ‖

𝑊1𝑆

1 + ∆𝑊2𝑇
‖
∞

 

So, from this and (1.28) there follows (1.50).  

Test (1.26) also has a nice graphical interpretation. For each frequency 𝜔, construct two closed disks: one 

with center −1, radius |W1(jω)|, the other with center L(jω), radius |𝑊2(𝑗𝜔)𝐿(𝑗𝜔)|. More generally, let’s 

say that robust performance level 𝛼 is achieved if 

‖𝑊2𝑇‖∞ < 1  𝑎𝑛𝑑   ‖
𝑊1𝑆

1 + ∆𝑊2𝑇
‖
∞

< 𝛼, ∀∆. 

Noting that at every frequency 

max
|∆|<1

|
𝑊1𝑆

1 + ∆𝑊2𝑇
| =

|𝑊1𝑆|

1 − |𝑊2𝑇|
 

We get that the minimum 𝛼 equals 

 

‖
𝑊1𝑆

1 − |𝑊2𝑇|
‖
∞

.                                                      (1.29) 

 We allow ∆ to satisfy ‖∆‖∞ < 𝛽. Application of Theorem (1.6) shows that internal stability is robust if 

‖𝛽𝑊2𝑇‖∞ < 1. let’s say that the uncertainty level 𝛽 is permissible if 

  

‖𝛽𝑊2𝑇‖∞ < 1  𝑎𝑛𝑑   ‖
𝑊1𝑆

1 + ∆𝑊2𝑇
‖
∞

< 1,   ∀∆.  

Again, noting that  

max
|∆|<1

|
𝑊1𝑆

1 + 𝛽∆𝑊2𝑇
| =

|𝑊1𝑆|

1 − 𝛽|𝑊2𝑇|
, 

we get that the maximum 𝛽 equals 
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‖
𝑊2𝑆

1 − |𝑊1𝑇|
‖
∞

−1

 

Now we turn briefly to some related problems. 
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