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Abstract: 

  In this paper I study bilinear forms on finite dimensional vector spaces.  Then define a matrix of a 

bilinear form and verification of problems about the bilinear then we discussed to Quadratic form and their 

application to solve Reduction of a quadratic form to the diagonal form. 
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Introduction: 

Consider a finite dimensional, inner product space V over the field R of real numbers.  The inner 

product is a function form VV to R satisfying the following conditions. 

(i) <  vuvuvuu ,,, 2121   

(ii) <u,  2121 ,, vuvuvv   

In other words, the inner product is a scalar valued function of the two variables u and v and is a linear 

function in each of the two variables.  
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  This type of scalar valued functions is called bilinear forms.  In this paper we introduce the 

concepts of the Bilinear form using finite dimensional vector space. 

Preliminaries: 

Definition:1 

 Let V be a vector space over a field F.  A bilinear form on V is a function f: VV→F.  Such that 

                (i) f( ),(),(), 2121 vufvufvuu    

               (ii) f(u, ),(),() 2121 vufvufvv    Where F ,  and u1,u2,v1,v2V. 

In other words, f is linear as a function of any one of the two variables when the other is fixed. 

Remark: 

b (o, v) = b(v, o) = 0.  

Examples:1 

 b (x, y) =<x, y> in Rn is bilinear and symmetric for any scalar product.  

 b ((x1, y1), (x2, y2)) = x1x2 + 2x1y2 + 3y1x2 + 4y1y2 is bilinear, but not symmetric. 

Definition:2 

       Let C = V1 ...…..., Vn basic of V and let b be a bilinear form on V. The matrix of b with respect to C is 

 [b]c = [

b(v1, v1) b(v1, v2). . . b(v1, vn)

b(v2, v1) b(v2, v2). . . b(v2, vn)

b(vn, v1) b(vn, v2). . . b(vn, vn)
] 

Theorem:1 

 Let V be a vector space over a field F.  Then L(V, V, F) is a vector space over F under addition and 

scalar multiplication defined by 

(f+g)(u, v)=f (u, v)+g (u, v) and (∝ 𝑓 )(𝑢, 𝑣) =∝ 𝑓(𝑢, 𝑣)  

Proof:  

 Let f, gL(V, V, F) and 𝛼 1 F. 

We claim that f+g and 1 fL(V, V, F). 

(f+g)(𝛼𝑢1+βu2,v)=f(𝛼𝑢 1 + 𝛽u2,v)+g(𝛼𝑢 1 + 𝛽𝑢 2 , 𝑣) 

                              =𝛼𝑓(𝑢 1 , 𝑣) + 𝛽𝑓(𝑢 2 , 𝑣) + 𝛼𝑔(𝑢 1 , 𝑣) + 𝛽𝑔(𝑢 2 , 𝑣) 

                             =𝛼[𝑓(𝑢 1 , 𝑣) + 𝑔(𝑢 1 , 𝑣)] + 𝛽[𝑓(𝑢 2 𝑣) + 𝑔(𝑢 2 , 𝑣)] 
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                            =𝛼[(𝑓 + 𝑔)(𝑢 1 , 𝑣)] + 𝛽[(𝑓 + 𝑔)(𝑢 2 , 𝑣)] 

Similarly, we can prove that 

(f+g)(u,𝛼𝑣 1 + 𝛽𝑣 2 ) = 𝛼[(𝑓 + 𝑔)(𝑢, 𝑣 1 )] + 𝛽[(𝑓 + 𝑔)(𝑢, 𝑣 2 )] 

Hence (f+g))∈ 𝐿(𝑉, 𝑉, 𝐹). 

Also (𝛼 1 𝑓)(𝛼𝑢 1 + 𝛽𝑢 2 , 𝑣) 

                                                = 𝛼 1 𝑓(𝛼𝑢 1 + 𝛽𝑢 2 , 𝑣) 

= 𝛼 1 [𝛼𝑓(𝑢 1 , 𝑣) + 𝛽𝑓(𝑢 2 , 𝑣)] 

 = 𝛼 1 𝛼𝑓(𝑢 1 , 𝑣) + 𝛼 1 𝛽𝑓(𝑢 2 , 𝑣) 

               = 𝛼[(𝛼 1 𝑓)(𝑢 1 , 𝑣)] + 𝛽[(𝛼 1 𝑓)(𝑢 2 , 𝑣)] 

Similarly 

(𝛼 1 𝑓)(𝑢, 𝛼𝑣 1 + 𝛽𝑣 2 ) = 𝛼[(𝛼 1 𝑓(𝑢, 𝑣 1 )] + 𝛽[(𝛼 1 𝑓) (𝑢 , 𝑣 2 )] 

∴ 𝛼 1 𝑓 ∈ 𝐿(𝑉, 𝑉, 𝐹). 

    The remaining axioms if a vector space can be easily verified. 

Definition:3 

A bilinear form f defined on a vector space V is called symmetric bilinear form 

 if f(u, v)=f(u,v) for all u,v V . 

Definition:4 

              Let f be a symmetric bilinear form defined by V.  Then the quadraticform associated with f is the 

mapping q: v F  defined by q(v)=f(v, v).  The matrix of the bilinear form f is called the matrix of the 

associated quadratic form q. 

Theorem:2 

 Let g be a symmetric bilinear form defined on V.  Let q be the associated quadratic form. 

(i) f(u, v)=
4

1
{q(u+v)-q(u-v)} 

(ii) f(u, v) =
1

2
{q(u+v)-q(u)-q(v)} 
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Proof: 

 (i) 
4

1
{q(u+v)-q(u-v)} = 

4

1
{f(u+v, u+v)-f(u-v, u-v)} 

                                =
4

1
{f(u, u)+f(u, v)+f(v, u)+f(v, v)-f(u, u)+f(u, v)+f(v, u) } 

                                =
4

1
{4f(u, v)} 

                                = f (u, v). 

(ii) 
1

2
{q(u+v)-q(u)-q(v)} 

                             = 
1

2
{f (u+v, u+v)-f(u)-f(v)} 

                             =  
1

2
{f (u, u)  + f (u, v)  + f (v, u)  + f(v, v) -f(u, u)- f (v,v) 

                             = 
1

2
{2f (u, v)} 

                          = f (u, v). 

Problem:1 

                   Find the matrix of the bilinear form 

               F(x, y)=x1y2-x2y1with respect to the standard basis v2(R). 

Proof: 

                      a11 = (e1,e1)=f((1,0), (1,0))=(1). (0) – (0). (1) =0 

                      a12 = (e1,e2)=f ((1,0), (0,1)) = (1). (1) - (0). (0) =1 

                      a21 = (e2,e1)=f ((0,1), (1,0)) = (0). (0) - (1). (1) =-1  

                      a22 = (e2,e2)=f ((0,1), (0,1)) = (0). (1)-(1). (0) =0 

 

                              The matrix of 𝑓𝑖 








 01

10
. 

Definition:5 

                          a1x1
2+a2x2

2+..........+anxn
2 

Which is known as the diagonal form. 
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Definition:6 

Let f be a bilinear form on V.  Fix a basis {v1,v2,......vn}for v. 

Let u= nnvv   ...........11  and v= nnvv  .......11  . 

Then f (u, v) 

                = f ( )......,........ 1111 nnnn vvvv    




n

j

n

i 11

𝛼 𝛽 

                = ji

n

j

ij

n

i


 11

  where f (v,vj) = aij 

               =(

































nnnn

n

n

aa

aa





 .....

.......

............

.......

),........

1

1

111

1

 

∴ f(u, v)=XAYT Where 

X= (𝛼 1 , … … . 𝛼 n ), 𝐴 = (𝑎 ij ) 𝑎𝑛𝑑𝑌 = (𝛽 1 , … . . 𝛽 n ). 

   The nn matrix A is called the matrix of the bilinear form with respect to the chosen basis. 

Conversely, given any nn matrix A=(aij) the f: VV→F defined by f(u, v)=XAYT is a bilinear 

form on V and f(vi,vj)=aij.  Also, if g is any other bilinear form on V such that g(vi,vj)=aij, then f = g. 

Problem:2 

find the matrix of quadratic form x1
2+4x1x2+3x2

2  ,v2 in (R) 

Solution 

               Q(x1,x2) =  x1
2+4x1x2+3x2

2 

               x1
2+4x1x2+3x2

2=  (x1,x2) 
















2

1

x

x

cb

ba
 

                                       =  ax1
2+2bx1x2+cx2

2 

                  a=1, b=4/2, c=3 

                  A= 








32

21
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Conclusion: 

            In this paper  I have discussed on Application of Bilinear forms and Quadratic forms and studies 

some of properties. Also, I provided a constructive characterization for all Application of Bilinear forms 

and Quadratic forms. This construction is a promising tool for proving further properties of Application of 

Bilinear forms and Quadratic forms. 
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